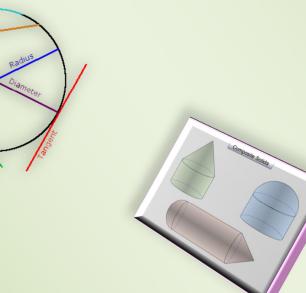
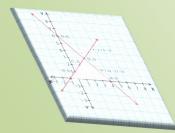
Government of Karnataka

District Administration and Zilla Panchayath

and

Deputy Director, Department of School Education


Kolar District, Kolar



MATHEMATICS (81E) GLANCE ME ONCE

Questions with AnswersAnswers

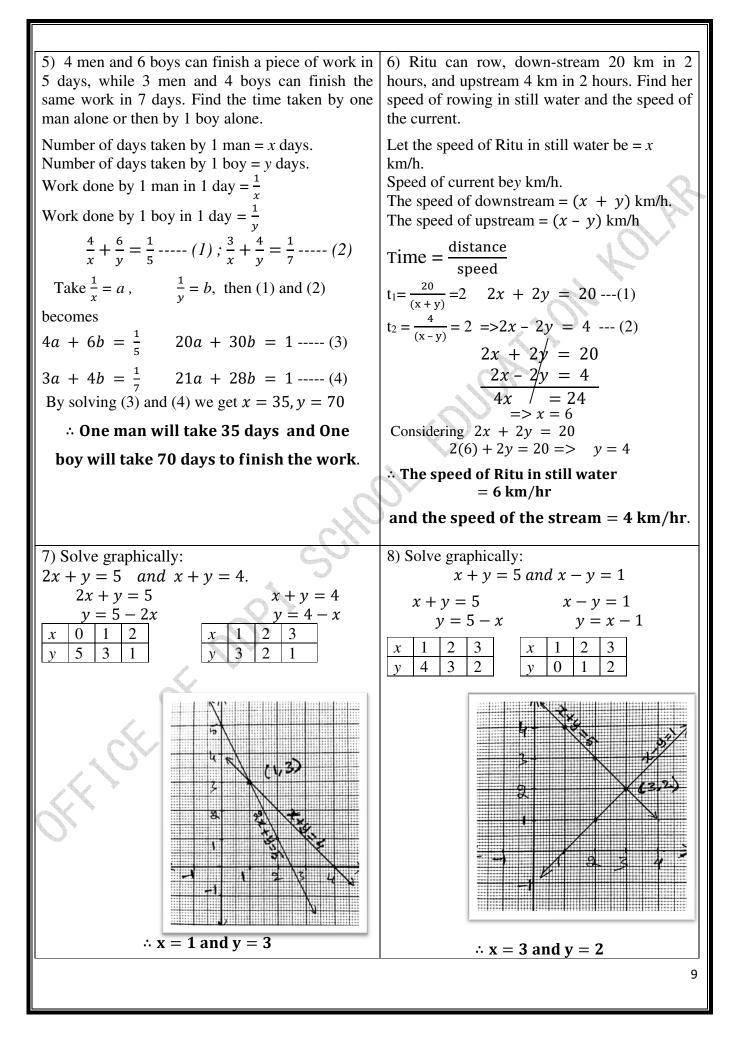
CONTENTS:

Unit No.		Name of the Unit	Page No.	
1	REAL NUI	MBERS	4 - 5	
2	POLYNON	/IALS	6-7	
3	PAIR OF L	INEAR EQUATIONS IN TWO VARIABLES	8-10	
4	QUADRAT	TIC EQUATIONS	11 – 14	
5	ARITHME	TIC PROGRESSIONS	15 – 17	
6	TRIANGL	ES	18 – 21	
7	COORDIN	ATE GEOMETRY	22 - 25	
8	INTRODU	CTION TO TRIGONOMETRY	26 - 28	
9	SOME APPLICATIONS OF TRIGONOMETRY 29			
10	CIRCLES	\mathcal{A}	34 - 35	
11	AREAS RE	ELATED TO CIRCLES	36 - 38	
12	SURFACE	AREAS AND VOLUMES	39 - 42	
13	STATISTI	CS	43 - 44	
14	PROBABI	LITY	45 - 46	
Appe	endix— 1	List of Formulae and Mathematical Relations	47 – 51	

UNIT-1: REAL NUMBERS								
Mu	Multiple Choice Questions							
1	If A and B are any two positive integers then HCF (A, B) x LCM (A, B) is equal to							
1	(A) $A + B$	(B) $A - B$	(C) $A \times B$	(D) $A \div B$				
	Terminating decimal expansion among the following is							
2	$(A)^{\frac{2}{7}}$	(B) $\frac{7}{15}$	(C) $\frac{11}{20}$	(D) $\frac{22}{7}$				
3	LCM of 18 and 45 is							
5	(A) 9	(B) 90	(C) 63	(D)810				
	(7x11x13+13) is a							
4	(A) Prime number	(B) Cor	nposite number					
	(C) Complex number	(D) Co-	prime numbers					
5	H.C.F. of 15 and 40 is							
5	(A) 5	(B) 10	(C) 120	(D) 15				
On	e Mark Questions							
1	What is the H.C.F. of two p	rime numbers?						
	Ans: 1 (one)		5					
	Write the statement of the F	Fundamental The	orem of Arithmetic					
2	Every composite number	can be expresse	d as a product of j	primes and this factorization is				
	unique except for the orde	er on which the j	prime factors occu	ır.				
	If HCF of 52 & 182 is 26, th	hen find their LC	M.					
	We know, $H \times L = A \times B$							
3	$L = \frac{52 \times 182}{26}$							
	=> L = 364							
	Express 90 as the product of its prime factors							
4 $90 = 2 \times 3^2 \times 5$								

Two Marks Questions Prove that $2 - \sqrt{3}$ is an irrational number. 2 Prove that $5 + \sqrt{2}$ is an irrational number. Proof : Let $2 - \sqrt{3}$ is a rational number. Proof : Let $5 + \sqrt{2}$ is a rational number. $=>2-\sqrt{3} = \frac{p}{q}$ where $q \neq 0$, $p, q \in Z$ $=>5+\sqrt{2} = \frac{p}{q}$ where $q \neq 0$, $p, q \in Z$ $2-\frac{p}{a}=\sqrt{3}$ $\sqrt{2} = \frac{p}{a} - 5$ $\frac{2q-p}{a} = \sqrt{3}$ $\sqrt{2} = \frac{p - 5q}{q}$ Rational number \neq Irrational number Irrational number \neq Rational number LHS \neq RHS LHS \neq RHS Our assumption is wrong. Our assumption is wrong. $\therefore 2 - \sqrt{3}$ is an irrational number. $\therefore 5 + \sqrt{2}$ is an irrational number. **Three Marks Questions** Prove that $\sqrt{2}$ is an irrational number. Proof: Let $\sqrt{2}$ be a rational number. $\sqrt{2} = \frac{p}{q}$ where $q \neq 0$, p and q are co-prime $\sqrt{2} q = p$ squaring on both sides $2q^2 = p^2$(1) $\therefore p^2$ is divisible by 2 and also p is divisible by 2(2) Substitute equation (3) in (1) $2a^2 = (2r)^2$ $2q^2 = (2r)^2$ $2a^2 = 4r^2$ $a^2 = 2r$ $\therefore q^2$ is divisible by 2 and also q is divisible by 2.....(4) (2) and (4) \Rightarrow Both *p* and *q* have a common factor. \therefore both p and q are not co-primes. It is contradictory to our assumption. $\therefore \sqrt{2}$ is an irrational number.

UNIT – 2 : POLYNOMIALS						
Multiple Choice Questions						
1	In the given graph, the number	r of zeroes	2	In the	given graph,	the number of zeros of a
	of a polynomial $p(x)$ are	y		polyno	omial $p(x)$ ar	e x
	x' <	9-7 ¹⁰	ĸ			$x \leftarrow 0 \rightarrow x$
	(A) 3 (B) 5	V V		(A) 0	(B) 1	Y
	(C) 4 (D) 2	<i>y'</i>		(C) 3	(D) 2	
3	The degree of the polynomial g	$q(x) = 4x^5 - $	$6x^3$	$+ 2x^2 -$	+ 5 is	
	(A) 3 (B) 5	(C	2) 2		(D) 4	
4	The degree of a linear polynom	ial is			A.	
	(A) 0 (B) 1	(C	2) 2		(D) 3	
5	The sum of zeroes of a polynom	nial $p(x) = 3$	$3x^{2} -$	· 2x - 8	3 is	
	$(A)\frac{3}{2}$ $(B)\frac{-2}{3}$	(C	$(2)\frac{8}{3}$		(D) $\frac{2}{3}$	
6	When the polynomial $3x^2 - 5$.	x + 6 is divid	led by	y (x - 2	2), then the re	mainder is
	(A) 8 (B) -8	(C)) 3		(D) 2	
7	The maximum number of zeroe	es that a quadra	atic e	quation	can have is/ar	e
	(A) 3 (B) 1	(C)) 0		(D) 2	
8	Zero of the polynomial $5x + 7$	is				
	(A) 7 (B) $\frac{7}{5}$	(C)	$-\frac{7}{5}$		(D) $-\frac{5}{7}$	
9	The product of the zeroes of the	e polynomial p	p(x) =	$= x^2 - x^2$	5x + 6 is	
	(A) 6 (B) 30	(C)	5		(D)5	
0	One Mark Questions					
1	Find the sum of zeroes of x^2 –	9. 2	Find	l the zer	oes of the pol	ynomial $p(x) = x^2 - 3$.
	a = 1, b = 0, c = -9.		<i>x</i> ² -	-3 = 0		
	Sum of zeroes $= -\frac{b}{a} = -\frac{0}{1}$		(x +	$-\sqrt{3}(x$	$(-\sqrt{3}) = 0$	
	\therefore Sum of zeroes = 0		:. <i>x</i>	$=-\sqrt{3}$	and $x = +_{\mathcal{N}}$	/3
	5					
ĺ						


Two Mark Questions					
¹ Find the quadratic polynomial having zeroes 5 and 3.	2 Find the zeroes of the polynomial $x^2 - 2x - 15$. $x^2 - 2x - 15 = x^2 - 5x + 3x - 15$				
Let $\alpha = 5$ and $\beta = 3$ $\alpha + \beta = 8$	= x(x-5) + 3(x-5)				
$\alpha\beta = 15$ The quadratic polynomial is of the form	= (x-5)(x+3) zero of $x-5$ is 5 and				
$x^{2} - (\alpha + \beta)x + \alpha\beta$ $\therefore The polynomial is x^{2} - 8x + 15$	and zero of $x + 3$ is -3 \therefore zeroes of $x^2 - 2x - 15$ are 5 and -3				
3 Find the quadratic polynomial if, sum and product of its zeroes are -5 and 4 respectively.	14 III $\alpha \alpha \alpha \alpha \alpha$ are the zeroes of the quadratic				
Let α and β be the zeroes of the polynomial					
Given, $\alpha + \beta = -5$	$\alpha^{2}\beta + \alpha\beta^{2} = \alpha\beta(\alpha + \beta)$				
$\alpha\beta = 4$ The quadratic polynomial is of the form	$=\frac{c}{a}\left(-\frac{b}{a}\right)$				
$x^{2} - (\alpha + \beta)x + \alpha\beta$ $=> x^{2} - (-5)x + 4$	$\therefore \alpha^2 \beta + \alpha \beta^2 = -\frac{bc}{a^2}$				
$\therefore The polynomial is x^2 + 5x + 4$					
Three Mark Questions	9				
1 Find the quadratic polynomial whose respectively.	sum and product of zeroes are $2 + \sqrt{3}$ and $2 - \sqrt{3}$				
Let $\alpha = 2 + \sqrt{3}$ and $\beta = 2 - \sqrt{3}$.					
	$= 2 + \sqrt{3} + 2 - \sqrt{3}$				
$\alpha\beta = (2+\sqrt{3})(2-\sqrt{3})$	$\therefore \alpha + \beta = 4$				
	$=2^{2}-(\sqrt{3})^{2}$				
	= 4 - 3				
	$\therefore \alpha \beta = 1$				
The quadratic polynomial is of the form					
$x^2 - (\alpha + \beta)x + \alpha\beta$					
\therefore The polynomial is $x^2 - 4x + 1$					

UNIT-3: PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Multiple Choice Questions

	$c_1 = 0$, $a_2x + b_2y + c_2 = 0$ is said to be inconsistent if				
(A) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ (B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{a_2}{a_2}$	$\frac{c_1}{c_2} \qquad (C)\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \qquad (D)\frac{a_1}{a_2} = \frac{c_2}{c_1}$				
	- X-				
	r equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$				
intersect at a point, then the correct relation a_1 , b_1 , b_1 , a_1 , b_1 , b_1 , a_1 , b_1 , b_1 , c_1 , b_1 , c_2 , a_1 , b_1 , b_2 , a_1 , b_1 , b_2 , a_1 , b_1 , b_2 , a_1 , b_2 , a_1 , b_2 , a_2 , b_3 , a_1 , b_1 , b_2 , a_3 , b_3 , a_3, b_3 , b_3, b_3 , b_3, b_3, b_3 ,					
(A) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ (B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	$(C)\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $(D)\frac{a_1}{a_2} = \frac{b_2}{b_1}$				
	quations $2x + 3y - 9 = 0$ and $4x + 6y - 18 = 0$ are				
(A) intersecting lines	(B) perpendicular lines				
(C) parallel lines	(D) coincident lines				
4. The Pair of linear equations $x + 2y =$	6 and 3x - 6y = 18 have				
(A) No solution	(B) Infinitely many solutions				
(C) Exactly one solution	(D) Two solutions				
One Mark Questions					
1. The graph represents the pair of linear eq	uations in 'x' and 'y'.				
Write the solution for this pair of equ	ations.				
Ans : $x = 2$ and $y = 1$	X				
2. Write the general form of pair of linear equations in two variables ' <i>x</i> ' and 'y'					
$a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2$	$a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, where a_1, b_1, c_1, a_2, b_2 and c_2 are all real numbers.				
3. In the pair of linear equations $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$, if $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$, then write the					
number of solutions these equations have. Ans: Infinitely many solutions.	number of solutions these equations have.				
Two Marks Questions					
1. Solve the following pair of linear	2. Solve by elimination method: $x + y = 5$ and				
equations by any of the algebraic method:					
x + y = 8 and $2x - y = 7x + y = 8$	$\begin{array}{ccc} x + & y = & 5 & \dots & (1) \\ & & 2x + & 2y & - & 12 \\ \end{array} $				
$\begin{array}{c} x+y=0\\ 2x-y=7 \end{array}$	2x + 3y = 12 (2)				
$\frac{2x}{3x} = 15$ (addition)	Multiplying the equation (1) by 2 we get				
x=5	2x + 2y = 10 (3)				
Substituting the value of x in $x + y = 8$	Solving equation (2) and (3) 2x+3y=12				
5 + y = 8	$\frac{2x+2y=10}{2}$ (subtraction)				
y = 3	y = 2				
$\therefore x = 5 and y = 3$	Substitute the value of $y \text{ in } x + y = 5$, we get $x = 3$ $\therefore x = 3 \text{ and } y = 2$				
	··· n 5 unuy — L				

