EMATICS ENGLISH MEDIUM MATH SET 02 KEY ANSWERS. **MODEL PAPER-2** 03-Ian-25 SHIVA.T, MMDRS HARAPANAHALLI TOWN VIJAYANAGARA njklzxcvbnmqwertyuiopasdfgh klzxcvbnmqwertyuiopasdfghjklzxcv

KSEEB SSLC MODEL QUETSION PAPER – 02 MATHEMATICS 81 E

QUESTION PAPER & KEY ANSWERS

BY SHIVA.T, MMDRS HARAPANAHALLI TOWN VIJAYANAGARA DIST

MA	ARKS:80		DATE: 02-01-20	25	DURATION: 3 Hours 15min
I. Fo	ur alternatives	are given for	each of the fo	ollowing ques	stions / incomplete
state	ments. Choose	the correct al	ternative and	write the con	nplete answer along
with	its letter of alp	habet.			1x8=8
1.	The number of ta	ingents that can	be draw to the cir	cle at the point	on its circumference is
	A)Many	B) 3	C) 2	D) 1	
	Solution: D) 1				
	Explanation: Th	here can be only	one tangent at a p	point on the circ	ele.
2.	a and b are the ty	wo positive integ	gers, then the cor	rect relationship	b between the HCF(a, b)
	and LCM(a, b) is				
	A) HCF(a, b) x I			, , ,	CM(a, b) = axb
	C) HCF(a, b) + L) HCF(a, b) - L	CM(a, b) = axb
2	Solution: B) HC				
3.		olutions for the	pair of linear equ	lations $a_1x + b_1y$	$+c_1=0 \text{ and } a_2x+b_2y+c_2=0$
	when $\frac{a_1}{a_2} \neq \frac{a_1}{a_2}$ is				
	A)0	B) 1	C) 2 D) In	ifinite	
	Solution: B) 1				
	Explanation:				
	We know that $\frac{a}{a}$	$\frac{1}{a} \neq \frac{a_1}{a_2}$, there is in	ntersecting lines (Only one soluti	on) – consistent lines
					tions) - consistent lines
	<u>a</u>	$\frac{l_1}{l_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c}$ Para	llel lines (No sol	utions) – Incons	istent lines
4.	If nth term of an	- <u>L</u>			
		B)10	C)23		D)12
	Solution: C) 23				
	Explanation: we	e have a _n =3n-1 f	or finding 8th terr	n put n=8.	
		$a_8=3(8)-1$			
		a ₈ =24-1 =	= 23		
5.	The maximum nu	umbers of a zeor	es of the polynor	nial $p(x)=x^3-1$ i	8
	A) 3	B) 0	C) 1	D) 2	
	Solution: A)3	·		-	
	Explanation: W	e know that a lin	near equation has	only one zero	
10th 57	ΓANDARD		Model paper - 02		Page 2
10		1	-100001 paper - 02		I age 2

A quadratic equation has two zeroes A cubic polynomial has 3 zeroes 6. The volume of a right circular based cylinder is 1540 cubic cm and its height is 10cm. the area of its base is C) 154cm² D) 154cm³ B) 15.4 cm² A) 15.4cm Solution: C) 154cm² Explanation: We know volume of cylinder, V=1540 $\Pi r^{2}h=1540$ Height is given, h=10cm, $\Pi r^2 x 10 = 1540$ $\Pi r^2 = 154$ sq cm Which is required area of the base of cylinder 7. The formula to find the mean of the grouped data by direct method is B) $\frac{\sum f + x}{\sum f}$ C) $\frac{\Sigma f}{\Sigma f x}$ A) $\frac{\sum fx}{\sum f}$ D) $\frac{\sum f - x}{\sum f}$ **Solution:** A) $\frac{\sum fx}{\sum f}$ 8. $\frac{1-tan^2 45^0}{1+tan^2 45^0}$ is equal to _____. C) $\cos 0^0$ D) $\sin 0^0$ B) $sin45^{\circ}$ A) $Tan90^{\circ}$ Solution: D) $\sin 0^{\circ}$ **Explanation:** We have $\frac{1-tan^2 45^0}{1+tan^2 45^0} = \frac{1-1}{2} = 0$ Among the options, sin0 is 0. Hence D is correct answer. Note: options are also more important **II.** Answer the following questions 1x8=89. Write the formula to find the sum of first n terms of the arithmetic progression whose first term is a and last term is an. **Solution**: $\frac{n}{2}{a+an}$ 10. Write the coordinates of the midpoints of the line joining the two points $A(x_1, y_1)$ and $B(x_2, y_2)$. **Solution:** $\left[\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right]$ **11.** The pair of linear equations x+y-4=0 and 2x+by-3=0 have no solutions. Find the value of b. Solution: The value of b is 2 **Explanation:** We know $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c}$ Parallel lines (No solutions) – Inconsistent lines $\frac{1}{2} = \frac{1}{b}$ **12.** Find the maximum length of the rod to completely measure the rods of the lengths 24m and 36m. Solution: 12m. **Explanation**: we need to find the HCF of both lengths, so HCF is 12. **13.** Write the formula to find the surface area of the sphere.

