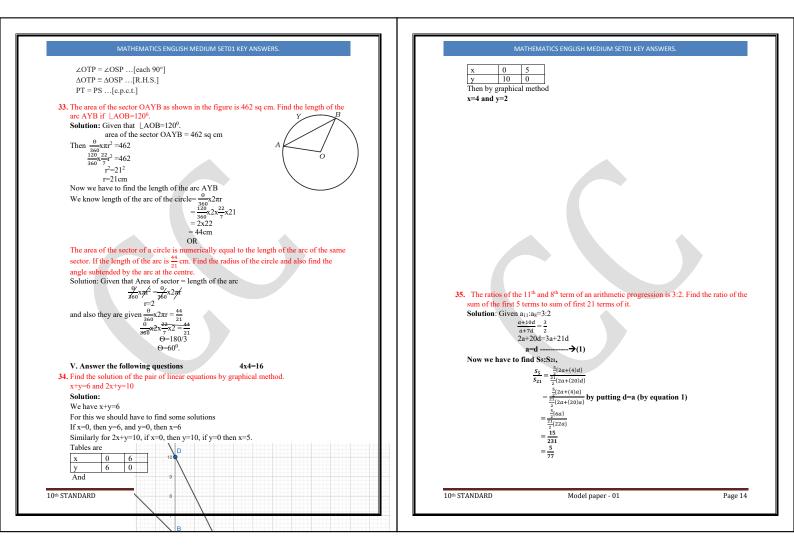
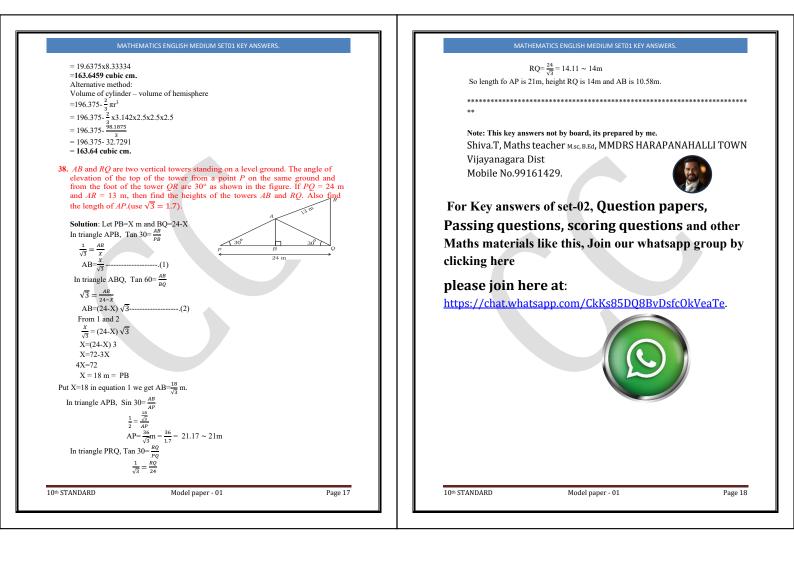

Above Line Hide When Print Out



Use E-Papers, Save Tress Above Line Hide When Print Out



MATHEMATICS ENGLISH MEDIUM SET01 KEY ANSWERS.	MATHEMATICS ENGLISH MEDIUM SET01 KEY ANSWERS.
36. Prove that "If in two triangles, corresponding angles are equal then corresponding sides are in the	
same ratio(proportion) and hence the two triangles are similar".	
Solution:	
Solution:	
\bigtriangleup^A	
G	
	From the figure, it can be seen that the radius of the hemispheres scooped out is the same as the radius of the base of the cylinder since both the hemispheres are of equal radius.
	Therefore, the total surface area of the article only includes the CSA of both the
Given: ∠BAC=∠EDF	hereiore, are total surface area of the article only fieldeds the CSA of both the
ZABC=ZDEF	TSA of the article = $2 \times CSA$ of the hemispherical part + CSA of the cylindrical part.
$\frac{ABC-ZDEF}{\mathbf{T}_{0} \text{ prove: } \overline{DE}} = \frac{BC}{EF} = \frac{CA}{FD}$	We will find the TSA of the article by using formulae;
•	CSA of the hemisphere = $2\pi r^2$, where r is the radius of the hemisphere.
Construction: Mark points G and H on the side AB and AC such that	CSA of the cylinder = $2\pi rh$, where r and h are the radius and height of the cylinder respectively.
AG=DE, AH=DF	Height of the cylinder = $h = 10$ cm
proof: in triangle AGH and DEF	Radius of the cylinder = radius of the hemisphere = $r = 3.5$ cm
AG=DEby construction	TSA of the article = $2 \times CSA$ of the hemispherical part + CSA of the cylindrical part
AH=DF by contsruction	$= 2 \times 2\pi r^2 + 2\pi rh$
∠GAH=∠EDFGiven	$= 2\pi r (2r + h) = 2 \times 22/7 \times 3.5 \text{ cm} \times (2 \times 3.5 \text{ cm} + 10 \text{ cm})$
therefore.	$= 2 \times 22/7 \times 3.3 \text{ cm} \times (2 \times 3.3 \text{ cm} + 10 \text{ cm})$ = 22 cm × 17 cm
$\triangle AGH \cong \triangle FED$ by SAS congruency thus	$= 374 \text{ cm}^2$
	Thus, the total surface area of the article is 374 cm ² .
$\angle AGH = \angle DEF \dots by CPCT$	OR
but	A juice seller was serving his customers using glass as shown in the figure. The inner diameter of the cylindrical glass was 5 cm, but the bottom of the glass had a
∠ABC=∠DEF	diameter of the cylindrical glass was 5 cm, but the bottom of the glass had a hemispherical raised portion which reduced the capacity of the glass. If the height of the
∠AGH=∠ABC	glass was 10 cm, then find the apparent capacity of the glass and its actual capacity, (take
thus	π=3.142).
GH BC	Solution: Given that diameter of glass is 5cm, and r=2.5cm
Now, In triangle ABC	Height of the cylinder is h=10cm
$\frac{AB}{AG} = \frac{BC}{GH} = \frac{CA}{HA}$	Now we have to find actual capacity of cylinder. Volume of cylinder = $\pi r^2 h$
Hence.	$= 3.142 \times 2.5 \times 2.5 \times 10$
$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$	= 196.375 cubic cm.
hence proved .	Now we have to find capacity of the glass,
37. A wooden article was made by scooping out a hemisphere from each end of a	Volume of cylinder – volume of hemisphere
solid cylinder, as shown in Fig. If the height of the cylinder is 10 cm, and its base	$\pi r^2 h - \frac{2}{3}\pi r^3$
is of radius 3.5 cm, find the total surface area of the article.	$=\pi r^2 (h-\frac{2}{r})$
Solution:	$= 3.142 x 2.5 x 2.5 (10 - \frac{2}{3} x 2.5)$
	= 19.6375(10-1.66)
STANDARD 01 Page 15	10th STANDARD Model paper - 01 Page 1

Above Line Hide When Print Out