Three or Four Marks Questions.	
1.The cost of 5 oranges and 3 apples is Rs.35	2. Solve: $141x + 93y = 189$ and
and the cost of 2 oranges and 4 apples is Rs. 28. Find the cost of an orange and an apple.	93x + 141y = 45
	141x + 93y = 189 (1)
Let the cost of an orange and an apple be x and y respectively. => $5x + 3y = 35$ and	93x + 141y = 45 (2)
2x + 4y = 28	By adding (1) and (2) we get
$(5x + 3y = 35) \times 4 => 20x + 12y = 140$	141x + 93y = 189
$(2x + 4y = 28) \times 3 => 6x + 12y = 84$	$\frac{93x+141y=45}{234x+234y=234} x+y=1-\dots(3)$
Multiply the equation (1) by 4 and equation (2)	$\frac{234x + 234y = 234}{x + y = 1}$
by 3 we get,	By subtracting (1) by (2) we get
20x+12y=140	141x + 93y = 189
20x + 12y = 140 6x + 1/2y = 84	$\frac{93x+141y=45}{48x-48y=144} x-y = 3 - \dots (4)$
$\frac{-0x+42y-64}{-14x/=56}$ (subtraction)	40x + 0y = 144
x=4	x-y=3
Substituting the value of x in $5x + 3y = 35$	Solving (3) and (4)
5x + 3y = 35	x+y=1
20 + 3y = 35	$\frac{x-y=3}{2x'=4}$
3y = 15	2x = 4 $x=2$
y = 5	
: The cost of an orange is Rs.4	By substituting the value of x in (3) or (4) we $a_{1} = 1$
and That of an apple is Rs. 5.	gety = -1 $\therefore x = 2 and y = -1$
3. The sum of two numbers is 50 and their	4. If twice the age of the son is added to age of
difference is 22, find the numbers.	the father the sum is 56. But if twice the age of
Let the two numbers be <i>x</i> and <i>y</i> .	the father is added to the age of the son, then the
According to the data	sum is 82. Find the ages of the father and the son.
x + y = 50 (1)	Let the age of son be 'x' years and
x - y = 22 (2)	the age of father be 'y' years
Solving (1) and (2)	2x + y = 56 (1)
x+y=50	x + 2y = 82 (2)
$\frac{x-y=22}{2x=72}$ (addition)	Multiply the equation (2) by 2 we get 2x + 4y = 164 (3)
2x = 72 (addition) x=36	
By Substituting the value of x in (1) we get	Solving (1) and (3) $\frac{2x+4y=164}{2x+y=56}$ $3y=108$
x + y = 50	
36 + y = 50	<i>y</i> =36
y = 14	By substituting the value of y in (1) we get $x=10$
	\therefore The age of the son and the age of father
\therefore The two numbers are 36 and 14.	are 10 years and 36 years respectively.

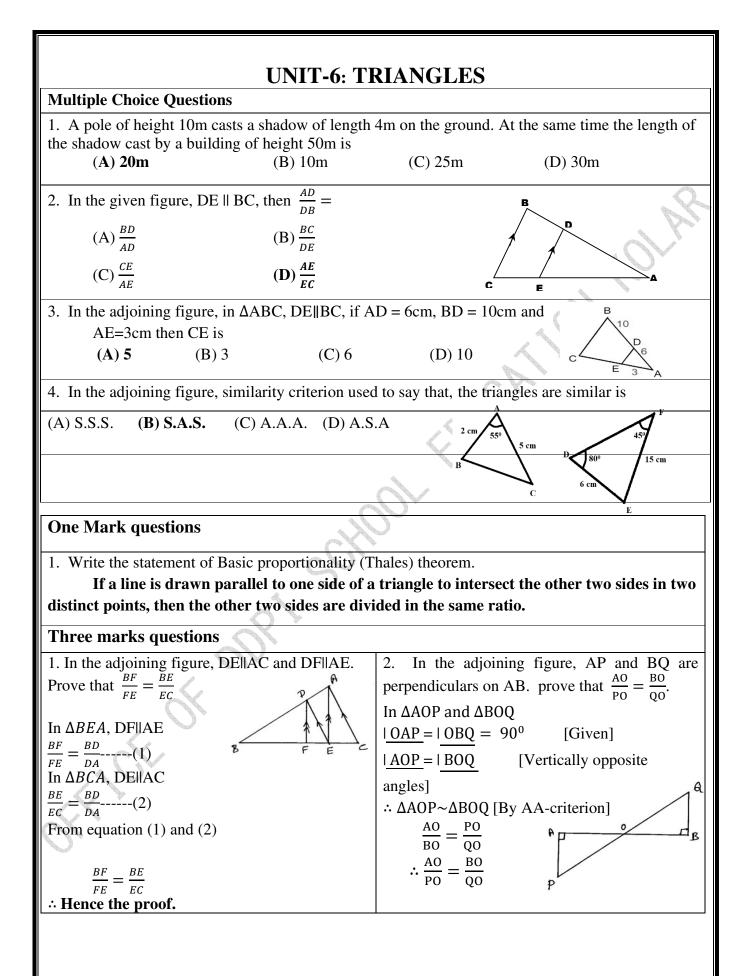
м	UNIT-4 : QUADR ultiple Choice Questions		IC EQUATIONS		
1	The value of the discriminant of a quadratic	eana	tion is 3. Then the nature of its roots is		
1	(A) Real and Distinct		(B) Real and equal		
	(C) There is no any root		(D) Imaginary numbers		
2					
2	The standard form of quadratic equation if (A) $ax^2 - bx + c = 0$		$(B) ax^2 + bx + c = 0$		
	$(C) ax^2 - bx - c = 0$		$(D) ax^2 + bx - c = 0$		
3	The quadratic equation whose roots are -1				
	(A) $x^2 - x - 2 = 0$ (C) $x^2 + x - 2 = 0$ (C)	$(\mathbf{B}) \mathbf{x}$	$x^{2} - x + 2 = 0$ $x^{2} + x + 2 = 0$		
4	The standard form of the quadratic equation				
		0 =	= 0 (C) $x^2 - x - 30 = 0$ (D) $x^2 - x =$		
5	30 "Sum of the squares of two consecutive of	ndd 1	numbers is 130." Mathematical form of this		
5	statement is	\mathbb{S}	unioers is 150. Wallemalear form of this		
	(A) $x^2 + (x + 1)^2 = 130$ (B) $x^2 + (2x)^2 =$	= 130	0 (C) $x^2 + (x+2)^2 = 130$ (D) $(x + 2x)^2 = 130$		
6	If the roots of $ax^2 + bx + c = 0$ are equal, the	en th	e correct relation among the following is		
	(A) $\frac{b}{2a} = \frac{2c}{b}$ (B) $b^2 + 4ac = 0$	(C) $\frac{b}{2a} = \frac{b}{2c}$ (D) $a = b$		
0	ne Mark Questions				
1	Write the standard form of a quadratic equa	tion.	Ans: $ax^2 + bx + c = 0$, where $a \neq 0$		
2	Find the discriminant of the quadratic	3	Find the roots of the quadratic equation		
	equation $x^2 + 2x + 1 = 0$		$x^2 - 25 = 0$ $x^2 = 25$		
	$b^2 - 4ac = 2^2 - 4(1)(1)$ = 4 - 4		$\begin{array}{l} x^{-} = 25 \\ x = \sqrt{25} \end{array}$		
4	$= 4 - 4$ $\therefore b^2 - 4ac = 0$		$x = \sqrt{25}$ $\therefore x = \pm 5$		
Ć					
4	Write the discriminant of the quadratic equation $ax^2 + bx + c = 0$	5	Write the formula to find the roots of the quadratic equation $ax^2 + bx + c = 0$		
	Ans: $b^2 - 4ac$				
			Ans: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
			2 <i>a</i>		
			10		
			10		

Two Marks Questions					
1 Solve the quadratic equation $x^{2} + 7x + 12 = 0$ by Factorization method $x^{2} + 3x + 4x + 12 = 0$ x(x + 3) + 4(x + 3) = 0 (x + 3)(x + 4) = 0 x + 3 = 0 or $x + 4 = 0x = -3$ or $x = -4$	2 Solve the quadratic equation $x^2 + x - 6 = 0$ by Factorization method $x^2 + 3x - 2x - 6 = 0$ x(x + 3) - 2(x + 3) = 0 (x + 3)(x - 2) = 0 x + 3 = 0 or $x - 2 = 0x = -3$ or $x = 2$				
3 Solve the quadratic equation $2x^{2} - 15x + 18 = 0$ by Factorization method $2x^{2} - 12x - 3x + 18 = 0$ 2x(x - 6) - 3(x - 6) = 0 (x - 6)(2x - 3) = 0 x - 6 = 0 or $2x - 3 = 0x = 6 or x = \frac{3}{2}$	4 Solve the quadratic equation $3x^{2} - x - 14 = 0$ by Factorization method $3x^{2} + 6x - 7x - 14 = 0$ 3x(x + 2) - 7(x + 2) = 0 (x + 2)(3x - 7) = 0 x + 2 = 0 or $3x - 7 = 0x = -2 or x = \frac{7}{3}$				
5 Solve $2x^2 - 5x + 3 = 0$ by using the quadratic formula. a = 2, b = -5, c = 3 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$ $x = \frac{5 \pm \sqrt{25 - 24}}{4}$ $x = \frac{5 \pm 1}{4}$ $x = \frac{5 \pm 1}{4}$ $x = \frac{5 \pm 1}{4}$ $x = \frac{3}{2} \text{ or } x = 1$	6 Solve $x^2 + 2x + 4 = 0$ by using the quadratic formula. a = 1, b = 2, c = 4 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(2) \pm \sqrt{(2)^2 - 4(1)(4)}}{2(1)}$ $x = \frac{-2 \pm \sqrt{4 - 16}}{2}$ $x = \frac{-2 \pm \sqrt{4 - 16}}{2}$ $x = \frac{-2 \pm \sqrt{4 - 12}}{2}$ $x = \frac{-2 \pm \sqrt{4(-3)}}{2}$ $x = \frac{2(-1 \pm \sqrt{-3})}{2}$ $x = (-1 + \sqrt{-3})$ or $x = (-1 - \sqrt{-3})$				
	11				

7	Find the nature of the roots of the equation $4x^2 - 12x + 9 = 0$	8	Find the nature of the roots of the equation $x^2 + 2x - 15 = 0$
	a = 4, $b = -12$, $c = 9$		a = 1, b = 2, c = -15
	$b^2 - 4ac = (-12)^2 - 4(4)(9)$		$b^2 - 4ac = (2)^2 - 4(1)(-15)$
	= 144 - 144		= 4 + 60
	$b^2 - 4ac = 0$		= 64
	∴Roots are Real and Equal		Here $b^2 - 4ac > 0$
			\therefore Roots are Real and Distinct
9	Find the nature of the roots of the equation $x^2 - x + 12 = 0$	10	Find the value of 'k' if the quadratic equation $x^2 - kx + 4 = 0$ has equal roots.
	a = 1, b = -1, c = 12		a = 1, b = -k, c = 4
	$b^2 - 4ac = (-1)^2 - 4(1)(12)$		Given; Roots are Equal $\therefore b^2 - 4ac = 0$ $(-k)^2 - 4(1)(4) = 0$
	= 1 - 48 = -47		
	Here $b^2 - 4ac < 0$		$k^2 - 16 = 0$ $k^2 = 16$
	\therefore The equation has no real roots.		
			$k = \pm \sqrt{16} \qquad \therefore k = \pm 4$
T	hree Marks Questions		
1	A girl is twice as old as her sister. Four years hence, the product of their ages (in years) will be 160. Find their present ages.	2	The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm. find the other two sides.
	Let the present age of sister be 'x' years and girls present age be ' $2x$ ' years		Let the base is 'x'cm and altitude is $(x - 7)$ cm and hypotenuse is 13 cm
	Product of their ages 4 years hence =		By Pythagoras theorem.
	(x+4)(2x+4)		$13^2 = (x - 7)^2 + x^2$
	(x + 4)(2x + 4) = 160		$169 = x^2 + 49 - 14x + x^2_{\mathbf{A}}$
	$2x^2 + 12x - 144 = 0$		$2x^2 - 14x - 120 = 0$ 13
	$x^2 + 6x - 72 = 0$		$x^2 - 7x - 60 = 0$ *7
	$x^2 + 12x - 6x - 72 = 0$		$x^2 - 12x + 5x - 60 = 0$ B x
	x(x+12) - 6(x+12) = 0		x(x - 12) + 5(x - 12) = 0
	x = -12 or x = 6		x - 12 = 0 or $x + 5 = 0$
	Age cannot be negative $=>x = 6$		x = 12 or $x = -5$
	. Girl's present age is 12 years and		Base is 12 cm and Altitude is 5 cm
	present age of her sister is 6 years		
		I	