 $10^{\rm th}\,STANDARD$

Model paper - 02

Solution: surface area of the sphere is $4\pi r^2$.

14. If one of the zeroes of the polynomial $p(x)=x^2+7x+k$ is 2. Then find the value of k. **Solution**: K = -19

Explanation: One zero is 2

$$\alpha = 2$$
 we know $\alpha \beta = \frac{c}{a}$
 $2x \beta = \frac{k}{1}$
 $2\beta = k$

Sum of its zeroes $\alpha + \beta = \frac{-b}{a}$

$$2+\beta=\frac{-7}{1}$$
 then $\beta=-9$

Then k = 2x - 9 = -18

15. Find the value of the discriminant of the quadratic equation $x^2+4x+4=0$

Solution: discriminant is 0

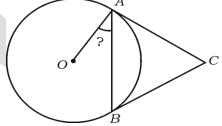
Explanation: we know that discriminant, $\Delta = b^2 - 4ac$

 $= 4^2 - 4x1x4$

$$= 16 - 16 = 0$$

16. In the given figure, O is the centre of the circle and CA and CB are the tangents to the circle. If AB=AC then find the measure of ∠OAB.

Solution: $\lfloor OAB = 30^{\circ}$.



2x8=16

Explanation: Given that AB=AC, Then BC=AC because it is tangents.

Hence triangle ABC is an equilateral triangle.

We know $\lfloor OAC=90$, if triangle ABC is an equilateral triangle then $\lfloor BAC=60$ If $\lfloor BAC=60$, then $\lfloor OAB = 90-60 = 30^{\circ}$

III. Answer the following questions

17. Find the sum of first 20 terms of an A.P 4, 7, 10, Solution: Given data here a=4, d=7-4 n=20

d=3 We are going to find S₂₀ We know S_n= $\frac{n}{2}$ {2*a* + (*n* - 1)*d*} S₂₀= $\frac{20}{2}$ {2*x*4 + (20 - 1)3} =10{8 + (19)3} =10x65 =650.

18. Solve 2x+y=8 and x-y=1.

Solution: we have 2x+y=8 ------ \rightarrow (1)

and x-y=1----- \rightarrow (2)

10th STANDARD

Model paper - 02

By elimination method 2x+y=8

by subtracting above two we get 3x=9 **x=3**

Put this x value in any one of the above equation we get y=2

OR

The difference between two positive numbers is 26 and if one number is three times the other. Find the numbers.

Solution: let the two numbers be x and y.

