

ಜಿಲ್ಲಾಡಳಿತ, ಜಿಲ್ಲಾ ಪಂಚಾಯತ ಧಾರವಾಡ, ಉಪನಿರ್ದೇಶಕರ ಕಚೇರಿ, ಶಾಲಾ ಶಿಕ್ಷಣ ಇಲಾಖೆ, ಧಾರವಾಡ

ವಿಷಯ-ಗಣಿತ (ಇಂಗ್ಲೀಷ ಮಾಧ್ಯಮ)

ಎಸ್ ಎಸ್ ಎಲ್ ಸಿ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಯಶಸ್ವಿಯಾಗಲು ವಿದ್ಯಾರ್ಥಿ ಸ್ನೇಹಿ ಅಧ್ಯಯನ ಸಂಪನ್ಮೂಲ

ಸಹಕಾರ

ಉಪ ನಿರ್ದೇಶಕರು (ಆಡಳಿತ) ಹಾಗೂ ಅಭಿವೃದ್ಧಿ

ಶಿಕ್ಷಣಾಧಿಕಾರಿಗಳು, ಜಿಲ್ಲಾ ಯೋಜನಾ ಉಪಸಮನ್ವಯಾಧಿಕಾರಿಗಳು, ಕ್ಷೇತ್ರ ಶಿಕ್ಷಣಾಧಿಕಾರಿಗಳು

ವಿಷಯ ಪರೀವಿಕ್ಷಕರು ಮತ್ತು ಜಿಲ್ಲಾ ಗಣಿತ ಪರಿವಾರ

ಜಿಲ್ಲಾಡಳಿತ, ಜಿಲ್ಲಾ ಪಂಚಾಯತ ಧಾರವಾಡ, ಉಪನಿರ್ದೇಶಕರ ಕಚೇರಿ, ಶಾಲಾ ಶಿಕ್ಷಣ ಇಲಾಖೆ, ಧಾರವಾಡ

ಗಣಿತ ಪ್ರೇರಣಾ ದೀಪ್ತಿ

ಎಸ್.ಎಸ್.ಎಲ್. ಸಿ. ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಉತ್ಸಾಹ ಬುತ್ತಿ

ವಿಷಯ: ಗಣಿತ. (ಇಂಗ್ಲೀಷ ಮಾಧ್ಯಮ)

ಪರಿಕಲ್ಪನೆ: ಶ್ರೀಮತಿ ದಿವ್ಯಪ್ರಭು ಜಿ ಆರ್ ಜೆ ಮಾನ್ಯ ಜಿಲ್ಲಾ ಅಧಿಕಾರಿಗಳು ಧಾರವಾಡ ಮಾರ್ಗದರ್ಶನ: ಶ್ರೀ ಎಸ್ ಎಸ್ ಕೆಳದಿಮಠ ಉಪನಿರ್ದೇಶಕರು (ಆಡಳಿತ) ಸಾ.ಶಿ.ಇ ಧಾರವಾಡ ಸಲಹೆಗಾರರು:ಶ್ರೀ ವೈ ಬಿ ಬೊಮ್ಮಕನವರ ಕ್ಷೇತ್ರ ಶಿಕ್ಷಣಾಧಿಕಾರಿಗಳು ಹುಬ್ಬಳ್ಳಿ ಗ್ರಾಮೀಣ ಶ್ರೀ ರಾಮಕೃಷ್ಣ ಆರ್ ಸದಲಗಿ ಕ್ಷೇತ್ರ ಶಿಕ್ಷಣಾಧಿಕಾರಿಗಳು ಧಾರವಾಡ ಗ್ರಾಮೀಣ ಪ್ರೋತ್ಸಾಹ:ಶ್ರೀಮತಿ ಡಾ.ರೇಣುಕಾ ಅಮಲ್ಜರಿ ಸ ಯೋ ಸಂ ಅ ಶಾ ಶಿ ಇ ಧಾರವಾಡ

ಶ್ರೀ ಯಲ್ಲಪ್ಪ ಹುಬ್ಬಳ್ಳಿ ಗಣಿತ ವಿಷಯ ಪರೀವಿಕ್ಷಕರು ಶಾ ಶಿ ಇ ಧಾರವಾಡ

ಸಂಪನ್ಮೂಲ ರಚನಾ ತಂಡ

ಶ್ರೀ ಬಸವರಾಜ ಚಿಕ್ಕನರಗುಂದ ಸರ್ಕಾರಿ ಪ್ರೌಢಶಾಲೆ,ಯಲಿವಾಳ ತಾ: ಕುಂದಗೋಳ ಶ್ರೀಮತಿ ರೇಣುಕಾ ಪಾಟೀಲ್ ಸರ್ಕಾರಿ ಪ್ರೌಢಶಾಲೆ ದೇವರಹುಬ್ಬಳ್ಳಿ ತಾ:ಧಾರವಾಡ ಶ್ರೀಮತಿ ಚಂದ್ರಿಕಾ ಗಲಗಲಿ ಸರ್ಕಾರಿ ಪ್ರೌಢಶಾಲೆ,ಕುರುಬಗಟ್ಟಿ ತಾ :ಧಾರವಾಡ ಶ್ರೀ ಎಸ್ ಎಂ ಮನಿಯಾರ ಡಾ.ಬಿ ಆರ್ ಅಂಬೇಡ್ಕರ್ ವಸತಿ ಶಾಲೆ,ಛಬ್ಬಿ ತಾ:ಹುಬ್ಬಳ್ಳಿ ಶ್ರೀ ಶಿವಶಂಕರ ಚಿಕ್ಕನರಗುಂದ ಅಟಲ್ ಬಿಹಾರಿ ವಾಜಪೇಯಿ ವಸತಿ ಶಾಲೆ,ಧಾರವಾಡ

ಕರ್ನಾಟಕ ಸರಕಾರ

ಜಿಲ್ಲಾಡಳಿತ ಧಾರವಾಡ

ಶ್ರೀಮತಿ ದಿವೃಪ್ರಭು ಜಿ.ಆರ್.ಜೆ. ಭಾ.ಆ.ಸೇ

ಆಶಯ ನುಡಿ-

ಪ್ರಿಯ ವಿದ್ಯಾರ್ಥಿಗಳೇ,

ಈ ಸಂದೇಶವು ನಿಮ್ಮಲ್ಲಿ ಶೃದ್ಧೆಯಿಂದ ಓದುವ ಮತ್ತು ಆತ್ಮವಿಶ್ವಾಸದಿಂದ ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ ಪರೀಕ್ಷೆಯನ್ನು ಎದುರಿಸಿ ಉತ್ತಮ ಫಲಿತಾಂಶವನ್ನು ಪಡೆಯುವ ಶಕ್ತಿಯನ್ನು ತುಂಬುತ್ತದೆ ಎಂದು ನಾನು ಭಾವಿಸುತ್ತೇನೆ.

ಧಾರವಾಡ ಜಿಲ್ಲೆಯ ಶಿಕ್ಷಣ ತಜ್ಞರೆಲ್ಲ ಸೇರಿಕೊಂಡು, "ಮಿಷನ್ ವಿದ್ಯಾಕಾಶಿ" ಎಂಬ ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶ ಸುಧಾರಣಾ ಯಶಸ್ಸಿನ ಓಟಕ್ಕೆ ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ವಿದ್ಯಾರ್ಥಿಗಳಾದ ತಮ್ಮನ್ನೆಲ್ಲ ಸಿದ್ಧಗೊಳಿಸಲು ಸನ್ನದ್ಧರಾಗಿದ್ದಾರೆ. ನಿಮ್ಮಲ್ಲಿ ಪ್ರತಿಯೊಬ್ಬರೂ ಪ್ರತಿಭೆ, ಸಾಮರ್ಥ್ಯ ಮತ್ತು ಕನಸುಗಳನ್ನು ಹೊಂದಿದ್ದೀರಿ, ಅದು ಸಾಕಾರಗೊಳ್ಳಲು ಕಾಯುತ್ತಿದೆ. ನಿಮ್ಮ ಉತ್ತಮ ಭವಿಷ್ಯಕ್ಕೆ ಮತ್ತು ಮಹೋನ್ನತ ಗುರಿಯ ಸಾಧನೆಗೆ ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆಯು ಮಹತ್ವದ ಘಟ್ಟವಾಗಿದೆ. ಈ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತಮ ಅಂಕ ಗಳಿಸಲು ನಿರಂತರ ಅಧ್ಯಯನದ ಅವಶ್ಯಕತೆ ಇದೆ. ಹಾಗಾದರೆ ದಿನನಿತ್ಯದ ನಮ್ಮ ಅಧ್ಯಯನ ಹೇಗಿರಬೇಕು? ಎಂಬ ಪ್ರಶ್ನೆಯು ಪ್ರತಿಯೊಬ್ಬರನ್ನೂ ಕಾಡಿರುತ್ತದೆ. ಈ ಕುರಿತಂತೆ ಮಹಾತ್ಮಾ ಗಾಂಧೀಜಿಯವರು 'ನಾವು ಏನನ್ನು ಓದುತ್ತೇವೆಯೋ ಅದರ ಬಗ್ಗೆ ಚಿಂತಿಸಬೇಕು, ಅದನ್ನು ಜೀರ್ಣಿಸಿಕೊಳ್ಳಬೇಕು ಹಾಗೂ ಅದು ನಮ್ಮ ದಿನನಿತ್ಯ ಜೀವನದ ಒಂದು ಅವಿಭಾಜ್ಯ ಅಂಗವಾಗಿರಬೇಕು' ಎಂದು ಹೇಳಿದ್ದನ್ನು ಮೆಲುಕು ಹಾಕುತ್ತಾ ಪ್ರತಿ ದಿನ ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ತಿಳಿಸುವ ವಿಷಯಗಳನ್ನು ಸರಿಯಾಗಿ ಮನನ ಮಾಡಿಕೊಂಡು ಪುನಃ ಪುನಃ ದೃಢೀಕರಿಸಿಕೊಳ್ಳಲು ಪ್ರಾಮಾಣಿಕ ಪ್ರಯತ್ನ ಮಾಡಬೇಕು.