3	The difference of squares of two positive	4	The sum of the squares of two consecutive
	numbers is 180. The square of small		positive integers is 13. Find the numbers.
	number is 8 times the big number. Find the numbers.		Let the numbers be x and $(x + 1)$
	Let the bigger number be x and smaller be		$x^2 + (x+1)^2 = 13$
	у		$x^2 + x^2 + 1 + 2x = 13$
	Given $x^2 - y^2 = 180$ and $y^2 = 8x$		$2x^2 + 2x - 12 = 0$
	$\therefore x^2 - 8x = 180$		$x^2 + x - 6 = 0$
	$x^2 - 8x - 180 = 0$		$x^{2} + 3x - 2x - 6 = 0$
	$x^2 - 18x + 10x - 180 = 0$		x(x+3) - 2(x+3) = 0
	x(x - 18) + 10(x - 18) = 0		
	(x - 18)(x + 10) = 0		(x+3) = 0 or $(x-2) = 0$
	=>x = 18 or x = -10 $x^{2} = 9(19) = >x^{2} = 144 + x = -10$		x = -3 or $x = 2$
	$y^2 = 8(18) =>y^2 = 144 \therefore y =$ 12		The other number = $x + 1 = 3$
	∴The numbers are 18 and 12		∴The numbers are 2 and 3
FO	our Marks Questions		
1	A person on tour has Rs 4200 for his	2	A motor boat whose speed in still water is
	expenses. If he extends his tour for 3		18km/hr, takes 1 hour more to go 24 km upstream than to return downstream to the same
	days, he has to cut down his daily	(spot. Find the speed of the stream.
	expenses by Rs 70. Find the original	\square	Let the speed of the stream be $x km/hr$
	duration of the tour.		Speed of the boat in upstream = $(18-x)$ km/hr
	original duration of the tour be 'x' days.		Speed of the boat in upsteam $=(18 \times 10^{-3})$ km/hr
	Given, $\frac{4200}{x} - \frac{4200}{x+3} = 70$		
			$Speed = \frac{distance}{time}$
	$4200\left(\frac{1}{x} - \frac{1}{x+3}\right) = 70$		The time taken to go upstream = $\frac{24}{18-x}$ and the
	$\frac{(x+3)-x}{x(x+3)} = \frac{70}{4200}$		time taken to go downstream = $\frac{24}{18-x}$
	x(x+3) 4200		18+ <i>x</i>
	x(x+3)=180		$\text{Given}, \frac{24}{18-x} - \frac{24}{18+x} = 1$
	$x^2 + 3x - 180 = 0$		$\frac{\frac{24(18+x)-24(18-x)}{(18-x)(18+x)}}{=1}$
	$x^2 + 15x - 12x - 180 = 0$		
	(x+15)(x-12) = 0		24(18 + x) - 24(18 - x) = (18 - x)(18 + x) $x^{2} + 48x - 324 = 0$
4	x + 15 = 0 or x - 12 = 0		$x^{2} + 54x - 6x - 324 = 0$
\sim	x = -15 or $x = 12$		x(x+54) - 6(x+54) = 0
	number of days can't be negative		(x+54)(x-6) = 0
	=>x = 12		x = -54 or $x = 6$ speed can't be negative
			\therefore The speed of the stream is 6km/hr
	∴Original duration of the tour is 12 dovs		
	days.		

UNIT-5: ARITHMETIC PROGRESSION

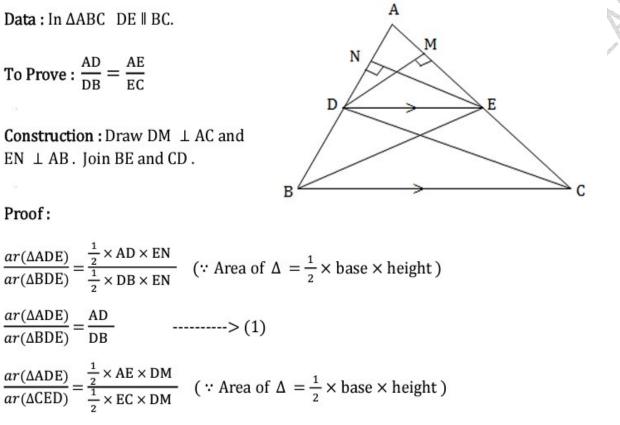

Multiple Choice Questions

1. The n th term of an arithmetic progression with first term ' <i>a</i> ' and common difference ' <i>d</i> ', is (A) $a_n=a+(n-1)d$ (B) $a_n=a-(n-1)d$ (C) $a_n=a-(n+1)d$ (D) $a_n=a+(n+1)d$				
2. In an arithmetic progression, if the first term is 'a' and the common difference is 'd', then the sum of its first 'n' terms is $(A)S_n = \frac{2}{n}[a + (n - 1)d] \qquad (B)S_n = 2[a + (n - 1)d]$				
(C)S _n = $\frac{n}{2}[a + (n-1)d]$ (D)S _n = $\frac{n}{2}[2a + (n-1)d]$				
3. If a_1, a_2, a_3, a_4 , are in arithmetic progression, then the common difference is (A) $a_2 - a_1$ (B) $a_1 - a_2$ (C) $a_2 - a_3$ (D) $a_3 - a_4$				
4. The common difference of the arithmetic progression,3,7,11,15, is(A) -4(B) 3(C) 4(D) 5				
5. An arithmetic progression among the following is (A) 3,5,7,10, (B) 3,5,6,9, (C) -2,-1,0,3, (D) 4,7,10,13,				
6. If the n th term of an arithmetic progression is 3n-2, then its 9 th term is(A) 15(B) 25(C) 29(D) 11				
7. If the terms 4, x, 10 are in arithmetic progression, then the value of 'x' is(A) 6(B) 7(C) 8(D) 9				
8. The 25 th term of an arithmetic progression, 3,8,13,18, is (A) 25 (B) 123 (C) 128 (D) 80				
9. The sum of the first 30 odd natural numbers is (A) 300 (B) 600 (C) 150 (D) 900				
10. The sum of $5+10+15+20+\ldots$ to 10 terms is(A) 50(B) 75(C) 100(D) 275				
One Mark Questions				
1. Write the formula to find the sum of first 'n' terms of an arithmetic progression with the first term 'a' and the last term a_n . $S_n = \frac{n}{2}(a + a_n)$				
2. Write the formula to find the sum of first 'n' terms of an arithmetic progression whose the first term is 'a' and the common difference is 'd'. $S_n = \frac{n}{2} [2a + (n-1)d]$				
3. If the common difference of an arithmetic progression is 3, then find the value of $a_7 - a_2$. $a_7 - a_2 = a + 6d - (a + d)$				
$= a + 6d - a - d = 5d = 5(3) = 15$ $\therefore a_7 - a_2 = 15$				
14				

4 2. Find the 12 th term of an A.P, 2, 5, 8, 11, 0 using formula $a=2$, $d=5-2=3$, $n=12$ $a_n=a+(n-1)$ d $a_{12}=2+(12-1)3$ $=2+33=35$ \therefore $a_{12} = 35$ c 4. Find the 10 th term from last (towards the first a. term) of the A.P, 4, 7, 10, 13, 64. From last term, the A.P becomes $64, 13, 10, 7, 4.$ $a=64$ $a=10 - 13= -3$, $n=10$				
$a_n = a + (n-1) d$ $a_{10} = 64 + (10-1) (-3)$ = 64 - 27 $= 37 \therefore a_{10} = 37$				
5. Examine, whether 92 is a term of the A.P., 2, 5, 8, 11,				
3 n= 31 of the A.P 2,5,8,11,				
2. In an A.P., the 3 rd term is 3 and the 5 th term is -11. Find its 50 th term. $a_3=3, a_5 = -11 \ a_{50} = ?$ a+2d=3 $a+4d=-11 \ (subtraction)$ $-2d=14 \implies d=-7$				
Substituting the value of "d" in $a+2d=3$				
$a+2(-7) = 3 \implies a = 17$				
$a_n=a+(n-1)d$				
$a_{50}=17+(50-1)(-7)$				
$a_{50} = -326$				

Four or Five Marks Questions

Four of Five Marks Questions			
1. In an A.P, the sum of 3^{rd} and 6^{th} term is 28 and the sum of 4^{th} and 8^{th} term is 34. Find the A.P. According to the data $a_{3+} a_6 = 28$	2. A sum of Rs. 1600 is to be used to give ten cash prizes to the students of a school for their overall academic performances. If each prize is Rs 20 less than its preceding prize, find the value of each of the prizes.		
a+2d+a+5d=28	Here, $n = 10, d = -20$.		
$2a + 7d = 28 \qquad \dots \qquad (1)$ $a_{4+} a_8 = 34$	Let the amounts of the prizes be $a, a - 20, a - 40, \dots, a - 180$		
a+3d+a+7d=34	$a + a - 20 + a - 40 + \dots + a - 180 = 1600$		
2a+10d=34(2)	$a = a$, $l = a - 180$, $S_n = 1600$, $n = 10$		
solving (1) and (2) 2a+7d=28	$S_n = \frac{n}{2}[a+l]$		
$\underline{2a+10d=34}$ (subtraction)	$S_{10} = \frac{10}{2} [a + a - 180]$		
-3d = -6 =>d = 2	1600 = 5(2a - 180)		
Substituting the value of " d " in	$2a - 180 = 320 \implies a = 250$		
a + 5d = 17	Value of each prize is 250,230,210,70		
a = 7			
A.P. is 7, 9, 11, 13,	\mathcal{O}		
3. The 4 th term of an A.P is 14 and 8 th term is 8 less than twice the 5 th term. Find the sum of first 25 terms of the A.P.	4. The sum of three terms of an A.P is 18 and the sum of the squares of extremes is 104. Find the A.P and the sum of first 40 terms.		
$a_4=14, a_8=2a_5 - 8, S_{25}=?$	Let the three terms be $a - d$, a , $a + d$		
a + 3d = 14 (1)	(a-d) + (a) + (a+d) = 18		
a+7d=2(a+4d)-8	3a = 18 $a = 6$		
a + d = 8 (2) a+3d=14	$(a-d)^{2} + (a+d)^{2} = 104$ $a^{2}+d^{2}-2ad+a^{2}+d^{2}+2ad = 104$		
solving (1) and (2) $\frac{a+d=8}{\sqrt{2d=6}}$	$2a^2 + 2d^2 = 104$		
d=3	$a^2 + d^2 = 52$		
By substituting the value of "d" in $a + d = 8$	$6^2 + d^2 = 52$ $d = \pm 4$		
we get	Let $d = 4$, then the A.P is 2,6,10,		
a = 5	$a = 2, d = 4, n = 40, S_n = ?$		
$S_n = \frac{n}{2} [2a + (n-1)d]$	Sum of 40 terms is $S_n = \frac{n}{2} [2a + (n-1)d]$		
$S_{25} = \frac{25}{2} [2x5 + (25-1)3]$	$S_{40} = \frac{40}{2} [2x^2 + (40 - 1)^4]$		
$=\frac{25}{2}[10+72]$ \therefore $S_{25} = 1025$	$\therefore S_{40} = 3200$		

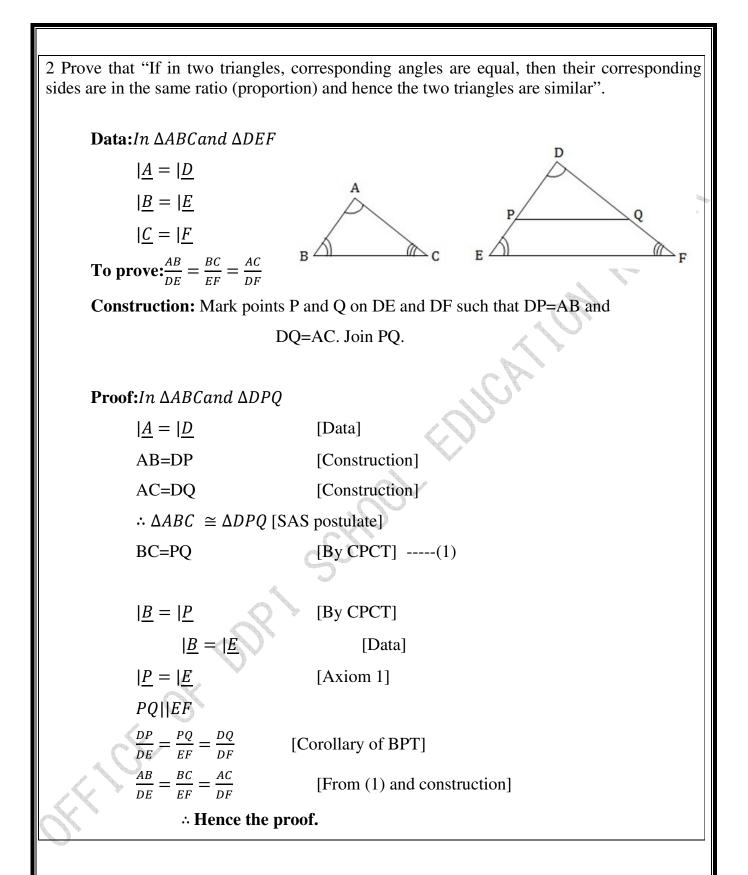


3. A vertical pole of height 12m casts a shadow of length 8m on the plane ground. At the same time a tower casts a shadow of length 40m on the plane ground. Find the height of the tower. Length of the vertical pole = AB = 12m \mathcal{D} Length of the shadow casts by the pole = BC = 8mLength of the shadow casts by the tower = EF = 40mLet the height of the tower = h mtower In $\triangle ABC and \ \triangle DEF$ $|B| = |E| = 90^{\circ}$ Pole 12m |C = |F|[The angles made by sun at the same time] $\therefore \Delta ABC \sim \Delta DEF$ [By AA-criterion of similarity] 8m Shadow 40m B $\frac{AB}{DE} = \frac{BC}{EF}$ Shadow $\frac{12}{h} = \frac{8}{40} \qquad \frac{12 \times 40}{8} = h$ h = 60 \therefore Height of the tower = 60m. CF-OF 18