According to question x-y=26 ----- \rightarrow (1) and x=3y ----- \rightarrow (2)

Put equation 2 in one we get

$$3y-y=26$$

put y=13 in equation is 2, we get x=3x13

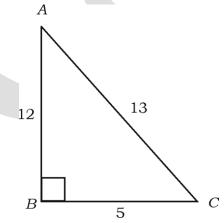
x=39

19. In the given figure, write the value of sinC and cosA.

Solution:

We know sinC = $\frac{AB}{AC} = \frac{12}{13}$

$$CosA = \frac{AB}{AC} = \frac{12}{13}$$



20. Write the probability of i)a sure event ii) an impossible event Solution: i) a sure event is always 1

ii) an impossible event is 0

21. Find the distance between the points (5, 6) and (1, 3) using distance formula. **Solution:** given points are (5, 6) and (1, 3)

 (x_1, y_1) and (x_2, y_2)

By distance formula

$$d=\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(1 - 5)^2 + (3 - 6)^2}$
= $\sqrt{16 + 9}$
= $\sqrt{25}$ = 5 units

22. A fair coin is tossed twice. Find the probability of getting at least one head. **Solution**: when a fair coin is tossed twice, the possible outcomes is $\{HH, HT, TH, TT\} = 4$

$$10^{\rm th}\,STANDARD$$

Model paper - 02

At least one head = {HH, HT, TH, } = 3

So probability is $P(E) = \frac{3}{4}$

23. Solve the quadratic equation $x^2+3x+2=0$ by the method of factorisation.

Solution: Given equation is $x^2+3x+2=0$. Factors of 2 is 1 and 2

$$x^{2}+3x+2=0$$

$$x^{2}+x+2x+2=0$$

$$x(x+1)+2(x+1) = 0$$

$$(x+1) = 0 \text{ or } x+2=0$$

$$x=-1 \text{ or } x=-2$$

OR

Find the value of k for which the quadratic equation $2x^2+kx+3=0$ has real equal roots. Solution: we have $2x^2+kx+3=0$

If the nature of the roots of the equation is real and equal, then its discriminant is $\Delta=0$

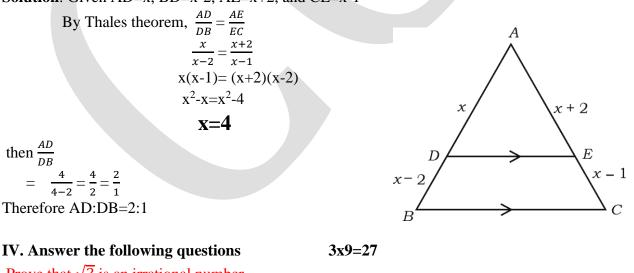
a=2, b=k and c=3

$$b^{2}-4ac=0$$

 $k^{2}-4x2x3=0$
 $k^{2}-24=0$
 $k=\sqrt{24}$
 $k=2\sqrt{6}$

24. In triangle ABC, DE||BC, AD=x, BD=x-2, AE=x+2, and CE=x-1. Find the value of x and hence find the AD:DB.

Solution: Given AD=x, BD=x-2, AE=x+2, and CE=x-1



25. Prove that $\sqrt{3}$ is an irrational number.

Solution: Let us assume to the contrary that $\sqrt{3}$ is a rational number. It can be expressed in the form of p/q where p and q are co-primes and $q \neq 0$. $\Rightarrow \sqrt{3} = p/q$ $\Rightarrow 3 = p^2/q^2$ (Squaring on both the sides) $\Rightarrow 3q^2 = p^2$(1)

10th STANDARD

Model paper - 02

It means that 3 divides p^2 and also 3 divides p because each factor should appear two times for the square to exist.

So we have p = 3rwhere r is some integer. $\Rightarrow p^2 = 9r^2$(2) from equation (1) and (2) $\Rightarrow 3q^2 = 9r^2$ $\Rightarrow q^2 = 3r^2$

We note that the left hand side of this equation is even, while the right hand side of this equation is odd, which is a contradiction. Therefore there exists no rational number r such that $r^2=3$.

Hence the root of 3 is an irrational number.

26. Find the zeroes of the quadratic polynomial $p(x)=x^2+7x+10$ and verify the relationship between the zeroes and coefficients.

Solution: we have $p(x)=x^2+7x+10$

$$x^{2}+7x+10$$

$$x^{2}+2x+5x+10$$

$$x(x+2)+5(x+2) = 0$$

$$(x+2) (x+5) = 0$$

$$x = -2 \text{ and } x = -5$$

Verification: Let first zero as α and second zero as β .