ಪ್ರಸ್ತುತ ಶೈಕ್ಷಣಿಕ ವರ್ಷದಲ್ಲಿ ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆಗೆ ಹಾಜರಾಗುತ್ತಿರುವ ಎಲ್ಲ ವಿದ್ಯಾರ್ಥಿಗಳೂ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತಮ ಅಂಕ ಗಳಿಸಲು ಸರಳವಾಗಿ ಮತ್ತು ಸುಲಭವಾಗಿ ತಿಳಿಯುವಂತೆ ಮೂರಕ ಸಾಹಿತ್ಯವನ್ನು ಸಂಪನ್ಮೂಲ ಶಿಕ್ಷಕರ ಸಹಕಾರದೊಂದಿಗೆ ಸಿದ್ಧಪಡಿಸಲಾಗಿರುತ್ತದೆ. ವಿದ್ಯಾರ್ಥಿಗಳು ಈ ಕಲಿಕಾ ಸಂಪನ್ಮೂಲವನ್ನು ಸದುಪಯೋಗಪಡಿಸಿಕೊಂಡು ಉತ್ತಮವಾದ ಫಲಿತಾಂಶವನ್ನು ಪಡೆಯಲಿ ಮತ್ತು ರಾಜ್ಯದಲ್ಲಿ ಧಾರವಾಡ ಜಿಲ್ಲೆಯ ಪ್ರತಿಶತ ಫಲಿತಾಂಶವೂ ಕೂಡ ಹೆಚ್ಚಾಗಲಿ ಎಂದು ಶುಭ ಹಾರೈಸುತ್ತೇನೆ.

ಶ್ರೀಮತಿ ದಿವೃಪ್ರಭು ಜಿ.ಆರ್.ಜೆ. ಭಾ.ಆ.ಸೇ

ಜಿಲ್ಲಾಧಿಕಾರಿಗಳು ಹಾಗೂ ಜಿಲ್ಲಾ ದಂಡಾಧಿಕಾರಿಗಳು,

ಧಾರವಾಡ ಜಿಲ್ಲೆ, ಧಾರವಾಡ.

ಕರ್ನಾಟಕ ಸರಕಾರ

ಜಿಲ್ಲಾಡಳಿತ, ಜಿಲ್ಲಾ ಪಂಚಾಯತ್ ಹಾಗೂ ಶಾಲಾ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಧಾರವಾಡ

ಎಸ್.ಎಸ್.ಕೆಳದಿಮಠ

ಮುನ್ನುಡಿ

ಪ್ರತಿಯೊಂದು ಮಗು ಗುಣಾತ್ಮಕ ಶಿಕ್ಷಣವನ್ನು ಪಡೆದು ಭವಿಷ್ಯವನ್ನು ಉತ್ತಮವಾಗಿ ಕಟ್ಟಿಕೊಳ್ಳಲು ಶಾಲಾ ಶಿಕ್ಷಣ ಇಲಾಖೆಯು ಹಲವಾರು ಪ್ರಯತ್ನಗಳನ್ನು ಮಾಡುತ್ತಲೇ ಇರುತ್ತದೆ. ಪ್ರತಿಯೊಂದು ಮಗು ವೈಯಕ್ತಿಕ ಭಿನ್ನತೆಯನ್ನು ಹೊಂದಿದ್ದು ಅದಕ್ಕೆ ಅನುಗುಣವಾಗಿ ಶಿಕ್ಷಕರು ವಿವಿಧ ಕಲಿಕಾ ಬೋಧನಾ ವಿಧಾನಗಳನ್ನು ಅನುಸರಿಸಿ ಉತ್ತಮ ಕಲಿಕೆಗಾಗಿ ಶ್ರಮಿಸುತ್ತಾರೆ. ವಿದ್ಯಾರ್ಥಿಗಳ ಕಲಿಕಾ ಗುಣಮಟ್ಟವನ್ನು ಪರೀಕ್ಷೆಗಳ ಮೂಲಕ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾಗುತ್ತದೆ..

ವಿದ್ಯಾರ್ಥಿ ಜೀವನದಲ್ಲಿ ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆಯು ಒಂದು ಮಹತ್ವದ ಮೈಲುಗಲ್ಲಾಗಿದೆ. ಪ್ರತಿಯೊಬ್ಬ ವಿದ್ಯಾರ್ಥಿಯು ಇದರಲ್ಲಿ ಯಶಸ್ಸನ್ನು ಪಡೆಯುವುದು ಅನಿವಾರ್ಯವಾಗಿದೆ. ಈ ಹಿನ್ನಲೆಯಲ್ಲಿ ಎಲ್ಲ ವಿದ್ಯಾರ್ಥಿಗಳು ಉತ್ತಮ ಅಂಕಗಳನ್ನು ಪಡೆಯುವ ಮೂಲಕ ಉತ್ತೀರ್ಣರಾಗಿ ಮುಂದಿನ ಶಿಕ್ಷಣಕ್ಕೆ ಅರ್ಹತೆ ಸಾಧಿಸಬೇಕು ಎಂಬ ಉದ್ದೇಶದಿಂದ ಎಲ್ಲ ವಿಷಯಗಳಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವಂತೆ ಪೂರಕ ಸಾಹಿತ್ಯವಾಗಿ ಕಿರುಹೊತ್ತಿಗೆಯನ್ನು ಸಂಪನ್ಮೂಲ ಶಿಕ್ಷಕರು ಸಿದ್ಧಪಡಿಸಿರುತ್ತಾರೆ. ಇವು ಮುಂಬರುವ ಪರೀಕ್ಷೆಯನ್ನು ಎದುರಿಸಲು ಹೆಚ್ಚು ಸಹಕಾರಿಯಾಗುತ್ತವೆ ಎಂಬ ವಿಶ್ವಾಸವಿದೆ. ವಿದ್ಯಾರ್ಥಿಗಳ ವೈಯಕ್ತಿಕ ಭಿನ್ನತೆಯ ಕಲಿಕೆಯ ವೇಗಗಳ ಹಿನ್ನಲೆಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಈ ಪೂರಕ ಸಾಹಿತ್ಯವನ್ನು ಮಾದರಿಯಾಗಿಸಿಕೊಂಡು ಉತ್ತಮ ಫಲಿತಾಂಶವನ್ನು ಪಡೆಯಲು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಮಾರ್ಗದರ್ಶನ ಮಾಡಲಿ ಹಾಗೂ ವಿದ್ಯಾರ್ಥಿಗಳು ಈ ಕಲಿಕಾ ಸಂಪನ್ಮೂಲವನ್ನು ಸದುಪಯೋಗಪಡಿಸಿಕೊಂಡು ಪರೀಕ್ಷೆಯನ್ನು ಆತ್ಮವಿಶ್ವಾಸದಿಂದ ಎದುರಿಸಿ ಯಶಸ್ಸನ್ನು ಗಳಿಸಲಿ ಎಂದು ಹಾರೈಸುತ್ತೇನೆ.