Four or Five marks questions: -

1. State and prove the Basic proportionality (Thales') theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.


$ar(\Delta ADE)$	AE	>(2)
$\overline{ar(\Delta \text{CED})}$	EC	>(2)

But \triangle BDE and \triangle CED are standing on the same base DE and between DE || BC . $ar(\triangle$ BDE) = $ar(\triangle$ CED) -----> (3)

```
\therefore from equations (1), (2) and (3)
```

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence the proof.

segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$. Ans: $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4 Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ the line segment joining the points (0, 8) $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $P(x, y) = \left(\frac{0 + 4}{2}, \frac{8 + 0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ P(x, y) = (2, 4)								
1The co-ordinates of the mid-point of the line segment joining the points (2,0) and (6,0) is1The co-ordinates of the mid-point of the line segment joining the points (2,0) and (6,0) is2The distance of point (4, -3) from the origin (A) 4 units(B) 5 units3The perpendicular distance of the point P (2, 3) from the x-axis is (A) 1 unit(B) 2 units(C) 9 units3The perpendicular distance of the point P (2, 3) from the x-axis is (A) 1 unit(B) 0,00(C) (0,1)(D) (1.0)5The coordinates of a point P on the x-axis are of the form (A) (x, 0)(B) (0, y)(C) (y, 0)(D) (0, x)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y = (A) 4(B) 3(C) 2(D) 17Distance of the point P(x, y) from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of $x_{iy,iy}$ and $Q(x_{2,3y2})$.Find the co-ordinates of the midpoint of a line segment joining the points $P(x_{i,yy})$ and $Q(x_{2,3y2})$.Find the co-ordinates of the midpoint of a line segment joining the points $Q(x_{i,yy})$ and $Q(x_{i,yy}) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$ 4Find the distance of the point $(3, 4)$ from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ Find the co-ordinates of the midpoint of the line segment joining the points $(0, 0)$ 3Write the origin $d = \sqrt{x^2 + y^2}$ $P(x$		UNIT-7: CO ORDINATE GEOMETRY						
(A) $(2,4)$ (B) $(2,6)$ (C) $(4,0)$ (D) $(0,4)$ 2The distance of point $(4, -3)$ from the origin (A) 4 units (B) 5 units (C) 9 units (D) 16 units3The perpendicular distance of the point P $(2, 3)$ from the x-axis is (A) 1 unit (B) 2 units (C) 3 units (D) 5 units4The Coordinates of the origin is (A) $(1,1)$ (B) $(0,0)$ (C) $(0,1)$ (D) $(1,0)$ 5The coordinates of a point P on the x-axis are of the form (A) $(x, 0)$ (B) $(0, y)$ (C) $(y, 0)$ (D) $(0, x)$ 6If M $(6, 3)$ is the midpoint of line joining P $(-2, 5)$ and Q $(8, y)$ then $y =$ (A) 4 (B) 3 (C) 2 (D) 17Distance of the point $P(x, y)$ from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis? Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: $(0,0)$ 3Write the coordinates of the midpoint of a line segment joining the points $P(x, y, j)$ and $Q(x, yy)$.4Find the distance of the point $(3, 4)$ from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ 4Find the distance of the point $(3, 4)$ from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ 4Find the distance of the point $(2, 4)^2 + y^2$ $P(x, y) = (\frac{0+4}{2}, \frac{8-2}{2})$ $P(x, y) = (\frac{4}{2}, \frac{8}{2})$ $P(x, y) = (2, 4)$	Μ	Multiple Choice Questions						
2The distance of point (4, -3) from the origin (A) 4 units (B) 5 units (C) 9 units (D) 16 units3The perpendicular distance of the point P (2, 3) from the x-axis is (A) 1 unit (B) 2 units (C) 3 units (D) 5 units4The Coordinates of the origin is (A) (1,1) (B) (0,0) (C) (0,1) (D) (1,0)5The coordinates of a point P on the x-axis are of the form (A) (x, 0) (B) (0, y) (C) (y, 0) (D) (0, x)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y = (A) 4 (B) 3 (C) 2 (D) 17Distance of the point P(x, y) from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis? Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point P (x_i, y_i) and $Q(x_2, y_2)$.3Ner: $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ 4Find the distance of the point $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$	1	The co-ordinates of the mid-point of the line segment joining the points (2,0) and (6,0) is						
(A) 4 units(B) 5 units(C) 9 units(D) 16 units3The perpendicular distance of the point P (2, 3) from the x-axis is4The coordinates of the origin is4The Coordinates of the origin is(A) (1,1)(B) (0,0)5The coordinates of a point P on the x-axis are of the form(A) (x, 0)(B) (0, y)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y =(A) 4(B) 37Distance of the point P(x, y) from the origin is(A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?1What is the value of the points P(x, y_2).(x, y_1) = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4Find the distance of the point (3, 4) from the origin.0Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{25}$		(A) $(2,4)$ (B) $(2,6)$ (C) $(4,0)$	(D)	(0,4)				
3The perpendicular distance of the point P (2, 3) from the x-axis is3The perpendicular distance of the point P (2, 3) from the x-axis is4The Coordinates of the origin is4The Coordinates of the origin is(A) (1,1)(B) (0,0)5The coordinates of a point P on the x-axis are of the form(A) (x, 0)(B) (0,y)(C) (y, 0)(D) (0,x)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y =(A) 4(B) 3(C) 27Distance of the point P(x, y) from the origin is(A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?1What is the value of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the midpoint of a line segment joining the points P (x_i, y_i) and $Q(x_2, y_2)$.4Find the distance of the point (3, 4) from the origin.Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$	2	The distance of point (4, -3) from the origin						
(A) 1 unit(B) 2 units(C) 3 units(D) 5 units4The Coordinates of the origin is (A) (1,1)(B) (0,0)(C) (0,1)(D) (1,0)5The coordinates of a point P on the x-axis are of the form (A) (x, 0)(B) (0, y)(C) (y, 0)(D) (0, x)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y = (A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)Find the co-ordinates of the midpoint of a line segment joining the points $P(x,y)$ and $Q(x_2, y_2).Find the co-ordinates of the midpoint of a linesegment joining the point (3, 4) fromthe origin.Distance from the origin d = \sqrt{x^2 + y^2}Find the co-ordinates of the midpoint ofthe line segment joining the point (3, 4) fromthe origin.Distance from the origin d = \sqrt{x^2 + y^2}Find the distance of the point (3, 4) fromthe origin.Distance from the origin d = \sqrt{x^2 + y^2}P(x, y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right)P(x, y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right)P(x, y) = (2, 4)$		(A) 4 <i>units</i> (B) 5 <i>units</i>	(C)	9 units (D) 16 units				
4The Coordinates of the origin is (A) (1,1)(B) (0,0)(C) (0,1)(D) (1,0)5The coordinates of a point P on the x-axis are of the form (A) (x, 0)(B) (0, y)(C) (y, 0)(D) (0, x)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y = (A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the midpoint of a line segment joining the points $P(x_{1,y_1})$ and $Q(x_{2,y_2)$.Find the co-ordinates of the midpoint of a line segment joining the points $P(x_{1,y_1})$ and $Q(x_{2,y_2)$.Find the co-ordinates of the midpoint of a and (4, 0).4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ P(x, y) = $\left(\frac{0+4}{2}, \frac{8+0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$	3	The perpendicular distance of the point P $(2, 3)$	from	the x-axis is				
(A) (1,1)(B) (0,0)(C) (0,1)(D) (1,0)5The coordinates of a point P on the x-axis are of the form(A) (x, 0)(B) (0, y)(C) (y, 0)(D) (0, x)6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y =(A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is(A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin.ORWrite the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the point of a line segment joining the points $P(x, y)$ and $Q(x_2, y_2)$.Ans: $P(x, y) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$ 4Find the distance of the point (3, 4) from the origin.Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$		(A) 1 unit (B) 2 units	(C)	3 units (D) 5 units				
5The coordinates of a point P on the x-axis are of the form(A) $(x, 0)$ (B) $(0, y)$ (C) $(y, 0)$ (D) $(0, x)$ 6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y =(A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is(A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?1What is the volue of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the midpoint of a line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the line segment joining the points (0, 8) and (4, 0).4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $P(x, y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$	4	The Coordinates of the origin is		le l				
(A) $(x, 0)$ (B) $(0, y)$ (C) $(y, 0)$ (D) $(0, x)$ 6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y = (A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)Single the coordinates of the midpoint of a line segment joining the points P (x_1, y_1) and $Q(x_2, y_2)$.Find the coordinates of the midpoint of a line segment joining the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ P(x, y) = $\left(\frac{4z}{2}, \frac{8}{2}\right)$ $P(x, y) = \left(\frac{4z}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$		(A) $(1,1)$ (B) $(0,0)$	(C)	(0,1) (D) $(1,0)$				
6If M (6, 3) is the midpoint of line joining P (-2, 5) and Q (8, y) then y = (A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is (A) $\sqrt{(x - y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)Since for the midpoint of a line segment joining the points P (x ₁ ,y ₁) and Q(x ₂ ,y ₂).Find the co-ordinates of the midpoint of the line segment joining the points (0, 8) and (4, 0).4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ Find the distance of the point (2, 4)4Find the distance of the point $d = \sqrt{x^2 + y^2}$ P(x, y) = $\left(\frac{4z}{2}, \frac{8}{2}\right)$ P(x, y) = $\left(\frac{4}{2}, \frac{8}{2}\right)$ P(x, y) = (2, 4)	5	The coordinates of a point P on the x-axis are of	the	form				
(A) 4(B) 3(C) 2(D) 17Distance of the point $P(x, y)$ from the origin is $(A) \sqrt{(x - y)^2}$ $(B) \sqrt{x^2 - y^2}$ $(C) \sqrt{x^2 + y^2}$ $(D) \sqrt{(x + y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of a line segment joining the points $P(x_i, y_i)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of a line segment joining the points $P(x_i, y_i)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the ine segment joining the points $(3, 4)$ from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{25}$ Find the distance of the point $(3, 4)$ from the origin. $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$ $P(x, y) = (2, 4)$ $P(x, y) = (2, 4)$		(A) $(x, 0)$ (B) $(0, y)$	(C)	(y, 0) (D) $(0, x)$				
7Distance of the point $P(x, y)$ from the origin is (A) $\sqrt{(x-y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x+y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis? Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the midpoint of a line segment joining the points $P(x_i, y_i)$ and $Q(x_2, y_2)$.Ans: $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=> d = \sqrt{9 + 16}$ $=> d = \sqrt{25}$ $d = \sqrt{25}$ $P(x, y) = (2, 4)$	6	If M (6, 3) is the midpoint of line joining P (-2, 5	5) ar	and Q $(8, y)$ then y =				
(A) $\sqrt{(x-y)^2}$ (B) $\sqrt{x^2 - y^2}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{(x+y)^2}$ One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)S3Write the coordinates of the midpoint of a line segment joining the points $P(x_i, y_i)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of a the line segment joining the points $(3, 4)$ from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ Find the distance of the point $(3, 4)$ from the origin. $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$		(A) 4 (B) 3	(C)	C) 2 (D) 1				
One Mark Questions1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the midpoint of a line segment joining the points $P(x_i, y_i)$ and $Q(x_2, y_2)$.Ans: $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=> d = \sqrt{9 + 16}$ $=> d = \sqrt{25}$ $P(x, y) = (2, 4)$	7							
1What is the value of the y-coordinate of a point on x-axis?Ans: 02Write the coordinates of the origin. OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)Find the coordinates of the midpoint of a line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the line segment joining the points $(0, 8)$ and $(4, 0)$.4Find the distance of the point $(3, 4)$ from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ Find the distance of the point $(2, 4)$		(A) $\sqrt{(x-y)^2}$ (B) $\sqrt{x^2 - y^2}$	(C),	$\sqrt{x^2 + y^2}$ (D) $\sqrt{(x + y)^2}$				
2What is the value of the y-coordinate of a point of x-axis.Ans. of2Write the coordinates of the origin. OR Write the coordinates of the midpoint of a line segment joining the points $P(x_i, y_i)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the line segment joining the points $P(x_i, y_i) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ Find the origin of	0	ne Mark Questions						
OR Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the midpoint of a line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the line segment joining the points (0, 8) and (4, 0).4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ Find the distance of the point (3, 4) from the origin. $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$	1	What is the value of the y-coordinate of a point of	on <i>x</i> -	axis? Ans: 0				
Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)3Write the coordinates of the midpoint of a line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.Find the co-ordinates of the midpoint of the line segment joining the points (0, 8) and (4, 0).4Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ Find the distance of the point (2, 4) $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$	2							
segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$. Ans: $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4 Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ the line segment joining the points (0, 8) $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $P(x, y) = \left(\frac{0 + 4}{2}, \frac{8 + 0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ P(x, y) = (2, 4)			n of 2	x-axis and y-axis. Ans: (0,0)				
$ \begin{array}{c c} Q(x_{2},y_{2}), & & & & \\ \hline Ans: P(x,y) = \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\ \hline 4 & \text{Find the distance of the point (3, 4) from the origin.} \\ Distance from the origin d = \sqrt{x^{2}+y^{2}} \\ d = \sqrt{3^{2}+4^{2}} \\ =>d = \sqrt{9+16} \\ =>d = \sqrt{25} \end{array} and (4, 0). \begin{array}{c} P(x,y) = \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\ P(x,y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right) \\ P(x,y) = \left(\frac{4}{2}, \frac{8}{2}\right) \\ \end{array} $	3	Write the coordinates of the midpoint of a line		Find the co-ordinates of the midpoint of				
Ans: $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4 Find the distance of the point (3, 4) from the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $P(x, y) = \left(\frac{0 + 4}{2}, \frac{8 + 0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ P(x, y) = (2, 4)				the line segment joining the points $(0, 8)$				
$\frac{1}{4} \text{Find the distance of the point (3, 4) from} \\ \text{the origin.} \\ \text{Distance from the origin } d = \sqrt{x^2 + y^2} \\ d = \sqrt{3^2 + 4^2} \\ =>d = \sqrt{9 + 16} \\ =>d = \sqrt{25} \end{aligned}$ $P(x, y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right) \\ P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right) \\ P(x, y) = (2, 4) \end{aligned}$			5					
the origin. Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ $P(x, y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ P(x, y) = (2, 4)				$P(x,y) = \left(\frac{1}{2}, \frac{1}{2}\right)$				
Distance from the origin $d = \sqrt{x^2 + y^2}$ $d = \sqrt{3^2 + 4^2}$ $=>d = \sqrt{9 + 16}$ $=>d = \sqrt{25}$ $P(x, y) = (\frac{4}{2}, \frac{8}{2})$ P(x, y) = (2, 4)	4			D() = (0+4 + 8+0)				
$d = \sqrt{3^2 + 4^2}$ =>d = $\sqrt{9 + 16}$ =>d = $\sqrt{25}$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ P(x, y) = (2, 4)	Å			$P(x,y) = \left(\frac{1}{2}, \frac{1}{2}\right)$				
$=>d = \sqrt{9 + 16}$ =>d = $\sqrt{25}$ P(x, y) = (2, 4)	C,	K ·		$P(x, y) = \begin{pmatrix} \frac{4}{2} & \frac{8}{2} \end{pmatrix}$				
		$=>d=\sqrt{9+16}$						
$\therefore d = 5$ units.		$=>d=\sqrt{25}$						
		$\therefore d = 5$ units.						

