$5 E$ LEARNING CYCLE

LESSON PLAN

(1) $\frac{98}{117 \pi i j}$

Prepared by:

T.SHIVAJI, state level Maths RP, MwD

MMDRS, HARAPANAHALLI TOWN VIJAYANAGARA DIST Mob. 9916142961

Unit: 01 Methodology: Demonstration cum lecture method

Unit name: Number systems

Date: From
to

Objectives:

1. Finding many rational numbers between two given rational numbers
2. Locate irrational numbers on number line
3. Decimal expansion of real numbers
4. Operations on real numbers
5. To rationalizing the denominator
6. Laws of exponents for real number

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions of number system like natural numbers, whole numbers, odd numbers \& even numbers, ect.	Chart of numbers, board.	Discussion \& group discussion.	Will try to answers	
Explore	Start the session by asking some question related to numbers.	Chart Calendar projector	Questionnaire	Answering for supplementary questions.	

Unit: 02 Methodology: inductive and deductive

Unit name: Introduction to Euclid's Geometry.

Date: From

to

Objectives:

1. To know about undefined terms.
2. To know about Euclid's postulates and axioms
3. Understand the axioms and postulates
4. Know about two equivalent versions of Euclid's fifth postulate.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Basic knowledge of terminology used in geometry such as circle, point, lines, regions etc	Chart of numbers, board.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will start the class by defining a rectangle. So, to define one thing, you need to define many other things, and you may get a long chain of definitions without an end, for example, you might get the term 'point' in one of the definitions which is very difficult to simplify/define further.	Chart Calendar projector	Questionnaire	Answering for supplementary questions.	

	Introduction: Give examples of theorems, postulates and axioms in order to differentiate between them with examples Euclid's Definitions, Axioms and Postulates: Reproduce Euclid's axioms in your own words in order to give examples for each List Euclid's 5 postulates in order to visualize and illustrate them through a diagram Analyze given statements/postulates in order to determine if they are extensions of Euclid's postulates Apply Euclid's postulates in order to prove basic geometrical concepts about lines, points, planes, shapes, etc	Smart board ppt	 group activities	
	Applies axiomatic approach and derives proofs of mathematical statements particularly geometric	Exercise problems shapes in order to solve the problems on them.	Activity	Discussion with students

Unit: 03 Methodology: Demonstration cum lecture method

Unit name: Lines and angles.

Date: From

to

Objectives:

1. To know about linear pair axiom.
2. To know about how vertically opposite angles are equal.
3. To understand what happened if two transversal lines parallel
4. To understand the angle sum property.
5. To understand about exterior and interior angles.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, asking questions related to Parallel lines, intersecting lines, transversal, corresponding angles, alternate interior angles, etc.	Chart of numbers, board.	Discussion \& group discussion.	Will try to answers	
Explore	The teacher will ask the following questions: What is a transversal? What are exterior angles? What are interior angles? By getting answers, introduce the chapter.	Chart Calendar projector	Questionnaire	Answering for supplementary questions.	

Unit: 04 Methodology: Demonstration cum lecture method

Unit name: Polynomials.

Date: From
 to

Objectives:

1. To understand the degree of the polynomials
2. To check the zeros of the polynomials
3. Factorizing the polynomials
4. Remainder theorem
5. Algebraic identities

Steps	Activities To Favourable For Learning		TLM	Evaluation Engage Techniques	Teachers Introspection
	Start the session by checking the previous knowledge, asking questions monomials, binomials and trinomials, etc.	Chart of algebraic terms, board.	 group discussion.	Will try to answers	
Explore	Addition, subtraction, multiplication and division of algebraic terms, Evaluation of an algebraic expression for the given values of variable. Now introduce the chapter polynomials.	Chart Different colors of chalks projector	Questionnaire	Answering for supplementary questions.	