ಎಸ್.ಎಸ್.ಕೆಳದಿಮಠ ಉಪನಿರ್ದೇಶಕರು(ಆಡಳಿತ) ಶಾಲಾ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಧಾರವಾಡ

Sl.no	Chapter Name	Learning Points	Marks
1	Real Numbers	Accomplish being irrational	
		Product of Prime Factors	
		Or HCF MCM	2+2 / 3+1
2	Polynomials	Polynomial exponent/structure	
		The emptiness of polytheism is	2+2 / 3+1
		found and the relation is drawn	
3	Simultaneous equation	Comparing a b c	
	in Two variables	Graph	7
		Cancelation method	
4	Quadratic Equation	Analyzing the nature of roots	
		A quadratic equation is the	
		product of the sum of the roots	2+2 / 3+1
5	Athematic Progression	Formulas, a, d, n, an Problems	
			1+2
6	Co-ordinates Geometry	Finding Distance between pints	
		Section formula	2+2 / 3+1
7	Introduction to	Trigonometric Ratios	1+2
	trigonometry		
8	Triangles	Theorems	4/5
9	Circles	Theorems	3
10	Area related to circles	Formulae and small Problems	1+1
11	Probability	Small problems	
12	Statistics	Mean Mode median	6
13	Mensuration	Formulae and small Problems	
			1+1

Т			
	Real Number		
Class:10	Marks :02		
Learning Point	Prove the irrational numbers		
Solved E			
1) Prove that $2+\sqrt{5}$ is irrational number	2) Prove that $5+3\sqrt{2}$ is a irrational number		
Solutions :- let us assume $2+\sqrt{5}$ is a rational number $2+\sqrt{5} = \frac{p}{q} \text{ where p, } q \in z, q \neq 0$ $\sqrt{5} = \frac{p}{q} - 2$ $\sqrt{5} = \frac{p-2q}{q}$ p & q whole numbers $5o \frac{p-2q}{q} \text{ is rational number}$ But $\sqrt{5}$ is not a rational numbers our assumption is wrong $5o 2+\sqrt{5} \text{ is irrational number}$	Solutions: $-5+3\sqrt{2}$ rational number $5+3\sqrt{2}=\frac{p}{q}$ where p, $q\in z$, $q\neq 0$ $\sqrt{2}=\frac{p}{q}-5$ $\sqrt{2}=\frac{p-5q}{3q}$ p & q whole numbers So $\frac{p-5q}{3q}$ is rational number but $\sqrt{2}$ is not a rational numbers our assumption is wrong $5+3\sqrt{2}$ is not rational number $5+3\sqrt{2}$ is irrational number		
Try yo	urself		
Prove that $5+\sqrt{3}$ is a irrational number JUI	NE 2019		
Prove that $3+\sqrt{5}$ is a irrational number MA	RCH 2019		
	Prove that $\sqrt{2}+\sqrt{5}$ is a irrational number		
4 Prove that $\sqrt{3}+\sqrt{2}$ is a irrational number	Prove that $\sqrt{3}+\sqrt{2}$ is a irrational number		
Prove that $3+2\sqrt{5}$ is a irrational number	Prove that $3+2\sqrt{5}$ is a irrational number		
6 Prove that $5 + 3\sqrt{2}$ is a irrational number	Prove that $5 + 3\sqrt{2}$ is a irrational number		
7 Prove that $5+3\sqrt{2}$ is a irrational number	Prove that $5+3\sqrt{2}$ is a irrational number		
8 Prove that $\sqrt{3}$ is a irrational number 2020	Prove that $\sqrt{3}$ is a irrational number $\frac{2020}{1}$		
9 Prove that $6+4\sqrt{2}$ is a irrational number	Prove that $6+4\sqrt{2}$ is a irrational number		
Prove that $\sqrt{5}$ is a irrational number 2020			

		Chapte	er Real Nu	<mark>mbers</mark>
Class: 10				Mark -02
Learning poin	nt			Prime factorization of given number
		Sol	ved examp	ole
Express 72 as	a produ	ict of prime factors 72	LCM of ((24 36) is 48 then, Find the HCF (24 36).
Solutions:			Solution	is:
	2	72	A= 24	1 , B= 36
	2	36	Ax	B = H x L
	2	18		x 36 = H x 48
	3	9	∴ H =	$=\frac{24 \times 36}{48}=18$
	3	3	H=18	
		1	11 10	
$72 = 2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$				
		(/T	1	A

	"Try your self "	Answers
1	Express 96 as a products of prime factors -June 2019	$2^5 \times 3$
2	Express 120 as a products of prime factors - Model 2019	$2^3 \times 3 \times 5$
3	Express 150 as a products of prime factors	$2^2 \times 3 \times 13$
4	Find the HCF and LCM by prime factorization method (510, 92)	23460
5	Express 140 as a products of prime factors Model 2019	$2^2 \times 5 \times 7$
6	Find the HCF and LCM of (26 & 91) and Verify it	2366 = 2366
7	HCF of (306 657) is 12 .Find the LCM Sept 2020	22338
8	Find the HCF of (135, 225) using division lemma	45
9	Find the LCM and HCF 12, 15 & 21 by prime factorization method	420

Polynomials		
Class: 10	Marks -02	
Learning points	Find the Zero of polynomials	

Solved Examples

1) Find the zero's of polynomial $P(x) = x^2 + 2x - 15$

Ans:
$$x^2 + 2x - 15 = 0$$

 $x^2 + 5x - 3x - 15 = 0$
 $x(x+5) - 3(x+5) = 0$
 $(x+5)(x-3) = 0$
 $x+5=0$ $x-3=0$
 $x=-5$ or $x=3$
 $x=-5$ and $x=3$.

	Try your self	Answers			
1	Write the degree of polynamial $P(x) = x^3 + 2x^2 - 5x - 6$ June 2019	3			
2	Write the degree of polynamial $P(x) = 2x^2 - x^3 + 5$	3			
3	Find the Zero's of polynamils $P(x) = x^2 - 3$	$x = \sqrt{3}, x = -\sqrt{3}$			
4	Find the Zero's of polynamils $P(x) = x^2 - 2x - 8$	x = 4 or -2			
5	Find the Zero's of polynamils $P(x) = x^2 - 7x + 12$	x = 4 or 3			
6	If one of zero's of polynamial $P(x) = x^2 - 6x +$	k = 8			
	k is twice the another then find the value of k				
	[Apl-2020]				

	Quadratic Equations				
Class-10 Marks		Marks:-02			
Learning Point Find th		Find the	he discriminant value and Nature of roots of quadratic		
		equations			
			ant = $\Delta = b^2 - 4ac$		
		Standard	form of quadratic equation $ax^2 + bx + c = 0$		
Discrir	ninant	Na	ture of roots		
	$b^2 - 4ac = 0$		al and equal		
	$b^2 - 4ac > 0$		al and Distinct		
	$b^2 - 4ac < 0$		real roots		
			Solved Examples		
1) The	e discriminant and nature	e of the ro	ots of the quadratic equation $2x^2 - 5x + 3 = 0$		
	Try these		Ans		
1	$2x^2 - 4x + 3 = 0$		Δ =-8, Δ < No real roots		
2	$3x^2 - 5x + 2 = 0 m$		Δ =1, Δ > 0 roots are Real and Distinct		
3	$4x^2 - 12x + 9$		Δ =0, Δ = 0 roots are Real and equal		
4	$4x^2 - 4x + 1 =$		Δ =0, Δ = 0 roots are Real and equal		
5	$2x^2 - 5x + 4$		Δ =-7, Δ < 0 No real roots		
6	$2x^2 - 3x + 5 =$		Δ =-31, Δ < 0 No real roots		
7	$x^2 + 4x + 4 =$		Δ =0, Δ = 0 roots are Real and equal		
8	$2x^2 - 6x + 3 = 0$		Δ =12 Δ > 0 roots are Real and Distinct		
9	$2x^2 - x + 3 =$	= 0	Δ =-23 Δ < 0 No real roots		
			I		

		Arithmetic progress	1011	
Look	s:10	Marks-01		
Leai	ning Points	n th term of AP and	common difference	
		$d = a_2 - a_1$		
		Solved Examples	}	
1. T l	he nth term of an Arithmetic	2. In an arithmetic Pr	rogression n^{th} term is a	t_n =7-4n. Then
Prog	gression is a _n =4n+ 5. Find its	find common differer	nce.	
5th	term.			
Solu	ition;- a_n =4 n +5	Solution;-	a_n =7-4 n	$d=a_{2} - a_{1} d=-1-3 d=-4$
	a_5 =4 (5) +5	a_n =7-4 n	$a_2 = 7 - 4(2)$	d=-1-3
	a_5 =20 +5	$a_1 = 7 - 4(1)$	a_2 =7-8	d=-4
	a_5 =25	a_1 =7-4	<i>a</i> ₂ =-1	
		a_1 =3		
		Try your self		
1	If In an arithmetic Progression		Then find a ₂ March 20	<mark>19</mark>
2	If In an arithmetic Progression			
3	If In an arithmetic Progression n^{th} term is $a_n = 4 n^2 - 1$ Then find 8^{th} term Model 2019			
4	If In an arithmetic Progression n th term is a_n =3 n -2 Then find 9 th term			
5	If In an arithmetic Progression n th term is $a_n = 2n^2 - 2$ Then find 3 rd term			
6	If In an arithmetic Progression n th term is a_n =3 n ² + n Then find 3 rd term			
7	If In an arithmetic Progression n th term is a_n =2 n +1 then find common difference April 2020			
8	If In an arithmetic Progression n th term is a_n =4 n - 5 Then find 5 th term			
9	If In an arithmetic Progression n th term is a_n =5n-8 Then find 5 th term			
10				