Τv	Two Marks Questions					
1	Find the distance between the points (3,2) and (-5,8).	2	If the distance between the points $(4, p)$ and $(1, 0)$ is 5 units, find the value of			
	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		${}^{\prime}p{}^{\prime}d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 5 = $\sqrt{(1 - 4)^2 + (0 - p)^2}$ [Squaring on both sides]			
	$= \sqrt{(-5-3)^2 + (8-2)^2}$					
	$= \sqrt{(-8)^2 + (6)^2}$		$25 = (-3)^2 + p^2$ $25 = 9 + p^2$			
	$=\sqrt{(64+36)}$		$25 - 9 = p^2$			
	$=\sqrt{100}$ \therefore $m{d}=$ 10 units		$16 = p^2$			
			$\therefore p = \pm 4$			
3	Find the coordinates of the midpoint	I	4 Find the radius of the circle whose center is			
	of the line segment joining the points		(3,2) and if the circle passes through			
	(2, 3) and (4, 7).		(-5,6).			
	Midpoint $P(x,y) = \left(\frac{x_{1+}x_2}{2}, \frac{y_{1+}y_2}{2}\right)$	<u>2</u>)				
		/	Radius is the distance between center and any			
	$= \left(\frac{2+4}{2}, \frac{3+7}{2}\right)$		point on the circle.			
			\therefore Radius of the circle = d			
	$=\left(\frac{6}{2}, \frac{10}{2}\right)$		$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			
	$\therefore Midpoint P(x, y) = (3, 5)$		$=\sqrt{(-5-3)^2 + (6-2)^2}$			
			$=\sqrt{(-8)^2+(4)^2}$			
			$=\sqrt{80}$ \therefore Radius of circle $=4\sqrt{5}$ units			

Three Marks Questions

1

Find the co-ordinates of the point which divides the line segment joining the point (1,6) and (4,3) in the ratio 1:2.

$$P(x,y) = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$$

= $\left[\frac{(1)(4) + 2(1)}{1 + 2}, \frac{(1)(3) + (2)(6)}{1 + 2}\right]$
= $\left[\frac{4 + 2}{3}, \frac{3 + 12}{3}\right]$
= $\left[\frac{6}{3}, \frac{15}{3}\right]$
 $\therefore P(x,y) = (2,5)$

22

$$\begin{array}{l} 2 \\ 1n \text{ what ratio does the point } (-4,6) \text{ divide the line segment joining the points} \\ (-6,10) and (3,-8)? \\ \therefore P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right) \\ (-4,6) = \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right) \\ = > -4 = \frac{3m_1 - 6m_2}{m_1 + m_2} \quad \text{and } 6 = \frac{-8m_1 + 10m_2}{m_1 + m_2} \\ \text{Consider, } -4 = \frac{3m_1 - 6m_2}{m_1 + m_2} \\ -4m_1 - 4m_2 = 3m_1 - 6m_2 \\ 2m_2 = 7m_1 \\ = > \frac{m_1}{m_2} = \frac{2}{7} \\ \therefore m_1: m_2 = 2:7 \\ \end{array}$$

3 Find the value of 'p 'if the point A(0, 2) is equidistant from (3, p) and (p, 3). Let B(3, p) and C(p, 3) \\ \text{Given AB = AC} \\ \frac{d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{\sqrt{(0 - 3)^2 + (2 - p)^2} = \sqrt{(p - 0)^2 + (3 - 2)^2} \\ (0 - 3)^2 + (2 - p)^2 = (p - 0)^2 + (3 - 2)^2 [\text{squaring on both sides}] \\ 9 + 4 + p^2 - 4p = p^2 + 1 \\ 13 - 4p = 1 \\ -4p = -12 \\ \therefore p = 3 \\ \end{array}

Four Marks Questions

FHOF

1 Show that the points K(4, 5), L(7, 6), M(6, 3) and N(3, 2) are the vertices of a rhombus.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

K(4, 5), L(7, 6)
KL = $\sqrt{(7 - 4)^2 + (6 - 5)^2} = \sqrt{(3)^2 + (1)^2} = \sqrt{9 + 1} = \sqrt{10}$ units.
L(7, 6), M(6, 3)
LM = $\sqrt{(6 - 7)^2 + (3 - 6)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10}$ units.
M(6, 3), N(3, 2)
MN = $\sqrt{(3 - 6)^2 + (2 - 3)^2} = \sqrt{(-3)^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10}$ units.
N(3, 2), K(4, 5)
NK = $\sqrt{(3 - 4)^2 + (2 - 5)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10}$ units.
KL = LM = MN = NK
Here all sides are equal.
 \therefore K, L, M and N are the vertices of a Rhombus.

UNIT-8 : INTRODUCTION TO TRIGONOMETRY							
Μ	Multiple Choice Questions						
1	If $sin\theta = \frac{12}{13}$, then the	value of <i>cosec</i> θ	is				
	$(A)\frac{5}{12}$	(B) $\frac{5}{13}$	(C	C) $\frac{13}{12}$	(D) $\frac{12}{13}$	0	
2	The value of $tan 45^{\circ}$ is					K	
	(A) √3	(B) 0	(C	C) 1	$(D) \frac{1}{\sqrt{3}}$	d'h	
3	If $2\cos\theta = 1$ and θ is a	an acute angle the	n the	e value of θ is	S	L'	
	(A) 0°	(B) 30°	(C	2) 45°	(D) 60°	, A	
4	If $cos\theta = \frac{1}{2}$, then the v	value of $tan\theta$ is			K	10.	
	(A) $\frac{1}{\sqrt{3}}$	(B) $\sqrt{3}$	(C	C) 1	(D) 0	•	
5	$\frac{\sin A}{\cos A}$ is equal to			_	S.		
		(B) cosec A	(C	c) tan A	(D) cot	A	
6	$(1 + \cos\theta) (1 - \cos\theta)$	=		×			
	(A) $sin^2\theta$	(B) $tan^2\theta$	(C)) cosec ² A	(D) sec ²	² A	
O	ne Mark Questions	4	X	\mathcal{O}			
1	Find the value of (1 -	+ $tan^2\theta$). $cos^2\theta$.	3	2 If sinA =	$=\frac{1}{2}$ where	A is an acute angle then	
	$(1 + tan^2\theta).\cos^2\theta = s$	$\sec^2 \theta x \frac{1}{1-x^2\theta}$		find the v	alue of A.		
	= 1			sinA =	$=\frac{1}{2}$		
					4	$30^o \qquad => A = 30^o$	
T	wo Marks Question	ns					
3	Show that (tanA.sinA	A) + cosA =	4	If A=60 ⁰ , H	$B=30^{\circ}$ then	show that $cos(A + B) =$	
	secA			cosA.cosB	– sinA.sin	ьB	
	$LHS = \left(\frac{\sin A}{\cos A} \times \sin A\right)$	$+ \cos A$		cos(A -	+B) = cos	sA.cosB – sinA.sinB	
	sin ² A			$cos(60^{o} + 30^{o})$	$o) = cos60^{o}$	$\cos 30^{\circ}$ – $\sin 60^{\circ}$. $\sin 30^{\circ}$	
<	$=\frac{\sin^2 A}{\cos A}+$	cosA		cos 9	$00^{\circ} = \frac{1}{2}$	$x\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}x\frac{1}{2}$	
Ċ	$\underline{sin^2A+cos^2A}$ 1				2	2 2 2 2	
100	$=\frac{\cos 100000}{\cos A}=\frac{1}{\cos A}$				0 = 0		
	= secA						
						25	

Th	ree Marks Questions		
1	Show that, $\frac{\sin \theta}{1 - \cos \theta} = \csc \theta + \cot \theta$	2	Show that, $\frac{1+\cot^2 A}{1+\tan^2 A} = \cot^2 A.$
	$L.H.S = \frac{\sin \theta}{1 - \cos \theta}$		LHS = $\frac{1 + \cot^2 A}{1 + \tan^2 A}$
	$=\frac{\sin\theta}{1-\cos\theta}x\frac{1+\cos\theta}{1+\cos\theta}$		$=\frac{cosec^2A}{sec^2A}$
	$=\frac{\sin\theta \ (1+\cos\theta)}{1-\cos^2\theta}$		
	$=\frac{\sin\theta \ (1+\cos\theta)}{\sin^2\theta}$		$=\frac{\sin^2 A}{\frac{1}{\cos^2 A}}$
	$=\frac{(1+\cos\theta)}{\sin\theta}$		$=\frac{1}{\sin^2 A} \times \frac{\cos^2 A}{1}$
	$=\frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta}$		
	$= cosec\theta + cot\theta$		$=\frac{\cos^2 A}{\sin^2 A}$
	= RHS	P	$= cot^2 A$ RHS
3	Prove that $\frac{\cos \theta - 2\cos^3 \theta}{2\sin^3 \theta - \sin \theta} = \cot \theta$	4	If $sin\theta = \frac{1}{2}$, then show that $3cos\theta - 4cos^3\theta = 0.$
	L.H.S = $\frac{\cos \theta - 2\cos^3 \theta}{2\sin^3 \theta - \sin \theta}$		$Given, \ sin\theta = \frac{1}{2}$
	$=\frac{\cos\theta\left(1-2\cos^2\theta\right)}{2}$		$sin heta = sin 30^0$
	$= \frac{1}{\sin \theta (2\sin^2 \theta - 1)}$		$=>\theta=30^{\circ}$
	$=\frac{\cos\theta(1-\cos^2\theta-\cos^2\theta)}{\cos^2\theta-\cos^2\theta}$		$LHS = 3\cos\theta - 4\cos^3\theta$
	$\sin \theta (\sin^2 \theta + \sin^2 \theta - 1)$		$= 3cos30^{\circ} - 4cos^{3}30^{\circ}$
	$=\frac{\cos\theta(\sin^2\theta-\cos^2\theta)}{\sin\theta(\sin^2\theta-\cos^2\theta)}$		$= 3\left(\frac{\sqrt{3}}{2}\right) - 4\left(\frac{\sqrt{3}}{2}\right)^3$
	$=\frac{\cos\theta}{\sin\theta}$		$= 3\left(\frac{\sqrt{3}}{2}\right) - 4\left(\frac{3\sqrt{3}}{8}\right)$
0	$= \cot\theta$ $= R.H.S$		$= 3\left(\frac{\sqrt{3}}{2}\right) - 3\left(\frac{\sqrt{3}}{2}\right)$
			= 0 R.H.S

$$5 \quad \text{Prove that} \sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

$$F \quad \text{Prove that} \sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

$$F \quad \text{Prove that} \sqrt{\frac{1+\sin A}{1-\sin A}}$$

$$F \quad \text{LHS} = \sqrt{\frac{1+\sin A}{1-\sin A}} \sqrt{\frac{1+\sin A}{1+\sin A}}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

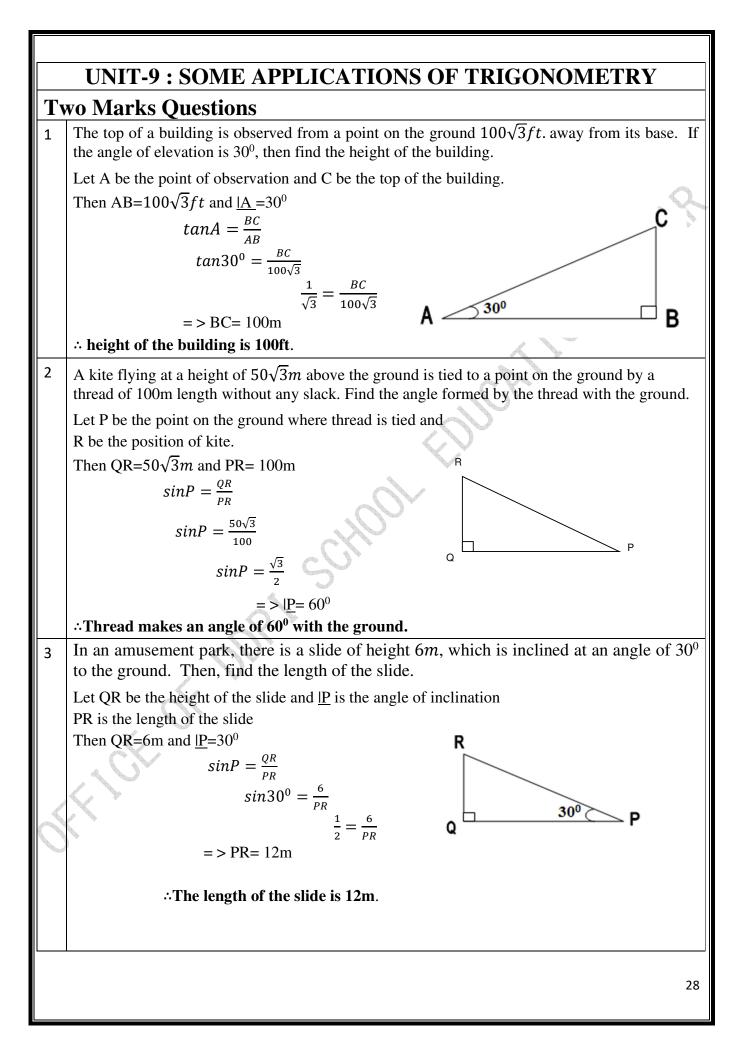
$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