According to question,

And we know $\alpha + \beta = \frac{-b}{a}$ and $\alpha \beta = \frac{c}{a}$ $\alpha + \beta = \frac{-(7)}{1}$ and $\alpha \beta = \frac{10}{1}$ $\alpha + \beta = -7$ $\alpha \beta = 10$

C.I	0-4	4-8	8-12	12-16	16-20	20-24
f	7	3	7	10	1	2

Solution:

001410111		
C.I	f	
0-4	7	
4-8	3	
8-12	7	f_0
12-16	10	f_1
16-20	1	f_2
20-24	2	

l=12 and h=4, then by formula

Mode=l+
$$\left\{\frac{f_1-f_0}{2f_1-f_0-f_2}\right\}$$
xh.
= 12+ $\left\{\frac{10-7}{2x10-7-1}\right\}$ x4.
= 12+ $\frac{3}{20-7-1}$ x4

Model paper - 02

$= 12 + \frac{3}{12} \times 4$
$= 12 + \frac{12}{12}$
= 12+ 1
= 13
10de = 13

OR

Calculate the median for the grouped data.

	Ŭ	_ _
Class interval	Frequency	
0-10	2	
10-20	4	
20-30	8	
30-40	5	
40-50	1	
	N=20	

Solution:

We have

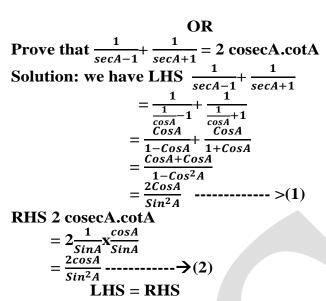
C.I	f	cf
0-10	2	2
10-20	4	6
20-30	8	<mark>14</mark>
30-40	5	19
40-50	1	20
	N=20	

n/2=10, f=8, cf=6 and h=10 Median= $1 + \left\{\frac{\frac{n}{2} - fc}{f}\right\} xh$ Median= $20 + \left\{\frac{10 - 14}{8}\right\} x 10$ $= 20 + \frac{4}{8} x 20$ = 20 + 5Median = 25

28. Prove that
$$\sqrt{\frac{1-\cos A}{1+\cos A}} + \sqrt{\frac{1+\cos A}{1-\cos A}} = 2\sec A$$

Solution: we have $\sqrt{\frac{1-\cos A}{1+\cos A}} + \sqrt{\frac{1+\cos A}{1-\cos A}}$
 $= \sqrt{\frac{1-\cos A}{1+\cos A}} x \frac{1-\cos A}{1-\cos A} + \sqrt{\frac{1+\cos A}{1-\cos A}} x \frac{1+\cos A}{1+\cos A}}$
 $= \sqrt{\frac{(1-\cos A)^2}{1-\cos^2 A}} + \sqrt{\frac{(1+\cos A)^2}{1-\cos^2 A}}$
 $= \sqrt{\frac{(1-\cos A)^2}{1-\cos^2 A}} + \frac{1+\cos A}{\sin A}}$
 $= \frac{1-\cos A}{\sin A} + \frac{1+\cos A}{\sin A}}$
 $= \frac{1+1}{\sin A} = 2SecA$ Hence the proof

Model paper - 02



29. The length of the minute hand of a clock is 14cm, find the area swept by the minute hand in 10 minutes.

Solution: Given, We know that in 1 hour (i.e., 60 minutes), the minute hand rotates360.

In 10 minutes, minute hand will rotate

 $= 360/60 \ge 10 = 60^{\circ}$

Therefore, the area swept by the minute hand in 10 minutes will be the area of a sector of 60° in a circle of 14 cm radius.

Area of sector of angle $\theta = \frac{\theta}{360^0} x \pi r^2$

Area of sector of $60^\circ = \frac{60}{360^0} x \frac{22}{7} x 14x 14$

$$=\frac{308}{3}$$
 cm² = 102.66 cm²

Therefore, the area swept by the minute hand in 10 minutes is 102.66 cm^2

OR

Find the area of the quadrant of a circle of radius 20cm, and also find the perimeter of quadrant.