	Arithmetic progression		
Class -10	Marks:-02		
Learning points	Find the n th term of AP		
Formula to be use	$a_n = a + (n-1)d$		
Points to be remember	When values of terms AP are in decreasing	order then	
	common difference be -ve . When values of		
	increasing order then common difference		
	Solved Examples		
1. 5,8,11 are in AP then find a ₃₀	-3, -1, .1,3 are in AP then find 11 th term	July <mark>2021</mark>	
Apl <mark>2022</mark>			
Sol;- $a = 5$, $d = 8 - 5 = 3$,	Sol- $a = -3$, $d = -1 - (-3) = 2$, $n = -1$	11 $a_n = ?$	
$n = 30$ $a_n = ?$	$a_n = a + (n-1)d$		
$a_n = a + (n - 1)d$	$a_{11} = -3 + (11 - 1)2$		
$a_{30} = 5 + (30 - 1)3$	$a_{11} = -3 + 10(2)$		
$a_{30} = 5 + 29(3)$	$a_{11} = -3 + 20$		
$a_{30} = 5 + 87$	$a_{11} = 17$		
$a_{30} = 92$			
Try your selves		Ans	
1 2,5,8, Are the terms of AP.	Find the 12 th term of AP <mark>(july-2023)</mark>	35	
2 3,6,9 Are the terms of AP.Fin	d the 15 th term of AP <mark>(july 2022)</mark>	45	
3 6,10,14 Are the terms of AP.	6,10,14 Are the terms of AP.Find the 18 th term of AP (March 2022)		
4 1,5,9,13 Are the terms of AP	1,5,9,13 Are the terms of AP.Find the 20 th term of AP (july 2021) 77		
2,7,12 Are the terms of AP.Find the 10 th term of AP			
21. 18, 15 Are the terms of AP.Find the 10 th term of AP			
7 10,7,4 Are the terms of AP.Find the 11 th term of AP -20			
5.9,13 Are the terms of AP.Find the 10 th term of AP.			
2,6,10,14 Are the terms of AP.Find the 25 th term of AP			
3,10,17,24 Are the terms of AP.Find the 6 th term of AP			

Arithmetic Progression			
Calss :-10	Marks:-02		
Learning points	To find sum of n th terms		
Formula to be use :	$S_n = \frac{n}{2} [2a + (n-1)d]$		
Points to be remember	First term is " a_1 ' common difference is $d=a$	$a_2 - a_1$	
	Model Problems		
1. 10,15,20 Are the terms of AP then find sum of 20 terms Apl 2022	If n^{th} term is 28 and $S_9 = 144$. Then find first	st term	
Sol;- $a = 10$, $d = 15 - 10 = 5$, $n =$	Sol;- $a = ?$, $\ell = 28$ $n = 9$ $S_n = 144$		
$20 S_n = ?$	$S_{n} = \frac{n}{2}[a + \ell]$		
$S_n = \frac{n}{2}[2a + (n-1)d]$	$ \begin{array}{ccc} & 2 & 1 & 1 \\ & 2 & 1 & 1 \\ & 144 & \frac{9}{2} & [a + 28] \end{array} $		
$S_{20} = \frac{20}{2} [2(10) + (20 - 1)5]$	_		
=10(20+19(5)	288=9[a+28]		
=10(20+95)	288=9 a +252		
=10(115)	9 a = 288 - 252 = 36		
S ₂₀ =1150	9 a = 36		
Try your selves	Answers		
1 7,11,15 are the terms of AP then	Find Sum of first 16 terms (July2022)	35	
2 3,6,9 are the terms of AP $S_n = 165$. Find the number of terms (July 2022)	45	
3 2+7+12 are the terms of AP then	2+7+12 are the terms of AP then Find Sum of first 20 terms April 2019 74		
4 5,+8,+11+ are the terms of AP th	5,+8,+11+ are the terms of AP then Find Sum of first 10 terms (July2020) 77		
5 5,+10+,15 are the terms of AP the	5,+10+,15are the terms of AP then Find Sum of first 20 terms Sept 2020 47		
	2+5+8 are the terms of AP then Find Sum of first 30 terms -6		
	, $d = 2$ $\ell = 4$, $S_n = -14$ $a = ?$, $n = ?$		
8 $\ell = 62$, $a = 8$, $S_n = 210$ $n = ?$	d =?	41	

	Arithmetic Progression				
Clas	s:-10	Marks:-02			
Lear	ning Point	Find the Sum of n th terms			
Forr	nula	$S_{n} = \frac{n}{2}[(n+1)]$			
Points Remember		Sum of Even numbers $=S_n=n(n+1)$ Sum of odd numbers $=S_n=n^2$			
		Model Problems			
	ind the sum of first 20 positive le numbers April <mark>2022</mark>	2. Find the sum of first 40 numbers which are divisible by 6			
$S_n = \sum n = \frac{n(n+1)}{2}$ $S_n = 6(1+2+3)$ $S_n = \sum n = \sum n = 0$ $S_n = 6(1+2+3)$ $S_n = 6(1+2+3)$		Solution;- S_n =6+12+18+24+40£É S_n =6(1+2+3+4+40 S_n = $\sum n$ = $\frac{n(n+1)}{2}$ S_n = 6 ($\frac{40(40+1)}{2}$) = 6 (20 * 41) = 6 (820) = 4920			
		Try yours self			
1	Find the sum of first 50 odd number	er by using Arithmetic Progressionformuala			
2	Find the sum of first 10 even numb	er by using Arithmetic Progression formuala			
3	Find the sum of first 25 positive whole numbers by using Arithmetic Progression formuala				
4	Find the sum of first 10 odd number by using Arithmetic Progression formuala				
5	Find How many 3 didgits numbers are divisibe by 3 using Arithmetic Progression formuala				
6	Find how many first 15 positive whole numbers are divisible by 8 Arithmetic Progression formuala				
7	Find how many first 10 positive wh formuala	ole numbers are divisible by 11 Arithmetic Progression			
8	Find how many first 15 positive whole numbers are divisible by 2 & 3 Arithmetic Progression formuala				

	Simultaneous equation in two variables
Learning points	
	Marks -01
Class :-10	
	Camparing ratios

Graphical represents	Ratios	Solution
Intersect lines	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Unique Solution
Coincedent lines	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Infinity many solution
Parallel Lines	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	No solution

	Try your self				
1	$if \ a_1x + b_1y + c_1 = 0 \ \& \ a_2x + b_2y + c_2 = 0$ $equation \ graphically \ represents \ a \ coinsedent \ coinsdent$ $lines \ then \ the \ ratio \ are$	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$			
2	if 2x + 3y - 9 = 0 & 4x + 6y - 18 = 0 eqution are graphically represnts then line are April 2019	Coincident lines			
3	If $x + 2y - 4 = 0$ & $2x + 4y - 12 = 0$ graphically represents then lines are Sept 2020	Parallel lines			
4	if $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ equation have unique solution then te ratio are	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$			
5	if two simultenious equation have ratio $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ then the lines are	Coincident lines			
6	6 If two simultaneous equation have no solution then solution of equation June 2020				
7	7 if $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ equation have ratio $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ these have solution				
8	These $4x + 3y = 10$ & $8x + 6y = 20$ equation have how many solution	tion			

	Simultaneous equation in two variables					
Class: 10	ss: 10 Marks :-2					
Learning point	Solving	Simultaneous equation in two	o variables			
		Model problem				
x + y = 14 & x - y	= 4 Solve	2. <i>Solve</i> $3x + 2y = 11$	8 5x - 2y = 13			
June 2019						
x + y = 14(1)	Put x value in eq	(1) 3x + 2y = 11(1)	Put x value in eq (1)			
x - y = 4 (2)	x + y = 14	5x - 2y = 13 - (2)	3x + 2y = 11			
2 x = 18	9 + y = 14	8x = 24	3(3) + 2y = 11			
$x = \frac{18}{2}$	y = 14 - 9	$x = \frac{24}{8}$	9 + 2y = 11			
$x = \frac{1}{2}$	$x = \frac{1}{2}$ $y = 5$		2y = 11 - 9			
		x = 3	$y = \frac{2}{3} = 1$ $y = 1$			
x = 9			2			
	Try your self	Ans				
1 Solve $2x + y = 8$	8 & $x - y = 1$	[April 2022]	x = 3, y = 2			
2 Solve $2x + 3y =$	7 & 2x + y = 5	[July 2022]	x = 2, y = 1			
3 Solve $2x + 3y =$	Solve $2x + 3y = 11 & 2x - 4y = -24$		x = -2, y = 5			
4 Solve $2x + y = 1$	Solve $2x + y = 11 & x + y = 8$		x = 3, y = 5			
5 Solve $x + y = 5$	Solve $x + y = 5$ & $2x - 3y = 5$		x = 4, y = 1			
6 Solve $x + y = 7$	6 Solve $x + y = 7 & x - y = 1$		x = 4, y = 3			
7 Solve $10x + 3y =$	Solve $10x + 3y = 75 \& 6x - 5y = 11$		x = 6, y = 5			
8 Solve $x + y = 8$	& $2y - x = 1$	[MQP-2,2021]	x = 5, y = 3			

Simultaneous equation in two variables			
Class 10 Marks :-4			
Learning Points Solve Simultaneous equation in two variables by graphical			