Explain	Introduction to Polynomials: Recognize variables and their degree in a given algebraic expression in order to differentiate whether given expression is a polynomial in one variable or not. Polynomials in one variable: Substitute the value of 'a' in a given expression $p(x)$ in order to find the value of polynomial at 'a' i.e. $p(a)$. Zeroes of a Polynomial: Use given values for the variable ' x ' in a polynomial $p(x)$ in order to identify if the given value is a zero of the polynomials. Remainder Theorem: Using Remainder Theorem, calculate division of $\mathrm{p}(\mathrm{x})$ by a linear polynomial ' x - a ' in order to find that the remainder is $\mathrm{p}(\mathrm{a})$ and verify using long division method. Algebraic Identities: Point out to an algebraic identity that can be used in order to factorize a given expression.	Chart Different colors of chalks projector	Discussion \& group activities	
Elaborate	Identifies/Classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factorize them.	Exercise problems In textbook	Activity	Discussion with students
Evaluate	Now the teacher will discuss the above concepts by taking varied examples. Solve the problems given in textbook.	Textbook	Evaluation	Try to do all problems in textbook.
Subject teacher			Head master or mistress/Principal	
${ }^{\text {TH }}$ STANDARD ${ }^{\text {a }}$ MATHEMATICS			LESSON PLAN	

Unit: 05

Unit name: Triangles.

Date: From
to

Objectives:

1. To understand the congruent figures.
2. To know about congruent triangles.
3. To understand the rule of the congruent.
4. To know about sides related to the triangles.
5. Understand the sum of any two sides of a triangle is greater than the third side.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Students know that Construction of triangles, ASA, SSS, SAS, RHS Congruence. On the basis of this knowledge teacher will ask some questions.	Chart, board.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will ask the class about different types of triangles and about simple properties. After getting different answers from the class now teacher introduce the chapter.	Chart Paper ppt	Questionnaire	Answering for supplementary questions.	

Unit: 06

Methodology: Demonstration \& learning with doing

Unit name: Constructions.

Date: From
to

Objectives:

1. To understand how to construct bisect to a given angle.
2. To draw the perpendicular to bisector of a given line segment.
3. To construct a triangle given its base, a base angle and the sum of the other two sides.
4. To construct a triangle given its base, a base angle and the difference of the other two sides.
5. To construct a triangle given its perimeter and its two base angles.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	$\sum_{i}^{\text {M }}$
			Tools \& Techniques		
Engage	Students know that meaning of angle of bisector and how to calculate half of a given angle.	Chart, Different colors of chalks.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will ask the class varies properties of triangles. Then he will give dividing the line segment to different part among the students. Now introduce the chapter.	Chart Paper ppt	Questionnaire	Answering for supplementary questions.	

Unit: 07

Methodology: Demonstration \& lecture method

Unit name: Quadrilaterals.

Date: From

to

Objectives:

1. To understand the sum of the angles of the quadrilateral is 360°
2. To know about a diagonal of a parallelogram divides it in to two congruent triangles
3. To know about how quadrilaterals is a parallelogram
4. To understand diagonals of a rectangle bisect each other and are equal.
5. To understand a line through the mid-point of a side of a triangles parallel to another side bisects the third side.
6. To know about how the quadrilateral formed by joining the mid-points of the sides of a quadrilateral, in order, is a parallelogram.

Steps	Activities To Favourable For Learning		TLM	Evaluation Tochniques	Teachers Introspection
Engage	Start the session by checking the previous knowledge, by asking the questions related to properties of triangles, quadrilaterals and types of quadrilaterals, ect.	Chart, Different colors of chalks.	 group discussion.	Will try to answers	
Explore	Teacher will ask the class about different types of polygons and then different types of quadrilaterals. After getting different answers from the class, introduce the chapter.	Chart Paper ppt	Questionnaire	Answering for supplementary questions.	

Unit: 08

Unit name: Heron's formula.

Date: From

to

Objectives:

1. To understand the areas of different types of geometrical figures
2. To know about how to find the area of triangle
3. To understand the finding of area of triangle when 3 sides given.
4. To calculate the area of a quadrilateral whose sides and diagonal are given by using Heron's formula

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions related to different types of triangles, perimeter, \& area ect.	Chart, Projector chalks.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will ask the class about meaning of lines and angles, and different types of angles. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

Unit: 09

Methodology: synthetic and analytic method

Unit name: Coordinate geometry.
Date: From
to

Objectives:

1. Cartesian plane axis \& quadrants.
2. Coordinates of a point, name and terms associated with the coordinate plane.
3. Plotting points in the plane.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions algebraic and geometric terms ect.	Chart, Projector chalks.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher ask the class about the meaning of word "geometry". After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

Unit: 10

Methodology: Demonstration \& lecture method

Unit name: Areas of parallelograms and triangles.
Date: From
to

Objectives:

1. To understand two congruent figures have equal areas but the converse need not be true
2. To know about areas of figures
3. To understand how parallelogram (on the same base) are equal in area.
4. To understand how the area of the triangle is half the area of the parallelogram
5. To know about a median of a divides it into two triangles of equal areas.