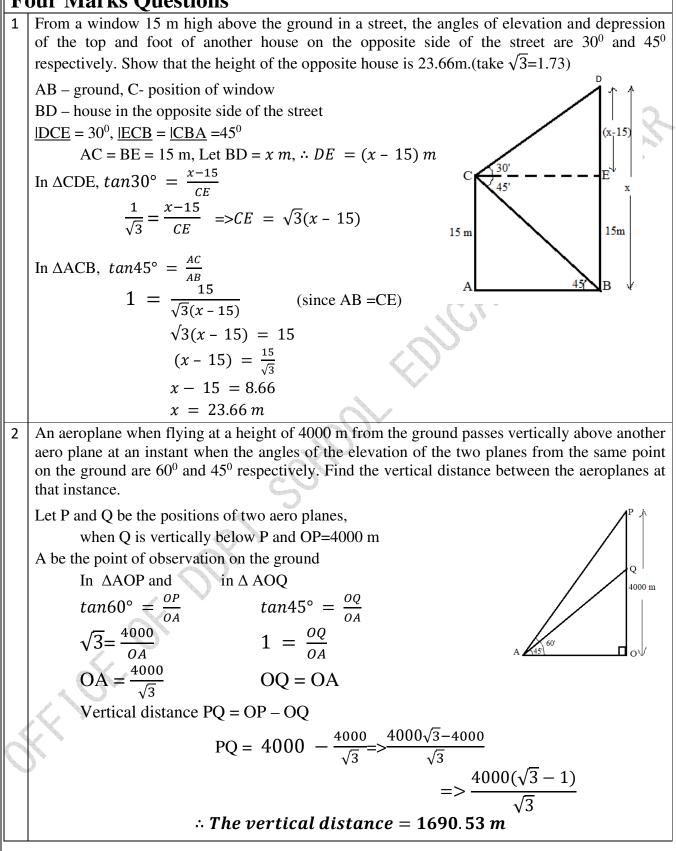

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

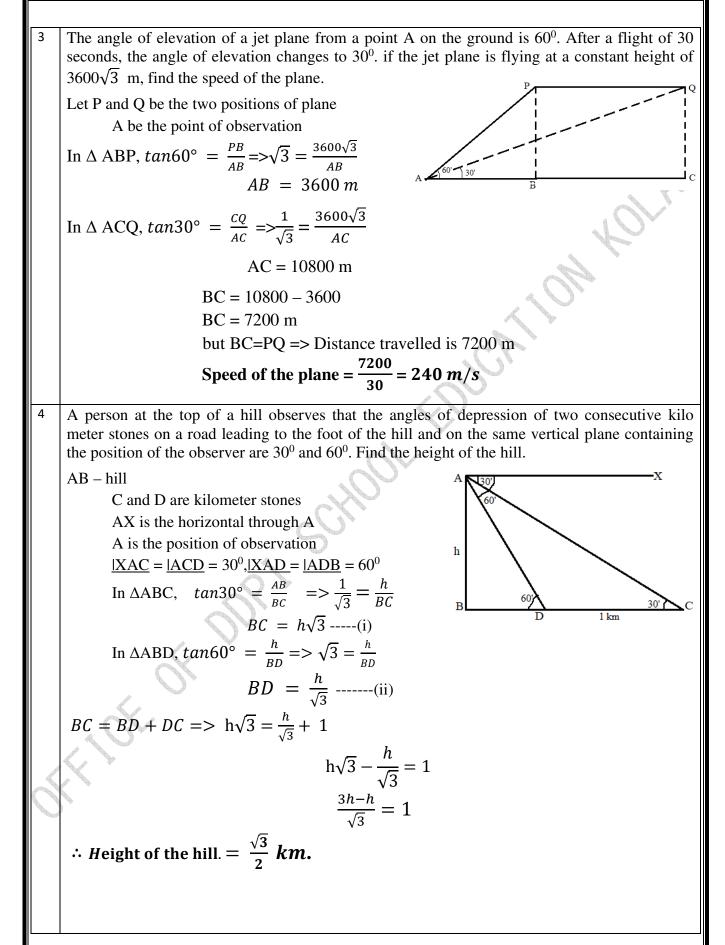
$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta}$$

$$F \quad \text{LHS} = \frac{1+\sin x}{\cos \theta}$$

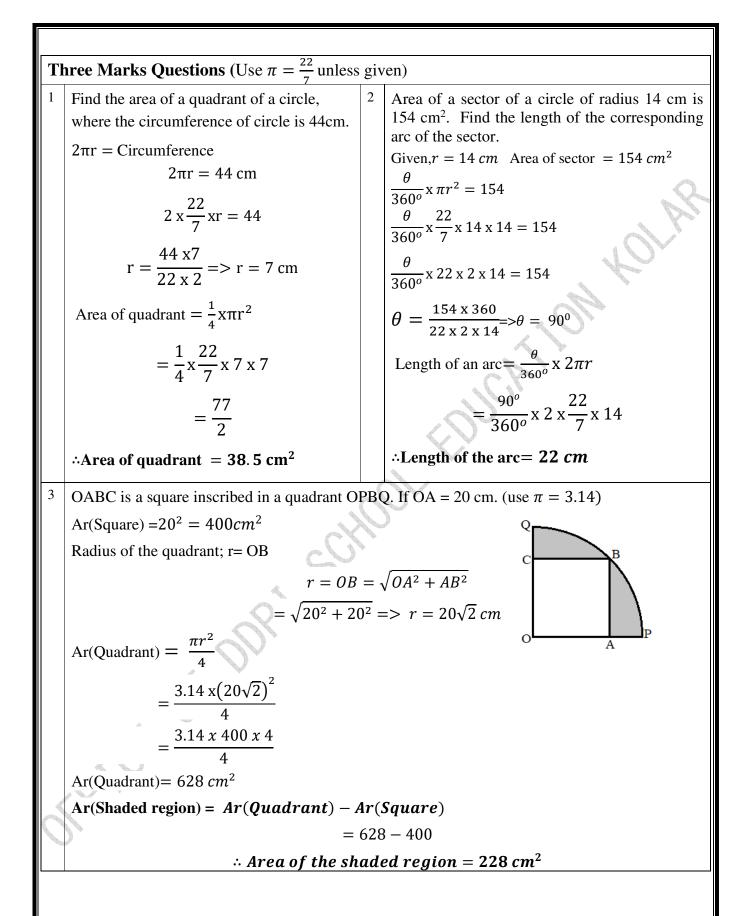



Three Marks Questions

1 The angle of elevation of a cloud is 30° from a point 60 m above a lake and from the same point, the angle of depression of the reflection of cloud in the lake is 60° . Find the height of the cloud. Let AB be the surface of lake. P be the point of observation. AP=60 m Let C be the position of cloud. C' be its reflection in the lake. CB=C'B Let CM = h, then C'B = (h + 60)30 In \triangle CMP, tan 30⁰ = $\frac{h}{DM}$ 60 n 60 m $PM = \sqrt{3}h - - - - (1)$ In \triangle PMC' tan60⁰= $\frac{C'M}{PM}$. h+60 $\sqrt{3} = \frac{h + 60 + 60}{PM}$ $PM = \frac{h+120}{\sqrt{3}} - \dots - (2)$ From (1) and (2) $\sqrt{3h} = \frac{h+120}{\sqrt{3}} = h = 60 m$ CB=CM+MB = 60+60 = 120 mHeight of the cloud from the surface of the lake is 120 m. 2 The angle of elevation of the top of a tower from two points on the ground at distances 'a' and 'b' meters from the base of a tower and in the same straight line with it are complementary. Prove that height of the tower is \sqrt{ab} meter. Height of the tower be 'x' m $tan\theta = \frac{x}{b} - - - -(i)$ $tan(90^{\circ} - \theta) = \frac{x}{a}$ $cot\theta = \frac{x}{a} - - - - -(ii)$ х Multiplying (i) and (ii) $tan\theta x \ cot\theta = \frac{x}{h}x\frac{x}{a}$ $1 = \frac{x^2}{ab}x^2 = ab$ b $=>x = \sqrt{ab}$ \therefore Height of the tower is \sqrt{ab} meter.

The top of a tower is observed from two points on the same straight line on the ground. The distances of these points from the base of the tower is *a* and *b* meters. If the angles of elevation are complementary prove that the height of the tower is \sqrt{ab} meter. Let CD be the building of height 60 m and AB be the tower **60'** $|FCA = |CAE = 30^\circ$ $|FCB| = |CBD| = 60^{\circ}$ 60 - h In $\triangle ACE$, $tan 30^\circ = \frac{CE}{AE}$ 30' $\frac{1}{\sqrt{3}} = \frac{60-h}{AE}$ 60 m $AE = (60 - h)\sqrt{3}$ $AE = BD = (60 - h)\sqrt{3}$ In $\triangle BCD$, $tan60^\circ = \frac{60}{RD}$ $\sqrt{3} = \frac{60}{(60-h)\sqrt{3}} = >(60-h)3 = 60$ 60 - h = 20h = 60 - 20 \therefore height of the tower = 40 m The deck of a ship is 10m high from the level of water. A man standing on it observes 4 the top of a hill with an angle of elevation 60° and from the same point, he observes the base of thesame hill at an angle of depression 30°. Then, find the distance of the ship from the hill and also the height of the hill. In $\triangle ADE$, $tan 60^\circ = \frac{h}{AD}$ $\sqrt{3} = \frac{h}{x}$ $h = x\sqrt{3}$ -----(i) In $\triangle ABC$, $tan 30^\circ = \frac{AB}{BC}$ $\frac{1}{\sqrt{3}} = \frac{10}{r}$ 60' 30 $=>x = 10\sqrt{3}$ ----(ii) 10[']m 10 m Distance of the ship from the hill = $10\sqrt{3}$ m √в Substituting (ii) in (i) gives $h = 10\sqrt{3} x \sqrt{3}$ 30' h = 30 m= Height of the hill = 30+10 = 40 m.

Four Marks Questions



UNIT-10 : CIRCLES							
Μ	Multiple Choice Questions						
1	1 In the figure, TP and TQ are the tangents drawn to a circle with centre O.						
	If $\angle POQ = 110^\circ$, then the value of $\angle PTQ$ is (A) 70° (B) 80° (C) 60° (D) 140°						
	(A) 70° (B) 80° (C) 60° (D) 140° T (1000 °						
2	The tangents drawn at the ends of a diameter of a circle are						
	(A) perpendicular to each other (B) parallel to each other (C) equal (D) intersect						
3	A straight line which intersects a circle at two distinct points is						
4	(A) tangent (B) chord (C) secant (D) diameter						
4	If the angle between the two tangents to a circle is 40° , then the angle between the radii is						
	(A) 90^{0} (B) 100^{0} (C) 140^{0} (D) 180^{0}						
5	Distance between two parallel tangents of a circle of radius 3.5cm is						
	(A) 3.5cm (B) 7cm (C) 10cm (D) 14cm.						
6	In the given figure PA, PC and CD are the tangents to a circle with						
	Centre O. If CD = 5 cm and AP = 3 cm, then length of the tangent PC is $($						
	(A) 8 cm (B) 5 cm (C) 3 cm (D) 2 cm B						
7	In the figure, Chord of the circle with Centre 'O' is $B_{P \wedge M}$						
,	(A) XY (B) OP (C) MN (D) AB						
8	A tangent of length 8 cm is drawn from an external point 'A' to a circle of radius 6 cm. Then the distance between 'A' and the center of the circle is						
	(A) 12 cm (B) 5 cm (C) 10 cm (D) 14 cm						
9	Maximum number of tangents drawn to a circle from an external point is						
	(A) 2 (B) 3 (C) 4 (D) 5						
-	ne Mark Questions						
1	What is the measure of the angle between radius and tangent at the point of contact? Ans: 90°						
2	Define the Secant of a Circle.						
	A line that intersects a circle at two points is called a Secant.						
3	Define the tangent of a circle.						
	A line that touches a circle at only one point is called a Tangent.						
4	Define Point of contact of a circle.						
	The common point of the tangent and the circle is called the Point of contact.						
	33						

	UNIT-1	1: AREAS RE	ELATED TO C	IRCLES				
Mı	ultiple Choice Question	15						
1	Area of Quadrant of a circle with radius 'r' is							
	A. $\frac{\pi r^2}{2}$	B. $\frac{\pi r^2}{4}$	С. <i>πr</i>	D. $\frac{\pi r}{2}$	0			
2	If the radius of a semicir	cle is 7cm, the lengt	h of its arc is		5			
	A. 11 <i>cm</i>	B.44 <i>cm</i>	C.22 <i>cm</i>	D. 14cm	A STATE OF S			
3	Length of the arc of a se	ector with radius 9 cr	m and the angle 120°	is V				
	A.2 <i>πcm</i>	B. 3 <i>πcm</i>	C. 6π <i>cm</i>	D.9π <i>cm</i>				
4	If the angle of a sector is							
	A. $\frac{P}{180}$ x2 πR	B. $\frac{P}{180} x \pi R^2$	$C.\frac{P}{360} \times 2\pi R$	$D. \frac{P}{720} x 2\pi R^2$				
5	If the ratio of circumfere	ence of two circles is	4: 5 then the ratio of	their areas is				
	A. 4:5	B. 16:25	C. 64:125	D. 5:4				
On	e Mark Questions							
	Write the formula to find the area of the shaded region in the given figure. $\frac{\theta}{360^0} \times \pi r^2$							
2	Define the segment of a circle.							
	A segment is a region c	overed by a chord	and a corresponding	arc.				
3	What is meant by a sector	6 9 V						
	The area bounded by two radii and the corresponding arc of a circle is called the Sector.							
1	If the diameter of a semi	circle is 14cm, the	n find its perimeter [u	se $\pi = \frac{22}{7}$]				
-	Perimeter of the semi	circle = $\pi r + d$						
	$=\frac{22}{7}x\frac{14}{2}+14$							
	$\therefore \text{ Perimeter of the semicircle} = 36 cm$							
5	If the area of a circle and the perimeter are numerically equal, then find the radius of that circle.							
	$\pi r^2 = 2\pi r$							
		∴ r :	= 2 units					
L								