Model problem

Solve Simultaneous equation in two variables by graphically

$$x + y = 7 & 3x - y = 1$$

April 2020

Solution

x = 0,

x = 3

$$y = 7 - x$$
 ----(1)
 $y = 7 - 0$

5

4

$$x = 1$$
 $= 7$ $y = 7 - 1$ $= 6$

$$x = 2$$
 $y = 7 - 2$
= 5
 $x = 3$ $y = 7 - 3$

7

y	=	3x	_	T	 (2

$$x = 0,$$
 $y = 3(0) - 1$
 $= 0 - 1 = -1$
 $x = 1,$ $y = 3(1) - 1$
 $= 3 - 1 = 2$

$$x = 2$$
 $y = 3(2) - 1$
= 6 - 1 = 5

$$x = 3$$
 $y = 3(3) - 1$
= $9 - 1 = 8$

Х	0	1	2	3
Υ	-1	2	5	8

	Solve Simultaneous equation in two variables by graphically:				
		equation in two v			
	Try your self		Ans		
1	2x + y = 8 & x + y = 5	[Sept -2020]	x = 3, $y = 2$		
2	2x + y = 8 & x - y = 1	[June -2019]	$x=3, \qquad y=2$		
3	2x + y = 6 & 2x - y = 2	[April -2019]	$x=2, \qquad y=2$		
4	x + 2y = 6 & x - y = 5	[April -2022]	x = 4, $y = 1$		
5	2x - y = 7 & x - y = 2	[June -2022]	x = 5, y = 3		
6	x + y = 7 & 3x - y = 1		x = 2, y = 5		
7	2x + y = 10 & x + y = 6		x=4, $y=2$		
8	2x - y = 2 & 4x - y = 4		x = +1, y = 0		
9	x + y = 5 & x - y = 1		$x=3, \qquad y=2$		
10	x + y = 7 & x - y = 1		x = 4, y = 3		
11	2x + y = 10 & x + y = 6		x = 4, $y = 2$		
12	2x + y = 6 & 2x - y = 2		x=2, $y=2$		
13	Y = 2x + 1 & x = 2y - 5		x = 1, y = 3		
14	x + y = -2 & 2x - y = 8		x = 2, y = -4		
15	x + y = 10 & x - y = 2		x = 4, $y = 6$		
16	x + y = 14 & x - y = 4		$x = 9, \qquad y = 15$		

Learning points	Topic:-Coordinate geometry		
Class: 10	Assigned marks:-1		
Solving learning points	Finding distance from origin using formula.		
Formula to be used	$d = \sqrt{x^2 + y^2}$		
Points to be remembered	1^2 =1, 2^2 =4, 3^2 =9, 4^2 =16, 5^2 =25, 6^2 =36,(-2) 2 =4		
	$\sqrt{25}$ =5, $\sqrt{36}$ =6, $\sqrt{49}$ =7, $\sqrt{100}$ =10		

1. Find the distance between the points (-6,8) and origin.

$$d = \sqrt{(x)^2 + (y)^2}$$

$$d = \sqrt{(-6)^2 + (8)^2}$$

$$= \sqrt{36 + 64}$$

$$= \sqrt{100}$$

$$d = 10 \text{ units}$$

Х	Υ
-6	8

"It's very easy, Try this, It's possible by you also"	Answer
1. Find the distance between the points (3,4) and origin.	d=5 units
2. Find the distance between the points (5,4) and origin.	$d = \sqrt{41}$ units
3. Find the distance between the points P(4,3) and origin.	4units
4. Find the distance from x-axis and point A (5,2)	2 units
5. Find the distance between the points P(a,b) and origin.	$d = \sqrt{a^2 + b^2}$
6. Find the distance between the points (7,24) and origin.	d=25 units
7. Find the distance between the points (5,12) and origin.	d=13 units
8. Find the distance between the points (-8,15) and origin.	d=17 units
9. Find the distance between the points (x, y) and origin.	$\sqrt{x^2 + y^2}$

Learning points	Topic:-Coordinate geometry		
Class: 10	Assigned marks:-2		
Solving learning points	Find the distance between the points by using formula		
Formula to be used	$\therefore d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
Points to be	1^2 =1, 2^2 =4, 3^2 =9, 4^2 =16, 5^2 =25, 6^2 =36,(-2) 2 =4		
remembered	$\sqrt{25}$ =5, $\sqrt{8} = 2\sqrt{2}$, $\sqrt{36}$ =6		
Evamples			

1. Find the distance between the points A (2, 6) and B(5, 10) by using formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(5 - 2)^2 + (10 - 6)^2}$$

$$= \sqrt{3^2 + 4^2}$$

$$= \sqrt{9 + 16}$$

$$= \sqrt{25}$$

$$d = 5 \text{ units}$$

x_1	y_1	x_2	y_2
2	6	5	10

a same	
" It's very easy, Try this, It's possible by you also"	Answer
1. Find the distance between the points P (2,3) and Q(4, 1) by using	$2\sqrt{2}$
formula.	
2. Find the distance between the points (3, 1) and (6,2) by using	$\sqrt{10}$
formula.	
3. Find the distance between the points (2,3) and (6,-8) by using	$\sqrt{32} = 2\sqrt{8}$
formula.	
4. Find the distance between the points (-5, 7) and (-1,3) by	$4\sqrt{2}$
using formula.	
5. Find the distance between the points (2, 3) and (0,-9) by using	$2\sqrt{10}$
formula.	
6. If the distance between the points (3, 1) and (0,-x) is 5 units	x=5
then find value of 'x'.	
7. If the distance between the points (k,3) and (2,3) is 5 units then	k=-3
find value of K .	
8. Find the distance between the points (1,3) and (3,7) by using	$2\sqrt{5}$
formula.	

Learning points	Topic:-Coordinate geometry
Class: 10	Assigned marks:-2
Solving learning points	Finding coordinates of midpoint of two points
Formula to be used	$\therefore P(x,y) = \left[\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2} \right]$
Points to be	
remembered	

1. Find the coordinates of the mid-point of the line segment joining the points P(3,4) and Q(5,6)

Solution:

$$P(x,y) = \left[\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right]$$

$$P(x,y) = \left[\frac{5+3}{2}, \frac{6+4}{2}\right]$$

$$= \left[\frac{8}{2}, \frac{10}{2}\right]$$

x_1	y_1	x_2	y_2
3	4	5	6

 $\therefore P(x,y) = (4,5)$

1 (11)	
" It's very easy, Try this, It's possible by you also"	Answer
1. Find the coordinates of the mid-point of the line segment joining	(3, 5)
the points (2,3) and (4,7)	
2. Find the coordinates of the mid-point of the line segment joining	(5,5)
the points (3,2) and (7,8).	
3. Find the coordinates of the mid-point of the line segment joining	(6,2)
the points (4,5) and (8,-1).	
4. Find the coordinates of the mid-point of the line segment joining	(-3,4)
the points (-4,2) and (-2,6).	
5. Find the coordinates of the mid-point of the line segment joining	(2,3)
the points (-3,-2) and (7,8).	
6. Find the coordinates of the mid-point of the line segment joining	(-3,4)
the points (1,2) and (-7,6).	
7. Find the coordinates of the mid-point of the line segment joining	(3,2)
the points (4,7) and (2,-3).	

Learning points	Topic:-Coordinate	e geometry						
Class: 10	Assigned marks:-2							
Solving learning points	Find the coordinates of	Find the coordinates of the point which divides the line joining the points						
3 31	$A(x_1,y_1)$ and $B(x)$	$A(x_1,y_1)$ and $B(x_2,y_2)$ in the ratio $m_1\colon m_2$						
Formula to be used	$\therefore P(x)$	$P(x,y) = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$						
	E	xamples						
1. In the what ratio does to divide the line segment join 6,10) & B (3,-8)		2.Find the coordinates of the point which joining the points (1,6) and (4, 3) in the r						
Solution :- $(x_1, y_1) = (-6)$	$(5,10), (x_2,y_2) =$	Solution :- $(x_1, y_1) = (1,6), (x_2, y_2)$	= (4,3),					
(3,-8), P(x,y) = (-4,6)	$m_1: m_2 = ?$	$m_1: m_2 = 1: 2, P(x, y) = ?$						
$P(x,y) = \left[\frac{m_1 x_2 + m_2 x}{m_1 + m_2}\right]$	$\left[\frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right]$	$P(x,y) = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2}{m_1}\right]$	$\frac{+ m_2 y_1}{+ m_2} \bigg]$					
$P(-4,6) = \left[\frac{m_1(3) + m_2(-6)}{m_1 + m_2}\right]$	$\left[\frac{m_1(-8)+m_2\ (10)_{\square}}{m_1+m_2}\right]$	$\therefore P(x,y) = \left[\frac{1(4) + 2(1)}{1 + 2}, \frac{1(3)}{1}\right]$	+2(6) +2					
$= \left[\frac{m_1(3) + m_2(-6)}{m_1 + m_2}, \frac{m_1(-6)}{m_1 + m_2}, \frac{m_2(-6)}{m_1 + m_2}, \frac{m_1(-6)}{m_1 + m_2}, m_1(-$		$= \left[\frac{4+2}{3}, \frac{3+12}{3} \right]$						
$-4m_1-4m_2 = 3m_1 - 6m_1$ $4m_1+3m_1 = 6m_2-4m_2$	2	$= \left[\frac{6}{3}, \frac{15}{3}\right]$						
$7m_1 = 2m_2$ $\frac{m_1}{m_2} = \frac{2}{7}$		$\therefore P(x,y) = P(2,5)$						
$m_1: m_2 =$	2: 7							
		possible by you also"	Answer					