Solution: Given r=20cm, we have to find area of a quadrant of circle.

$$=\frac{\pi r^2}{4} = \frac{\frac{22}{7}x20^2}{4}$$

= 314.2 sq cm.

Now we have to find perimeter of a quadrant of a circle. Here Θ =90, r=20

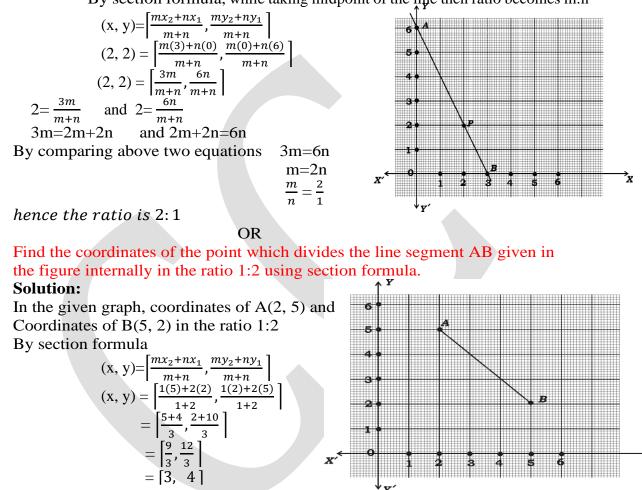
 $10^{\rm th}\,STANDARD$

Model paper - 02

Length of the arc of a circle = $\frac{\theta}{360} x 2\pi r$ = $\frac{90}{360} x 2x \frac{22}{7} x 20$ = 31.42cm

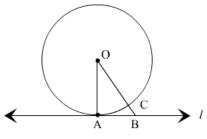
30. In the given figure, find the ratio in which the point P divides the line segment AB using formula.

Solution: in the graph, point A(0, 6), point B(3, 0) and point P(2, 2)By section formula, while taking midpoint of the line then ratio becomes m:n



31. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact".

Solution:



Given: a circle C(0, r) and a tangent l at point A.

 $10^{th} STANDARD$

Model paper - 02

To prove: $OA \perp 1$

Construction: Take a point B, other than A, on the tangent l.

join OB. Suppose OB meets the circle in C.

Proof: In figure

OA=OC (Radius of the same circle)

Now, OB=OC+BC.

∴ OB>OC

⇒OB>OA

⇒OA<OB

Thus, OA is shorter than any other line segment joining O to any point on l. Here OA \perp l.

32. A student bought some books for Rs. 60. Had he bought 5 more books for the same amount each book would have cost Re. 1 less. Then find the number of books bought by him.

Solution: Let the number of books be = x.

Total cost of the books = Rs. 60.

 \therefore Cost of each book =Rs.60x

If the number of books is (x + 5), then the cost of each book = Rs. 60x+5

Difference in cost is one rupee = Cost of each book when number of books is (x) -

Cost of each book when number of books is (x + 5)

```
60/x - 60/x + 5 = 1
```

```
60(x+5)-60x/x(x+5)=1
60x+300-60x/x^2+5x=1
x^{2}+5x=300
x^{2}+5x-300=0
x^{2}+20x-15x-300=0
x(x+20)-15(x+20)=0
(x+20)(x-15)=0
x+20=0 \text{ or } x-15=0
\therefore x = -20 \text{ or } x = 15
\therefore Number of books = x = 15
```

Number of books cannot be negative. Hence, -20 is rejected.

```
Cost of books =\frac{60}{x} = \frac{60}{15} = Rs. 4
```

33. In the figure A, B and C are the points on OP, OQ and OC respectively. If AB || PQ and $AC \parallel PR$, then show that $BC \parallel QR$.