Two Marks Questions (Use
$$\pi = \frac{22}{7}$$
 unless given)
1 In a circle of radius 21 cm an are subtends
an angle 60° at the Centre of the circle.
Find the length of the arc formed in the
circle.
Length of the arc $\frac{\theta}{360^{\circ}} \times 2\pi \tau$
 $= \frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21$
3 In the figure ABCD is a square of side 14 cm. With Centre A, B, C & D four circles are drawn
such that each circle touch externally two of the remaining three circles. Find the Area of the
shaded region.
Radius of each quadrant = $\frac{34}{2} = 7$ cm
Area of the shaded region = Area of the square – Area of 4 Quadrants.
Area of the shaded region = $14^2 - 4 \times \frac{\pi \tau^2}{4}$
 $= 196 - 154$
Area of the shaded region = 42 cm^2
4 A drain cover is made from a square metal
plate of side 40 cm having 441 holes of
diameter 1 cm each drilled in it. Find the
area of each hole = πr^2
 $= \frac{22}{7} \times (\frac{1}{2})^2$
 $= \frac{11}{14} \text{ cm}^2$
Area of each hole = πr^2
 $= \frac{22}{7} \times (\frac{1}{2})^2$
 $= \frac{114}{2} \text{ cm}^2$
Area of Square metal plate = $40^2 = 1600$
 cm^2
Area of square metal plate = $40^2 = 1600$
 cm^2
Area of remaining square plate = $1600 - \frac{346.5}{346.5} \text{ cm}^2$
Area of remaining square plate = $1600 - \frac{346.5}{346.5} \text{ cm}^2$

UNIT	12: SURFAC	E AREAS ANI	D VOLUMES	
Multiple Choice (Juestions			
1. The volume of a hen	hisphere of radius 'r'	is		
(A) πr^2	(B) $\frac{4}{3}\pi r^{3}$	(C) $4\pi r^3$	$(\mathbf{D})\frac{2}{3}\pi r^3$	Q
_	eres with same radii of ace area of the new so (B) $4\pi r^2$	-	ed together along their bases, (D) $6\pi r^2$	
3. A cylinder and a con	e are of same heights	and same radii of the	eir bases. If the volume of the	
cylinder is 924 cm ³ th (A) $924 cm^3$	(B) 308 <i>cm</i> ³	e cone is (C) 462 <i>cm</i> ³	(D) 38 <i>cm</i> ³	
4. While conversion of (A) increases	a solid from one shap (B) decreases		ume of the new shape will ltered (D) doubled	
5. The surface area of a (A) 308 cm ²	(B) 154 <i>cm</i> ²	<i>n</i> is (C) 616 <i>cm</i> ²	(D) $462 \ cm^2$	
6. <i>Three cubes of edge</i> 4 (A) 162 cm ³	4 cm are joined end to (B) 172 cm ³	p end, then the volume (C) 182 cm ³	e of the cuboid so formed is (D) 192 cm ³	
7. The radius of the bas	e of a cone is 9cm an	nd slant height is 15cm	n, then its height is	
(A) 6cm (I	3) 3cm	C) 5cm (1	D) 12cm	
One Mark Questi	ons)		
1.Find the ratio of the t radii. $\frac{\text{Area of sphere}}{\text{Area of solid hemisph}}$ $\frac{A_1}{A_2} = \frac{4}{3} \therefore A_1: A_2 = \frac{4}{3}$	$\frac{1}{\text{ere}} = \frac{4\pi r^2}{3\pi r^2}$	a sphere and a solid h	emisphere having equal	
volume.	f a right circular cylir $f^2 = 38.5cm^2, h = 6c$		ts height is 6cm, then find its	
AL >	Volume of a cy	$rlinder = \pi r^2 h = 38$	3.5 × 6	
	∴ Volume of	a cylinder = 231	cm ³	
				3

l.

Two Marks Questions

I wo marks Questions	
1. Two cubes of edge 8cm each are kept together joining their faces to form a cuboid. Find the total surface area of the cuboid.	2. If the total surface area of a cube is $150cm^2$, find its volume.
Given: $l = 8 + 8 = 16cm, b = 8cm, h = 8cm, T.S. A Of cuboid =?$	$T.S.A \ Of \ a \ cube = 6a^2$ $150 = 6a^2$
T.S.A.ofacuboid = 2[lb + bh + hl]	a = 5cm Volumeof acube $= a^3 = 5^3$
= 2[(16)(8) + (8)(8) + (8)(16)]	\therefore Volume of a cube = 125cm ³
$\therefore T.S.A. of a cuboid = 640 \text{cm}^2$	
3. A metal container is in the shape of a frustum of a cone of height 21 cm and radii of its circular ends are 8 cm and 20 cm. Find its capacity.	4. If the total surface area of a hemispherical bowl is $308cm^2$, then find its radius.
	TSA of hemisphere = $2\pi r^2 = 308$
$r_{1} = 20cm, r_{2} = 8cm, h = 21cm$ $Capacity = V = \frac{1}{3}\pi h(r_{1}^{2} + r_{2}^{2} + r_{1}r_{2})$	$2 \times \frac{22}{7} \times r^2 = 308$
$=\frac{1}{3} \times \frac{22}{7} \times 21(20^2 + 8^2 + 20 \times 8)$	$r^2 = \frac{308 \times 7}{2 \times 22}$
$\therefore Volume = 13728cm^3$	\therefore Radius of the bowl = 7cm
Three Marks Questions	
1. The diameter of a solid metallic sphere is 6cm. It is melted and drawn into a wire having diameter of the uniform cross-section is 0.2cm. Find the length of the wire.	2. A big solid metal sphere of diameter 48cm is melted and casted into small solid spheres of radius 3cm. Find the number of small solid spheres so formed.
radius of the sphere R = 3cm, radius of the wire (cylinder)r = 0.1cmlength of the wire (cylinder)h =?	radius of big solid sphere $R = 24 cm$ radius of small solid sphere $r = 3cm$ Number of small solid spheres =?
Volume of cylinder = Volume of sphere	Number of small spheres $= \frac{V(big sphere)}{V(a small sphere)}$
$\pi r^2 h = \frac{4}{3}\pi R^3$	$=\frac{\frac{4}{3}\pi R^{3}}{\frac{4}{3}\pi r^{3}}=\frac{R^{3}}{r^{3}}$
$\pi(0.1)^2 h = \frac{4}{3}\pi(3)^3$	$\overline{3}^{\mu\nu}$
$0.01\pi h = 36\pi$	$=\frac{24^3}{3^3}$
$\therefore h = 3600 cm = 36m$	$=\frac{1}{3^{3}}$
	\therefore The number of small solid sphere = 512

Four Marks Questions

1. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.

Cone:
$$h = 15.5 - 3.5 = 12$$
cm, $r = 3.5$ *cm* /

Hemisphere: R = 3.5cm Slant height: $l = \sqrt{h^2 + r^2}$

$$= \sqrt{(12)^2 + (3.5)^2}$$

 $\therefore l = 12.5cm$

15.5 cm

3.5 cm

TSA of a toy = CSA of cone + CSA of hemisphere

$$=\pi rl+2\pi R^2$$

$$=\frac{22}{7} \times 3.5 \times 12.5 + 2 \times \frac{22}{7} \times 3.5 \times 3.5$$

$$\therefore$$
 TSA of the toy = 214.5 cm²

2. A Toy is made in the shape of a cylinder with one hemisphere stuck to one end and a cone to the other end. The length of the cylindrical part of the toy is 20cm and its diameter is 10 cm. If the height of the cone is 12 cm. Find the surface area of the toy.

Hemisphere:
$$r = 5cm$$

Cylinder: $r_1 = 5cm, h_1 = 20cm$
Cone: $r_2 = 5cm, h_2 = 12cm$
Slant height: $l_2 = \sqrt{r_2^2 + h_2^2}$
 $= \sqrt{5^2 + 12^2}$
 $\therefore l_2 = 13cm$
TSA of the toy = CSA of hemisphere + CSA of cylinder + CSA of cone
 $= 2\pi r^{-2} + 2\pi r_1 h_1 + \pi r_2 l_2$
 $= \left(2 \times \frac{22}{7} \times 5^2\right) + \left(2 \times \frac{22}{7} \times 5 \times 20\right) + \left(\frac{22}{7} \times 5 \times 13\right)$
 $= \frac{22}{7} \times 5(10 + 40 + 13)$
 $= \frac{110}{7} \times 63$
 \therefore TSA of the toy = 990cm²

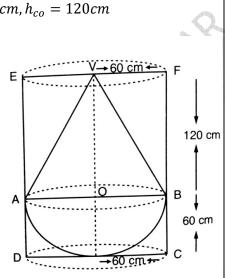
Five marks questions

1. A solid consisting of a right cone standing on a hemisphere is placed upright in a right circular cylinder full of water and touches the bottom as shown in the figure. Find the volume of water left in the cylinder, if the radius of the cylinder is 60cm and its height is 180cm, the radius of the hemisphere is 60cm and height of the cone is 120cm, assuming that the hemisphere and the cone have common base.

Cylinder:
$$r_{cy} = 60 cm$$
, $h_{cy} = 180 cmCone$: $r_{co} = 60 cm$, $h_{co} = 120 cm$

Hemisphere: $r_{hs} = 60cm$

The volume of the water left out in the cylinder = V $V_{water} = V_{cylinder} - V_{cone} - V_{hemisphere}$


$$= \pi r_{cy}^{2} h_{cy} - \frac{1}{3} \pi r_{co}^{2} h_{co} - \frac{2}{3} \pi r_{hs}^{3}$$
$$= \pi \times 60^{2} \times 180 - \frac{1}{3} \times \pi \times 60^{2} \times 120 - \frac{2}{3} \times \pi \times 60^{3}$$

$$=\frac{22}{7} \times 60 \times 60 \times 100 = \frac{22 \times 360000}{7} cm^3$$

$$V = \frac{22 \times 360000}{7 \times (100)^3} m^3$$

LF LOF

 $= \pi \times 60^{2} [180 - 40 - 40]$

 \therefore The volume of the water leftout in the cylinder = 1.1314m³

	UNIT :- 13 STATISTICS								
M	Multiple Choise Questions								
1	The mean v	value of 1	0,15,5, 20 and 50 is						
	(A)	10	(B) 5	(C) 15	(D) 20				
2	The median	n of 7,3,6	,14,13,11,19 is						
	(A) 7		(B) 13	(C) 11	(D) 19				
3	The mode of	of 6,7,2,4	4,2,8,5,2,2,7 is						
	(A) 7		(B) 6	(C) 4	(D) 2				
4	The measur	re of cent	ral tendency that give	es the middle most	value of the data is				
	(A) midpoi	nt	(B) mean	(C) median	(D) mode				
5	Mode of the	e given s	et of scores is	25					
	(A) Mi	ddle mos	t value	(B) Least frequent	value				
	(C) Mo	ost frequ	ent value	(D) None of these					
0	ne Mark	Questi	ons	202					
1.	Write the en	npirical r	elationship between t	the three measures of	of central tendency.				
	3Media	n= Mod	e+ 2Mean						
2.1	Find the med	dian of 24	4,31,17,29,36,39						
	17, 24, 2	29, 31, 30	5, 39						
		and a	M	$Vedian = \frac{29 + 31}{2}$					
	$\therefore \text{ Median} = 30$								
	··· Metilali – 50								
3.1	3. Find the class mark of the class interval 40-50								
4	$Class mark = \frac{lowerlimit + upperlimit}{2}$								
C	5			40 + 5	50				
	50°		Clas	$s mark = \frac{40 + 5}{2}$	—				
				Class mark = 45					

Three Marks Questions

1) Find mean for the following frequency distribution.