" It's very easy, Try this, It's possible by you also"						
1. Find the coordinates of the point which divides the line joining the points $A(4, -3)$ and	(7, 3)					
B (8,5) in the ratio 3:1.						
2. Find the coordinates of the point which divides the line joining the points $(2, 1)$ and	(5, 4)					
(7,6) in the ratio 3:2.						
3. Find the coordinates of the point which divides the line joining the points (-3,5) and	(-2,3)					
(4,-9) in the ratio 1:6.						
4. Find the coordinates of the point which divides the line joining the points (-2,7) and	(1, 1)					
(3,-3) in the ratio 3:2.						
5. Find the coordinates of the point which divides the line joining the points (-3,5) and	(-2,3)					
(4,-9) in the ratio 1:6.						
6. Find the coordinates of the point which divides the line joining the points (-3,6) and	(1 ()					
(1,-2) in the ratio 1:3	$(-\frac{1}{2}, 4)$					

Learning points	Topic:-Statistics
Class: 10	Assigned marks:-3
Solving learning points	Finding mean
Formula to be used	$= \bar{x} = \frac{\sum f_i x_i}{\sum f_i}$

Find the mean for the following grouped

Class-interval	Frequency	Mid-point $f_i x_i$	$f_i x_i$
0-10	3	05	15
10-20	5	15	75
20-30	9	25	225
30-40	5	35	175
40-50	3	45	135
$\Sigma f_i =$	= 25	$\Sigma f_i x_i = \epsilon$	525

Mean
$$= \bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$
$$= \frac{625}{25}$$
$$\bar{x} = 25$$

					1				
	" It's very easy, Try this, It's possible by you also"								Answer
Fin	d the mean for the f								
1	Class-interval	5-	15-25	25-35	35-	45-			$\Sigma f_i x_i = 625$
		15			45	55			
	Frequency	1	3	5	4	2			$\bar{x} = 32$
2	Class-interval	0-4	5-9	10-14	15-	20-			$\Sigma f_i x_i = 240$
					19	24			
	Frequency	1	5	8	5	1			$\bar{x} = 12$
3	Class-interval	10-	20-30	30-40	40-	50-			$\Sigma f_i x_i = 760$
		20			50	60			
	Frequency	2	3	5	7	3			$\bar{x} = 30$
4	Class-interval	5-	15-25	25-35	35-	45-			$\Sigma f_i x_i =$
		15			45	55			
	Frequency	4	3	6	5	2			$\bar{x}=24$
5	Class-interval	0-	10-20	20-30	30-	40-	50-	60-	
		10			40	50	60	70	
	Frequency	3	8	10	15	7	4	3	$\bar{x} = 32.8$
6	Class-interval	5-	15-25	25-35	35-	45-			
		15			45	35			
	Frequency	06	11	21	23	14			$\bar{x} = 35.37$
7	Class-interval	0-	10-20	20-30	30-	40-			
		10			40	50			
	Frequency	5	12	14	11	08			$\bar{x}=26$

Learning points	Topic:-Statistics
Class: 10	Assigned marks:-3
Solving learning points	Finding mean
Formula to be used	Mean $=\bar{x}=\frac{\epsilon f_x}{n}$

	$\frac{1}{n}$										
Find the mean for the following grouped											
Class-inte	lass-interval Frequency x fx $ar{x} = rac{\epsilon f_{\chi}}{2}$						$f_{\underline{x}}$				
100-2	120	12			110	13	20			$x = \frac{3}{r}$ $\bar{x} = \frac{72}{5}$	l 60
120-	140	14		130		1820				$\bar{x} = \frac{72}{5}$	70
140-	160	8		,	150	12	.00			$\bar{x}=1$	42.5
160-	180	6		,	170	10	20			<i>λ</i> 1	12.0
180-2	200	10)	,	190	19	00				
		N=50				$\epsilon f_{r} =$	7260				
		" It's	very	easy	Try this	, It's pos	sible by	you also)"		Answer
Find the	e mean				uped data	•		,			
1	Class-i	nterval	1-	-5	5-9	9-13	13-17	17-21			
	Freque	ency	4	1	3	5	7	1			$\bar{x} = 0.6$
2	Class-i	nterval	5-	15	15-25	25-35	35-45	45-55	55-65		
	Freque	ency	6	6	11	7	5	6			$\bar{x} = 38.25$
3	Class-i	nterval	10-	-30	30-50	50-70	70-90				
	Freque	ency	2	2	6	10	2				$\bar{x} = 52$
4	Class-i	nterval	5-	15	15-25	25-35	35-45	45-55			
	Frequency			1	3	6	5	2			$\bar{x} = 29$
5	5 Class-interval		1-	-3	3-5	5-7	7-9	9-11			
	Freque	ency	7	7	8	2	2	1			
6	Class-i	nterval	10-	-30	30-50	50-70	70-90				
	Freque	ency	2	2	6	10	12				$\bar{x} = 61.33$

Learning points	Topic:-Statistics			
Class: 10	Assigned marks:-3			
Solving learning points	Finding Median			
Formula to be used:	Median $=l+\left[\frac{\frac{n}{2}-c.f}{f}\right]\times h$			
Examples				

1) Calculate the median of the following frequency distribution table.

Class-interval	Frequency
1-4	6
4-7	30
7-10	40
10-13	16
16-19	4
	$\Sigma f_i = 100$

Solution:

Class-interval	Frequency	CF
1-4	6	6+0=6
4-7	30	6+30=36->cf
l -> 7-10	f-> 40	36+40=76
10-13	16	76+16=92
13-16	4	92+04=96
16-19	4	96+04=100
	$\Sigma f_i = 100$	

 $[\]frac{n}{2} = \frac{100}{2} = 50$ median class -> 7 -10

l= Lower limit of the median class =7

h = class size = 4-1=3

cf =Cumulative Frequency of class preceding the median class= 36 f Frequency of median class =40 n= $\Sigma f_i = 100$ = 100

Median =
$$l + \left[\frac{\frac{n}{2} - c.f}{f}\right] \times h$$

= $7 + \left[\frac{50 - 36}{40}\right] \times 3$
= $7 + \left[\frac{14}{40}\right] \times 3$
= $7 + \left[\frac{7}{20}\right] \times 3$
= $7 + \left[\frac{21}{20}\right]$

= 7+1.05 = Median = 8.05

" It's very easy, Try this, It's possible by you also"									Answer
Find th	Find the median for the following grouped data by Direct Method:								
1	Class-interval	0-20	20-40	40-60	60-80	80- 100			median =50
	Frequency	6	9	10	8	7			
2	Class-interval	1-4	4-7	7-10	10-13	13-16	16- 19		median=8.05
	Frequency	6	30	40	16	4	4		
3	Class-interval	20-40	40-60	60-80	80- 100				median =63
	Frequency	7	15	20	8				
4	Class-interval	1-3	3-5	5-7	7-9	9-11			median =5
	Frequency	6	9	15	9	1			
5	Class-interval	1-3	3-5	5-7	7-9	9-11			median =3.6
	Frequency	6	9	2	6	7			
6	Class-interval	0-10	10-20	20-30	30-40	40-50			median =3.6
	Frequency	7	9	15	11	8			

	Statistics
class:-10	Marks :-3
Teaching point	To find the median
To use formula :	$median = l + \left[\frac{\frac{n}{2} - c.f}{f}\right] \times h$

Solved examples

1) Find the median of the following data

Class interval	frequency
1-4	6
4-7	30
7-10	40
10-13	16
16-19	4
	$\Sigma f_i = 100$

solution:

11.		
Class interval	frequency	Cumulative frequency
1-4	6	6+0=6
4-7	30	6+30=36->cf
l -> 7-10	f -> 40	36+40=76
10-13	16	76+16=92
13-16	4	92+04=96
16-19	4	96+04=100
	$\Sigma f_i = 100$	

 $[\]frac{n}{2} = \frac{100}{2} = 50$, median = 50^{th} score , median class; 7 -10

l= lower limits of median class = 7

h = class size = 4-1=3

cf = c.f, of class preceding median class = 36

f = frequency of the median class =40

n = number of observations = 100

median=
$$l + \left[\frac{\frac{n}{2} - c.f}{f}\right] \times h$$

= $7 + \left[\frac{50 - 36}{40}\right] \times 3$
= $7 + \left[\frac{14}{40}\right] \times 3$
= $7 + \left[\frac{7}{20}\right] \times 3$
= $7 + \left[\frac{21}{20}\right]$
= $7 + 1.05 = 8.05$ median = 8.05

Try Solve these									
	Find the m		answers						
1	Class intervals	0-20	20- 40	40- 60	60- 80	80- 100			median =50
	frequency	6	9	10	8	7			
2	Class intervals	1-4	4-7	7-10	10- 13	13-16	16- 19		median =8.05
	frequency	6	30	40	16	4	4		
3	Class	20-	40-	60-	80-				median =63
3	intervals	40	60	80	100				median -05
	frequency	7	15	20	8				
4	Class intervals	1-3	3-5	5-7	7-9	9-11			median =5
	frequency	6	9	15	9	1			
5	Class intervals	1-3	3-5	5-7	7-9	9-11			median =3.6
	frequency	6	9	2	6	7			
6	Class intervals	0-10	10- 20	20- 30	30- 40	40-50			median =3.6
	frequency	7	9	15	11	8			