Solution:

In $\triangle OPQ$, we have AB || PQ Therefore, by using basic proportionality theorem, we have OA/AP=OB/BQ.....(i) IN $\triangle OPR$, we have **AC**||**PR** Therefore, by using basic proportionality theorem, we have OC/CR=OA/AP.....(ii) Comparing (i)&(ii), we get R

10th STANDARD

Model paper - 02

OB/BQ=OC/CR

Therefore, by using converse of basic proportionality theorem, we get BC||QR|

V. Answer the following questions

4x4=16

34. The 8th term of an arithmetic progression is half of its 2nd term and 11th term of this progression exceeds one third of its fourth term by 1. Find the 15th term of this progression. **Solution:**

Given that $a_8 = \frac{1}{2}x a_2$ and $a_{11} = 1 + \frac{1}{3}a_4$ $a+7d = \frac{1}{2}(a+d)$ and $a+10d = 1 + \frac{1}{3}(a+3d)$ 2a+14d = a+d and 3a+30d = 3+a+3d a+13d=0 and 2a+27d = 3 a=-13d and 2a+27d = 3put a=-13d in the above 2^{nd} equation we get 2(-13d)+27d = 3 -26d+27d = 3d=3

then a=-39 its 15^{th} term is a+14d = -39+14x3 = -39+42

OR

= 3

An arithmetic progression consists of 37 terms. If the sum of its middle three terms is 225 and sum of its last three terms is 429. Then find the A.P.

Solution: we have 37 terms,

The middle term is $\frac{37+1}{2} = 19^{\text{th}}$ term

Its preceding term is 18th term and its succeeding term is 20th term.

Let a,d and n be the first term, common difference and the no. of terms of given AP. Here n=37

so middle most term is $n+12 \Rightarrow 37+12 \Rightarrow 18$ th

∴ three middle most terms are 18th,19th,20th

 $a18+a19+a20=225 \Rightarrow a+17d+a+18d+a+19d=225$

 \Rightarrow 3a+54d=225 ...(1)

last three terms are 35th,36th,37th

a+34d+a+35d+a+36d=429

 \Rightarrow 3a+105d=429 ...(2)

subtracting (1) from (2), we get

51d=204

⇒d=4

putting d in (1), we get $3a+54\times4=225$

 $3a=225-216 \Rightarrow a=3$

Therefore the AP is a,a+d,a+2d,a+3d,....

i.e 3,7,11,15.....

 $10^{th} STANDARD$

Model paper - 02

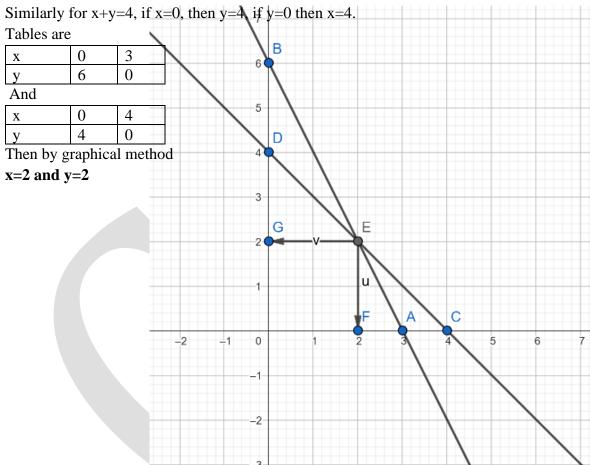
35. Find the solution of the pair of linear equations by graphical method. 2x+y=6 and x+y=4

Solution:

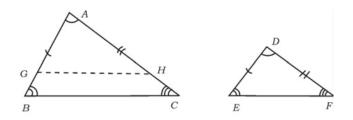
We have 2x+y=6

For this we should have to find some solutions

If x=0, then y=6, and y=0, then x=3



36. Prove that " If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional then prove that the two triangles are similar". Solution:



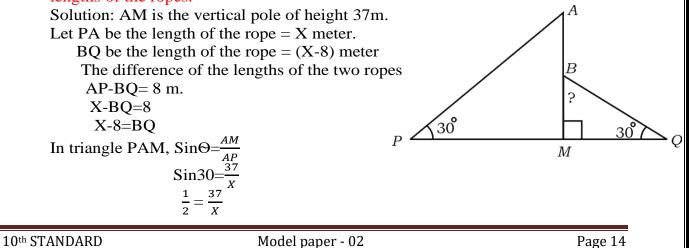
Given: ∠BAC=∠EDF

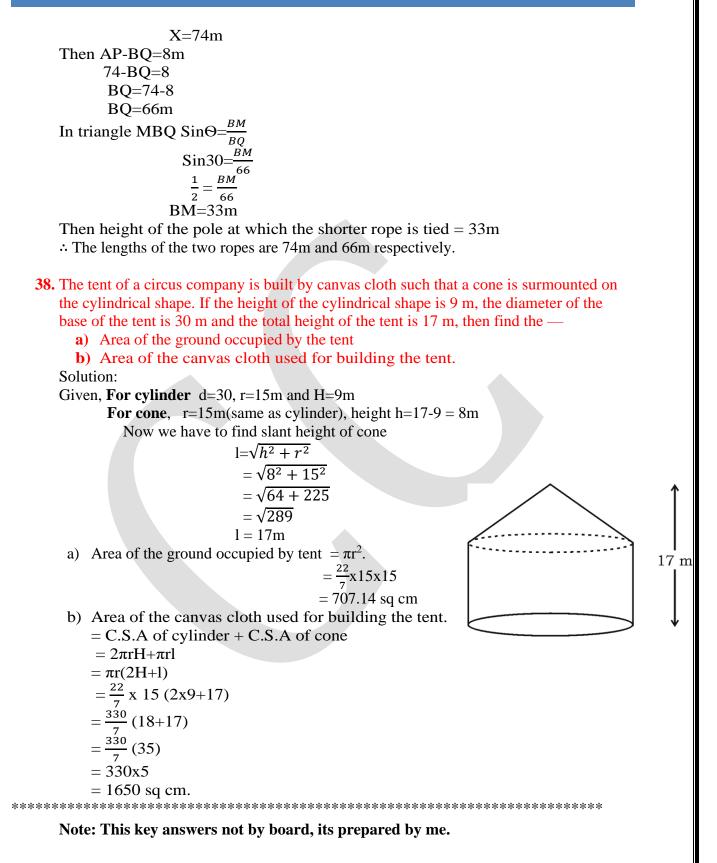
10th STANDARD

Model paper - 02

∠ABC=∠DEF To prove: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ **Construction:** Mark points G and H on the side AB and AC such that AG=DE, AH=DF proof: in triangle AGH and DEF AG=DE.....by construction AH=DF by contsruction ∠GAH=∠EDF...Given therefore. $\triangle AGH \cong \triangle FED$ by SAS congruency thus ∠AGH=∠DEFby CPCT but ∠ABC=∠DEF ∠AGH=∠ABC thus GH**∥**BC Now, In triangle ABC $\frac{AB}{AG} = \frac{BC}{GH} = \frac{CA}{HA}$ Hence. $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ hence proved.

37. A rope is tied from the tip of a vertical pole of length 37 m to a peg on a level ground. Another rope is tied to the same pole little below from its tip to a peg on the ground opposite to it as shown in the figure. Each rope is making an angle 30° with the ground. If the difference of the lengths of the ropes is 8 m, then find the height of the pole at which the shorter rope is tied. Also find the lengths of the ropes.

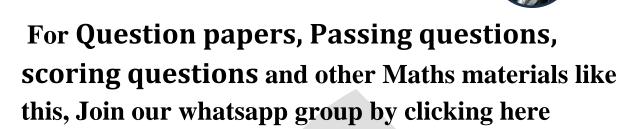




 $10^{\rm th}\,STANDARD$

Model paper - 02

Shiva.T, Maths teacher M.sc, B.Ed, MMDRS HARAPANAHALLI TOWN Vijayanagara Dist Mobile No.99161429.



https://chat.whatsapp.com/CkKs85DQ8BvDsfcOkVeaTe.

 $10^{\rm th}\,STANDARD$

Model paper - 02