Steps	Activities To Favourable For Learning		TLM	Evaluation Techniques	Teachers Introspection
Engage	Start the session by checking the previous knowledge, by asking the questions related to different types of quadrilaterals and their properties ect.	Chart, Projector chalks.	 group discussion.	Will try to answers	
Explore	Teacher will ask the class concept of two figures on same base and between the same parallels. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

Unit: 11

Methodology: Demonstration \& project method

Unit name: linear equations in two variables.

Date: From

to

Objectives:

1. To know about equations, linear equations in two variables
2. To understand a linear equations in two variables has many solutions.
3. To understand the graph of every linear equation in two variables is a straight line
4. To find the many solutions in linear equations in two variables
5. To know about a linear equations is parallel to x axis and y axis

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions related to linear equations in one variable, Cartesian coordinate system and representing points ect.	Chart, Projector chalks.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will ask the class about linear equations in one variable. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

Unit: 12

Methodology: Demonstration \& lecture method

Unit name: Circles.

Date: From

Objectives:

1. To understand the definition of circles, related to terms of circles.
2. To know about equal chords of the circle subtend equal angles at the centre
3. To understand perpendicular from the centre of a circle to a chord bisects the chord.
4. To know there is one and only one circle passing through three non-collinear points.
5. To understand the angles in the same segment of a circle are equal.
6. To understand the angle in a semi-circle is a right angle.
7. To know about if sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.

Steps	Activities To Favourable For Learning	TLM	Evaluation Tools \& Techniques	Teachers Introspection	$\sum_{B}^{\text {M }}$
Engage	Start the session by checking the previous knowledge, by asking the questions related to parts of circles ect.	Chart, ppt color chalks.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will ask the class about parts of circles. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

Unit: 13
Methodology: Demonstration, problem solving \& lecture method Unit name: Surface area and volumes.
Date: From
to

Objectives:

1. To calculate surface area of a cuboid
2. To calculate the surface area of a cube
3. To calculate the surface area of a cylinder
4. To calculate the total surface area of cylinder
5. To calculate the curved surface area of cone
6. To calculate the total surface area of a right circular cone
7. To calculate the surface area of sphere
8. To calculate the volume of cube
9. To calculate the volume of cylinder

10 . To calculate the volume of cone

Steps	Activities To Favourable For Learning	TLM	Evaluation Teochniques	Teachers Introspection	
	Start the session by checking the previous knowledge, by asking the questions related constructions of cubes ect.		 group discussion.	Will try to answers	

Unit: 14

Methodology: Demonstration \& lecture method

Unit name: Statistics.

Date: From

Objectives:

1. To understand facts or figures, collected with a definite purpose, are called data.
2. To understand bar graph, pie chart.
3. Statistics is the area of study dealing with the presentation, analysis and interpretation of data.
4. How data can be presented graphically in the form of bar graphs, histograms and frequency polygons.
5. The three measures of central tendency for ungrouped data.

Steps	Activities To Favourable For Learning		TLM	Evaluation	Teachers Techniques
Engage	Start the session by checking the previous Rnowledge, by asking the questions related to tally marks, frequency ect.	Chart, ppt color chalks.	 group discussion.	Will try to answers	
Explore	Teacher will ask the class about frequency distribution table, class interval ect. After getting the different answers from the class, introduce the chapter.	Chart projector paper cut ppt	Questionnaire	Answering for supplementary questions.	

Unit: 15

Unit name: Probability.

Date: From

Objectives:

1. To know about probability definition
2. To understand the concept of event, sure event, trials etc.
3. To understand how to calculate the probability of an event.
4. To understand the probability of an event lies between 0 and 1 .

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	$\sum_{E}^{\text {In }}$
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions about fractions, additions and multiplications ect.	Chart, ppt color chalks.	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will start the class by asking if students have heard the following sentences: - It will probably rain today. - I doubt that he will pass the test. - Most probably, Kavita will stand first in the annual examination. - Chances are high that the prices of diesel will go up.	Coins, Die Chords	Questionnaire	Answering for supplementary questions.	