	Statistics			
class:-10	Marks :-3			
Learning points	To find the mode			
Using the formula :	$mode = l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$			

Solved example

Find the mode for the following grouped data

<u> </u>	
Class intervals	frequency
10-25	2
25-40	3
40-55	7
55-70	6
70-85	6
85-100	6
	$\Sigma f_i = 30$

Solution;

Class intervals	frequency
10-25	2
25-40	$f_0 \rightarrow 3$
$l \rightarrow 40 - 55$	$f_1 \rightarrow 7$
55-70	$f_2 \rightarrow 6$
70-85	6
85-100	6
	$\Sigma f_i = 30$

Highest frequency->7 the modal class is -> 40-55

l =lower limit of the modal class = 40

 $h={
m size}$ of the class interval (assuming all class sizes to be equal)

= upper limits- lower limits

=25-10=15

 f_0 =Frequency of the class preceding the modal class = 3

 $f_1=$ frequency of the modal class = 7

 $f_2=$ frequency of the class succeeding the modal class = 7

mode =
$$l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$$

$$=40 + \left[\frac{7-3}{2\times 7-3-6}\right] \times 15$$

$$=40 + \left[\frac{4}{14-9}\right] \times 15$$

$$=40 + \left[\frac{4}{5}\right] \times 15$$

$$=40 + [4 \times 3]$$

$$=40 + 12$$

mode = 52

Try to solve these								
Fir	nd the mode	answer						
1	Class intervals	5-15	15-25	25-35	35-45	45-55		mode = 33
	Frequency	3	4	8	7	3		
2	Class intervals	0-5	5-10	10-15	15-20	20-25		mode = 6
	Frequency	6	30	40	16	4		
3	Class intervals	0-2	2-4	4-6	6-8	8-10		mode = 5.5
	Frequency	1	3	6	5	2		
4	Class intervals	1-3	3-5	5-7	7-9	9-11		mode = 6
	Frequency	6	9	15	9	1		
5	Class intervals	0-20	20-40	40-60	60-80	80- 100		mode = 72
	Frequency	15	10	35	50	40		
6	Class intervals	10-25	25-40	40-55	55-70	70-85	85-100	mode = 52
	Frequency	2	3	7	6	6	6	

Learning Outcome	Chapter: Area related to Circles				
Class:-10	Marks allotted:-01/02				
Learning Points	To find the area of t	he sector and the length of the Arc in a circle			
Formula to be used:	Length of Arc = $\frac{\theta}{360^{\circ}}$	$2\pi r$			
	Area of Sector = $\frac{\theta}{360^{\circ}}$	$-\pi r^2$			
	Area of a Quadrant	of a Circle = $\frac{1}{4} \times \pi r^2 \ (\theta = 90^0)$			
	SAMPLE CA	ALCULATION			
1) A circle of radius 21cm	n subtends an angle	2) Find the area covered by the minute hand			
at the centre. Find the le	ength of the Arc.	of a clock 14 cm long in 5 minutes.			
Solution : $\theta = 60^{\circ}$		Solution:			
R = 21c	m	Length = radius = 14 cm			
Length of Arc = $\frac{\theta}{360^{\circ}}$ 2	πr	Angle traversed in 3 minutes = 30°			
300		Area of Sector = $\frac{\theta}{360^0} \pi r^2$			
=-3	$\frac{60^0}{360^0} \times 2 \times \frac{22}{7} \times 21$	$= \frac{30}{360^0} \times \frac{22}{7} \times 14^2$			
$=\frac{1}{6}\times$	$\times 2 \times 22 \times 3$	$=\frac{154}{3}cm^2$			
= 220	ст				

1	If the circumference of a circle is numerically equal to its area, find the	<i>r</i> =2
	radius of the circle. r =2	
2	The area of a circle is 49 πr square meters but its perimeter is 14 π	14π
3	In a circle of radius 21 cm, the arc subtends an angle at the centre. Find	33cm
	the length of the Arc. 33 Cm	
4	In a circle of radius 24cm, the arc subtends an angle at the centre. Find	2cm
	the length of the Arc. 2 cm	
5	An umbrella has 8 equally spaced rods. Assuming that the umbrella is a	$A = \frac{22752}{28} cm^2$
	flat circle of radius 45 cm, find the area between two consecutive poles.	20
6	Find the radius and the radius angle between the radii and its width.	$A = \frac{132}{4} cm^2$
7	Find the area of a quadrant whose perimeter is 22 cm.	$A = \frac{77}{8}cm^2$

Learning Outcome Chapt			napter : Mensuration			
Class:-10 M			Marks assigned:-01/02			
LEARNING Po	oints	To find	To find the lateral and total surface area of a cube, find the cube			
Solids	Curved Surface		Total Surface Area		Area Volume	
Cylinder	$2\pi r$ h	1	$2\pi r$ (r+h)		$\pi r^2 h$	
Cone π rl			$\pi r(r+l)$		$\frac{1}{3}\pi r^2 h$	
Frustuf $\pi(r_1+r_2)l$		$\pi(r_1 + r_2)l + \pi(r_1^2 + r_2^2)$		$\frac{1}{3}\pi h(\pi(r_1^2+r_2^2+(r_1+r_2)$		
the Sphere	ı	4		πr^2	$\frac{4}{3}\pi r^3$ $\frac{2}{3}\pi r^3$	
Hemisphere	Hemisphere $2\pi r^2$ 3		πr^2	$\frac{2}{3}\pi r^3$		
1) The radius of a cone is 7cm and the slant height is 10 cm. Find the lateral surface area of the cone.				2) A cone is melted and a Sphere of same radius is made. Find the ratio of the height and the radii.		
Lateral Surface Area = πrl = $\frac{22}{7} \times 7 \times 10$ = 229 cm^2			10	$\frac{1}{3}\pi r^2 h = \frac{4}{3}\pi r^3 = h = 4r$ $\Rightarrow \frac{h}{r} = \frac{4}{1} \Rightarrow h : r = 4 : 1$		
	"SO EASY, YOU CAN DO IT TOO, JUST GIVE IT A TRY"					

$\frac{616m^2}{100m^3}$
100 23
100m
<u>16</u>
9
48 sq.cm.
$229cm^{2}$
$2\pi r$ (r+h)
$\frac{1}{3}\pi h(\pi(r_1^2+r_2^2+(r_1+r_2))$
5

Chapter: Introduction to Trigonometry				
Class:-10:	Marks allotted:- 01/02			
Learn to find	the distance, height, length and value of an object given the given data.			
Formula to be used				

Supplementary angles

$$\sin(90^{0} - \theta) = \cos\theta$$
$$\csc(90^{0} - \theta) = \sec\theta$$
$$\tan(90^{0} - \theta) = \cot\theta$$

$$cos(90^{0} - \theta) = sin\theta$$
$$sec(90^{0} - \theta) = cosec\theta$$
$$cot(90^{0} - \theta) = tan\theta$$

$$\sin\theta = \frac{PQ}{OP} = \frac{A}{V}$$

$$\cos\theta = \frac{OQ}{OP} = \frac{P}{V}$$

$$\tan\theta = \frac{PQ}{OQ} = \frac{A}{P}$$

AV, PV, AP

A=aspect V=diagonal Pa=lateral

SAMPLE CALCULATION

1. A kite is flying at a height of 60m above the ground and its string is temporarily tied to a peg at a point on the ground. Find the length of the string assuming that the string makes an angle of 60° with the ground and is not slack.