2) Find the Median of the following frequency distribution.

uisuitouton.													
Class Interval Frequency	0- 10 3	10- 20 5	20- 30 9	30- 40 5	40- 50 3		Class interval	0-10	10-20	20-30	30-40	40-50	
	0		-	U			Frequency	4	7	13	9	3	
Class	Fr	equen	cy x		fx						10		
Interval								[
0-10		3	5		15		Class Inter	rval	Freque	ency	Cumul		
10-20		5	15		75			i vui	Trequ		Freque	ency	
20-30		9	25		225	-	0-10		4	$\langle O \rangle$	•	4	
30-40		5	35		75		10-20		~7		4-	+7=11	
40-50	Σ	$\frac{3}{2}$	45 5	Σf	35 Fr		20-30		13		11+	13=24	
	_			-	² 625		30-40		9		24-	+9=33	
							40-50	~	3		33-	+3=36	
Me	ean	$= \frac{\Sigma f}{\Sigma}$	$\frac{x}{c} = \frac{6}{2}$	525			nn = 36,	n 10	£	10	£ 11		
		Σſ	с .	25			nn = 36,	4			cf = 11,		
							N	h = 10	l = l	20			
\therefore Mean = 2	5					4	N.	٢n	_]				
							Median = l	$+ \frac{1}{2} -$	$\frac{-cf}{x}$	h			
					C		meatan – t	' j	$f \mid \uparrow \uparrow$	ι			
					5			г г1	י א = 111				
							Median = 2	$0 + \left \frac{1}{2} \right $	13	× 10			
			\sim	X	W		Median = 20 + 5.38						
				\mathcal{Y}									
			\sim				∴ <i>Median</i> = 25.38						
3) Find the				wing			$f_1 = 11, f_0$	= 9,	$f_2 = 6$, l = 6	50, $h =$	= 10	
frequency d	listril	oution	•						[f	f	1		
							Mode =	= <i>l</i> +	$\frac{1}{2}$	$\frac{1-j_0}{c}$	$\frac{1}{c} \times h$		
Class inte	- <u>-</u>	F	requen	су					$[2J_1 -$	$J_0 - J_0$	2		
30-40			4 7						r 11	L – 9	1		
40-50			9				Mode = 0	50 +	$\frac{1}{2(11)}$	_ 9 _	$\frac{1}{6} \times 1$	LO	
60-70			11								~ 1		
70-80			6					Mode	= 60 -	- 2.86			
80-90			2					∴ Мо	de = 6	2.86			
		1											

UNIT-14: PROBABILITY Multiple choice Questions 1 In an experiment, if number of outcomes favorable to an event is equal to zero, then the called, (A) sure event (B) complementary event (C) impossible event (D) elementary event 2 If the probability of getting rain on a particular day is 0.7, then the probability of not ge rain on that day is. (A) 0.3 (B) 0.7 (C) 0 (D) 0.03 3 The correct among the following, regarding the probability of occurrence of an event A	R
1 In an experiment, if number of outcomes favorable to an event is equal to zero, then the called, (A) sure event (B) complementary event (C) impossible event (D) elementary event 2 If the probability of getting rain on a particular day is 0.7, then the probability of not ge rain on that day is. (A) 0.3 (B) 0.7 (C) 0 (D) 0.03	R
called, (A) sure event (B) complementary event (C) impossible event (D) elementary event 2 If the probability of getting rain on a particular day is 0.7, then the probability of not ge rain on that day is. (A) 0.3 (B) 0.7 (C) 0 (D) 0.03	R
(C) impossible event (D) elementary event 2 If the probability of getting rain on a particular day is 0.7, then the probability of not ge rain on that day is. (A) 0.3 (B) 0.7 (C) 0 (D) 0.03	etting
 If the probability of getting rain on a particular day is 0.7, then the probability of not ge rain on that day is. (A) 0.3 (B) 0.7 (C) 0 (D) 0.03 	etting
rain on that day is. (A) 0.3 (B) 0.7 (C) 0 (D) 0.03	etting
3	Þ
$\frac{3}{3}$ The correct among the following, regarding the probability of occurrence of an event A	
	A is
(A) $0 < P(A) \le 1$ (B) $0 \le P(A) < 1$ (C) $0 \le P(A) \le 1$ (D) $0 < P(A) < 1$	
One Mark Questions	
1 What is the probability of a 'sure event'?	
Ans: 1 (one)	
2 What is the sum of probabilities of all the elementary events of an experiment?	
Ans: 1 (one)	
3 A coin is tossed once. If the probability of getting the 'Tail' is $\frac{1}{2}$, then, what is the proba of 'not getting the Tail'? Ans: $\frac{1}{2}$	ability
Two Marks Questions	
1A box contains 4 red marbles, 8 green marbles and 5 white marbles. One marble is taken out at random. Find the probability of the marble taken out to be red. Number of all possible outcomes, $n(S) = 4 + 5 + 8 = 17$ Let A be the event of taking out the red marble. $\therefore n(A) = 4$ 	getting an

3	12 defective pens got mixed with 132 4 good ones. One pen is taken randomly from the lot. Find the probability of getting a defective pen.	A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears a number which is multiple of 10.
	Number of all possible outcomes,	Number of all possible outcomes,
	n(S) = 12 + 132 = 144	n(S) = 90
	Let A be the event of taking out a defective pen.	Let <i>A</i> be the event of taking out a disc bearing a number multiple of 10.
	$\therefore n(A) = 12$	$\therefore n(A) = 9$
	$P(A) = \frac{n(A)}{n(S)}$	$P(A) = \frac{n(A)}{n(S)}$ $= \frac{9}{90}$
	$=\frac{12}{144}$	$=\frac{9}{90}$
	$\therefore P(A) = \frac{1}{12}$	$\therefore P(A) = \frac{1}{10}$
TI	nree Marks Questions	
1	Two dice, numbered from 1 to 6 on their 2 each face are together rolled once. Find the probability of getting the numbers whose sum is greater than 8.	A bag contains 5 red balls and some blue balls. When a ball is drawn at random, if the probability of drawing a blue ball is three times that of a red ball, find the number of blue balls in the bag.
	Number of all possible outcomes,	Let there be x blue balls in the bag.
	n(S) = 36 Let <i>A</i> be the event of getting the numbers	$\therefore \text{ Total number of balls in the bag} = 5 + x$ Probability of drawing Red ball;
	whose sum is greater than 8.	$P(R) = \frac{5}{5+x}$
	$ \stackrel{:}{\cdot} A = \{(3,6), (4,5), (4,6), (5,4), (5,5), (5,6), \} $	
		Probability of drawing Blue ball;
	(6,3), (6,4), (6,5), (6,6)}	$P(B) = \frac{x}{5+x}$
	=> n(A) = 10	Given, $P(B) = 3P(R)$
	$P(A) = \frac{n(A)}{n(S)}$	$\frac{x}{5+x} = 3\left(\frac{5}{5+x}\right)$
	$=\frac{10}{36} \qquad \therefore P(A) = \frac{5}{18}$	$\frac{x}{5+x} = \frac{15}{5+x}$
		=> $x = 15$ ∴ There are 15 blue balls in the bag.

Appendix - 1 Formulae and Mathematical Relations							
	ARITHM	ETIC PR	COGRE	SSIONS			
If an A.P. has ' <i>n</i> ' number	of terms, wh	nose first terr its	n is ' a ', 2	and common dif	ference is ' d ', then		
Description Formula							
<i>n</i> th term		$a_n = a + 6$	(n-1)d				
Sum of first ' <i>n</i> ' terms		$S_n = \frac{n}{2} [2a]$	a + (n - 1)	L)d]	, Pr		
Sum of first ' <i>n</i> ' terms, if th ' <i>l</i> ' is known	ie last term	$S_n = \frac{n}{2}(a$	(+ <i>l</i>)		S		
Sum of first ' <i>n</i> ' natural nu	mhers	$\sum_{n=1}^{n} n = \frac{n!}{2}$	(<i>n</i> + 1)	(a) Sum of first numbers = 1	<i>n</i> ² Odd natural n ²		
			2	(b) Sum of first numbers = n	t 'n' Even natural $n(n+1)$		
General Form of an A.P.		a, a + d	l, a + 2d, c	ı + 3d,	$\dots, a + (n-1)d$		
PAIR OF LINE	EAR EQU	JATION	IS WIT	H TWO VA	RIABLES		
$a_1x + b_1y + c_1 = 0$ and	$\overline{l a_2 x + b_2 y}$	$+c_2=0$	are the pai	ir of linear equat	tions in 'x' and 'y'.		
Relation	Type of th	he Graph	Number of Solutions		Nature of the Equations		
$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Coincidi	ng lines		itely many olutions	Dependent (Consistent) pair		
$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Parallel	l lines	No solution		Inconsistent pair		
$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecti	ing lines	Exactly one (Unique) solution		Consistent pair		
	CIR	CLES (D)efinitic	ons)			
A line that intersects a c In the figure, XY is the s	-	points is cal	lled a Sec	ant.	Хм		
A line that touches a circe Tangent. In the figure, A	•	-	called a	p	o /)		
The common point of the Point of contact. In the	-				N Y Y		
Maximum of two t	tangents can	be drawn f	rom an ex	ternal point to a	given circle.		
					46		

AREAS R	ELAT	TED TO CIRCLES	>	
If the radius of the circle/sector is 'r'	and the	: angle of the sector is $'\theta'$, then	
Description	<u> </u>	Formula	ı	
Perimeter of the Circle		$2\pi r$		
Length of an arc of a Sector	$\frac{\theta}{360^o} \mathbf{x}$	2 <i>πr</i>	R	
Area of the Circle	πr^2	Ar(Semicircle) = $\frac{\pi r^2}{2}$	Ar(Quadrant) = $\frac{\pi r^2}{4}$	
Area of a Sector	$\frac{\theta}{360^0} x$	πr^2		
Area of a Segment	$r^2\left(\frac{\pi \ell}{36}\right)$	$\frac{\theta}{0^0} - \sin\frac{\theta}{2}\cos\frac{\theta}{2}$		
COOR	DINAT	FE GEOMETRY		
Distance formula [distance between the points $A(x_1, y_1)$ and $B(x_2, y_2)$]	e	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2 + (y_2 - x_1)^2}$	$\overline{(y_1)^2}$	
Distance from the origin to a point A((<i>x</i> , <i>y</i>)	$d = \sqrt{x^2 + y^2}$		
Section formula [$P(x, y)$ divides the lipoining the points $A(x_1, y_1)$ and $B(x_2, y_1)$ internally in the ratio $m_1 : m_2$]	ine y_2)	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}\right),$, $\frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$	
Mid Point formula [$P(x, y)$ is the mid of the line joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$]	dpoint	$P(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1}{2}\right)$	$\frac{y_1 + y_2}{2}$	
	<u> </u>			
		NOMIALS		
If α and β are the zeroes of the quadrate Polynomial $ax^2 + bx + c$, then	tic	(i) $\alpha + \beta = -\frac{b}{a}$	(ii) $\alpha\beta = \frac{c}{a}$	
If α , β and γ are the zeroes of the cub polynomial $ax^3 + bx^2 + cx + d$, then		(i) $\alpha + \beta + \gamma = -\frac{b}{a}$ (ii) $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ (iii) $\alpha\beta\gamma = -\frac{d}{a}$		
QUA	DRATI	C EQUATIONS		
Quadratic Formula (Roots of the quadratic equation $ax^2 + bx + c = 0$)	Iratic	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Discriminant of the quad	ratic equ	ution $ax^2 + bx + c = 0$ is	b^2-4ac	
			47	

Relation						Nature of the Roots			
$b^2 - 4ac = 0$					Roots are Real and Equal				
<i>b</i> ²	- 4ac 2	> 0			Roots a	are Real an	d Distinct		
<i>b</i> ²	- 4ac •	< 0			Roots a	are Imagin	ary number	s (No Real roots)	
INTRODUCTION TO TRIGONO Opposite side \rightarrow Side Opposite to $\underline{ A }$ Adjacent side \rightarrow Side Adjacent to $\underline{ A }$ Hypotenuse $- \rightarrow$ Side Opposite to Right angle.						METRY	Z	O p H V Adiacent	
Tri	gonome	etric l	Ratio	5		Recipro	cals	Inter relations	
$\sin A = \frac{Opposite}{Hypotenu}$ $\cos A = \frac{Adjacen}{Hypotenu}$	se t	$cosec A = \frac{Hypotenu}{Opposit}$			use te e	$\sin A = \frac{1}{c}$ $\cos A = -$	1	$\tan A = \frac{\sin A}{\cos A}$	
$\tan A = \frac{Opposite}{Adjacent}$		e $Sec A = \frac{Adjacent}{Adjacent}$ $cot A = \frac{Adjacent}{Opposite}$				tan 4	ec A 1 ot A	$\cot A = \frac{\cos A}{\sin A}$	
Values of Tri					dard A	ngles.			
Angles Ratios *	0 °		30 °	45°	60°	90 °			
sin	0		$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1			
cos	1		$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0			
tan	0		$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined			
cosec	Not define		2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1			
sec	\mathcal{O}_1		$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined			
cot	Not define	d	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0			
	Trigonometric Identities								
$sin^2A + co.$	$s^2 A = 1$			tan ² A	4 + 1 =	sec ² A	cot	$A^2A + 1 = cosec^2A$	

	STA 7	FISTICS		
	Direct method	$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ OR $\bar{x} = \frac{\sum f x}{N}$		
Mean(Average) of the Grouped data	Assumed Mean method	$\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$		
	Step-deviation method	$\overline{x} = a + h\left(\frac{\sum f_i u_i}{\sum f_i}\right)$		
M	ode of the Grouped data	$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \ge h$		
Med	lian of the Grouped data	$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \ge h$		
Empirical relations measures of centra	ship between the three al tendency	3 Median = Mode + 2 Mean		
	PROB	ABILITY		
Probability of occ	currence of an event 'A'	$P(A) = \frac{Number of outcomes favourable to A}{Number of all possible outcomes}$ i.e., $P(A) = \frac{n(A)}{n(S)}$		
1) Probability of	f a Sure Event is One	2) Probability of an Impossible Event is Zero		
· ·	babilities of all primary experiment is One	4) $P(E) + P(\bar{E}) = 1$		
S S	REAL	NUMBERS		
Euclid's Division I	Lemma	Given positive integers a and b, there exist unique integers q and r satisfying $a = bq + r$, where $0 \le r \le b$.		
For any two positiv	ve integers a and b ,	$HCF(a, b) \ge LCM(a, b) = a \ge b$		

D. P. af hoos			S AND VOLUMES								
	Radius of base of the right circular solids is r' and height is h' . Slant height of the cone is l' .										
Name of the Solid	Figure	C.S.A	T.S.A	Volume							
Cylinder		2πrh	$2\pi r(r+h)$	$\pi r^2 h$							
Cone		πrl	$\pi r(r+l)$ Here $l=\sqrt{r^2+h^2}$	$\frac{1}{3}\pi r^2h$							
Sphere			$4\pi r^2$	$\frac{4}{3}\pi r^3$							
Hemisphere		$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$							
Frustum of a Cone	2 8	$\pi(r_1+r_2)l =$	$\pi[l(r_1 + r_2) + r_1^2 + r_2^2]$ Here $l = \sqrt{(r_1 - r_2)^2 + h^2}$	$\frac{1}{3}\pi h[r_1^2 + r_2^2 + r_1r_2]$							
Cuboid Length = l Breadth = b Height = h		L.S.A = 2(lh + lb)	2(lh+lb+bh)	l x b x h							
Cube		$L.S.A = 4 x (side)^2$	6 x (<i>side</i>)²	(side) ³							