Solution:							
Height	eight of Kite = M=mh=60m						
Length of thread =AB =							
-	-	le triar	ngle - ΔABC				
Sin 60 ⁰	$=\frac{BC}{AB}$						
$=\frac{\sqrt{3}}{2}=\frac{60}{AB}$							
Length	n of thr	ead =	$AB = \frac{60 \times 2}{\sqrt{3}} = \frac{120}{\sqrt{3}} = 40\sqrt{3}$				
- 0		00	30°	45 ⁰	60°		90°
Sin heta		0	1	1		/ 3	1
			$\overline{2}$	$\sqrt{2}$			
$Cos\theta$		1	$\frac{\overline{2}}{\sqrt{3}}$	1		1	0
			<u>2</u> 1	$\overline{\sqrt{2}}$		$\frac{2}{1}$ $\sqrt{3}$	
Tan $ heta$		0		1	V	3	ND
			$\overline{\sqrt{3}}$				
Cosec	θ	ND	2	$\sqrt{2}$		2	1
			2	_	•	<u>/3</u>	
$Sec\theta$		1	2	$\sqrt{2}$	2		ND
$Cot \theta$		ND	$\frac{\sqrt{3}}{\sqrt{3}}$	1		1	0
COLO		ND	γ3	1		<u>-</u> /3	O
	1 10						Δ ΤΡΥ"
1	"SO EASY, YOU CAN DO IT TOO, JUST GIVE IT A TRY" 1 A circus artist is climbing a rope 20m long and tied to the ground with a vertical						
	A circus artist is climbing a rope 20m long and tied to the ground with a vertical suspension A. The angle between the rope and the ground is 30° but the vertical						
		t is 10r			с Б. о и		
2	A tree breaks in a storm and hits the ground making an angle of 30° with the ground						
	and the top of the tree reaches the ground at a distance of 8 m from the base of the						
	tree. Then find the height of the tree before it broke.						
3	The angle of declination formed by a car on the ground from the top of a building						
	$50\sqrt{3}$ high is 60° . Find the distance of the car from the base of the building.						
4	If $\sin\theta = \frac{3}{5} \& \cos\theta = \frac{4}{5}$ then find the value of $\sin^2\theta + \cos^2\theta$						
5	find the value of sin60° cos30°+ sin30° cos60°						
6	$cosA = \frac{4}{5}$ then find the value of tanA						
7	find the value of $tan\theta - cot(90^0 - \theta)$ 13 $sin\theta = 12$ but $cos\theta$ find the						
	value						
8	find the value of sin60° ×cos30°						

Chapter Probability			
Class: 10	Assigned Marks: 01/02		
P(e)=0.05 then find p(ē)	$P(A) = 2/3$ then find $P(\bar{A})$		
Solution: $p(e)+p(\bar{e})=1$	$P(A)+P(\bar{A})=1$		
0.05 +p(ē)=1	$P(\bar{A}) = 1-2/3$		
p(ē)=1-0.05	$P(\bar{A})=1/3$		
p(ē)=0.95			

- 1. IF probability of event is done is 0.92 then find the probability of event not done
- 2. IF probability of event is not done is 0.32 then find the probability of event done
- 3. A coin is thrown 3 times .what is the probability that atleast one head is obtained?
- 4. Find the probability of getting a numbered card when a card is drawn from the pack of 52 cards.
- 5. Two dice are thrown at the same time. Find the probability of getting
 - (i) the same number on both dice.
 - (ii) different numbers on both dice.

Theorem 1: Thales Theorem OR (Basic Proportionality Theorem).

"A line drawn parallel to one side of a triangle divides the other two sides in the same ratio."

Proof:-

Given:-In ΔABC, DE||BC

To Prove: $\frac{AE}{BE} = \frac{AD}{CD}$

Construction: Join BD and CE and Draw FD \perp AB and EG \perp AC.

Proof:

Consider $\triangle ADE$ and $\triangle BDE$

We know that

$$\frac{\text{Area of } \Delta \text{ADE}}{\text{Area of } \Delta \text{BDE}} = \frac{\frac{1}{2} \text{AE} \times \text{DF}}{\frac{1}{2} \text{BE} \times \text{DF}} \implies \frac{\Delta \text{ADE}}{\Delta \text{BDE}} = \frac{\text{AE}}{\text{BE}} - (1) \left[\text{Area of } \Delta = \frac{1}{2} \text{B} \times \text{H} \right]$$

$$\frac{\Delta ADE}{\Delta CDE} = \frac{\frac{1}{2}XADXEG}{\frac{1}{2}XCDXEG} \Rightarrow \frac{\Delta ADE}{\Delta CDE} = \frac{AD}{CD} - (2)$$

$$\Rightarrow \frac{\Delta ADE}{\Delta BDE} = \frac{\Delta ADE}{\Delta CDE}$$
$$\Rightarrow \frac{AE}{BE} = \frac{AD}{CD}$$

Hence Proved.

"If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar."

To Prove: $\triangle ABC \sim \triangle DEF$; $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

Construction: Cut DP = AB from DE and DQ = AC from DF and join PQ.

Proof:

Consider $\triangle ABC$ and $\triangle DPQ$

Here \angle BAC = \angle PDQ [Data]

AB=DP, AC=DQ[Construction]

 $\triangle ABC = \triangle PDQ [SAS Congruence rule]$

 $\angle ABC = \angle DPQ [CPCT]$

But ∠ABC = ∠DEF [Data]

⇒∠DPQ=∠DEF. Therefore, PQ || EF[Since corresponding angles are equal].

$$\frac{\mathrm{DP}}{\mathrm{DE}} = \frac{\mathrm{PQ}}{\mathrm{EF}} = \frac{\mathrm{DQ}}{\mathrm{DF}}$$
 [By corollary of BPT]

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
 [By construction] Hence this completes the proof.

Converse of BPT: If a line divide any two sides of a triangle (Δ) in the same ratio, then the line must be parallel (| |) to third side.

Given: In triangle
$$\frac{AD}{DB} = \frac{AE}{EC}$$

To Prove: DE||BC

Construction: DE'||BC

Proof : Here
$$\frac{AD}{DB} = \frac{AE}{EC}$$
 ----(1)Since DE'||BC,

So by BPT
$$\frac{AD}{DB} = \frac{AE'}{E'C}$$
 by(1)

$$\Rightarrow \frac{AE}{EC} + 1 = \frac{AE'}{E'C} + 1$$

$$\Rightarrow \frac{AE}{EC} + 1 = \frac{AE'}{E'C} + 1$$

$$\Rightarrow \frac{AE+EC}{EC} = \frac{AE'+E'C}{E'C}$$

$$\Rightarrow \frac{AC}{EC} = \frac{AC}{E'C}$$

so E and E' are same

Hence DEI IBC.

SSS similarity criterion of two triangle: If in two triangles, sides of one triangle are proportional to the sides of the other triangle, then their corresponding angles are equal and hence the triangles are similar.

Given: In
$$\triangle$$
ABC and \triangle DEF, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

To Prove:
$$\angle A = \angle D$$
, $\angle B = \angle E$, $\angle C = \angle F$, $\triangle ABC \sim \Delta DEF$

Construction: Cut DP = AB from DE and DQ = AC from DF and join PQ.

Proof: Consider ΔABC and ΔDPQ

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} \Rightarrow \frac{DP}{DE} = \frac{PQ}{EF} = \frac{DQ}{DF}$$

$$\Rightarrow$$
PQ||EF (By BPT) So, \angle P = \angle E & \angle Q= \angle F \because PQ||EF

$$\triangle ABC \cong \triangle DPQ So, \angle A = \angle D, \angle B = \angle P, \angle C = \angle Q$$

$$\Rightarrow \angle A = \angle D$$
, $\angle B = \angle E$, $\angle C = \angle F$ So $\triangle ABC \sim \triangle DEF$

Hence this completes the proof.

<u>SAS similarity criterion of two triangle</u>: If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

Given: In $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{AC}{DF}$, $\angle A = \angle D$

To Prove: ΔABC ~ ΔDEF

Construction: Cut DP = AB from DE and DQ = AC from DF and join PQ.

Proof: Consider ΔABC and ΔDPQ

$$\frac{AB}{DE} = \frac{AC}{DF}$$
, $\angle A = \angle D$, PQ||EF, $\triangle ABC \cong \triangle DPQ$,

$$\angle A = \angle D$$
, $\angle B = \angle P$, $\angle C = \angle Q$

∴∆ABC≅∆DEF

Circle theorem 1

"The tangent at any point of a circle is perpendicular to the radius drawn at the point of contact".

Data: O is the centre of the circle .XY is the tangent to the circle at the point P .OP is the radius drawn at the point of contact P.

To Prove : OP \perp XY.

Construction: Take a point Q on XY Join OQ.

Proof: OQ=OR+RQ

⇒OQ=OP+RQ (OP=OR)

 \Rightarrow OQ>OP

 \Rightarrow : OQ is longer than OP.

So, OP is the smallest distance of the point O from the line XY.

 \Rightarrow OP \perp XY.

Hence proved.

Circle theorem 2

"The two tangents drawn from an external point to a circle are equal".

Data: O is the centre of the circle .P is an external point.

AP and BP are tangents to the circle.

To Prove : AP =BP

Construction: Join OA,OB and OP

Proof: In \triangle AOP and \triangle BOP,

∠OAP = ∠OBP [Right angles] OA = OB [Radii of the same circle]

[Common side] OP=OP

∴ΔAOP ≅ΔBOP [RHS Theorem]

∴ AP=BP [C.P.C.T]

Hence proved.

Formula:

- The roots of the quadratic equation ax²+bx+c=0 is given by; $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- $\Delta=b^2-4ac$
- <u>Distance formula</u>:-
- $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ Units
- Distance from origin:
- $d = \sqrt{x^2 + y^2}$ Units.
- Section formula:
- $p(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$ $p(x,y) = \left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$

	p(x,y) = 0				
S1.	Solid	Shape	CSA	TSA	Volume
No					
1.	Cube	C B B B B B B B B B B B B B B B B B B B	4a ²	6a ²	a ³
2.	Cuboid		2h(l+b)	2(lb+bh+lh)	lbh
3.	Cylinder		2 π rh	2 π r(h+r)	$m{\pi}\mathrm{r}^2\mathrm{h}$

4.	Cone	π rl	π r(l+r)	$\frac{1}{3}\pi r^2 h$
5.	Sphere	$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
6.	Hemi-sphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$