$5 E$ LEARNING CYCLE

LESSON PLAN

(1) $\frac{98}{117 \pi i j}$

Prepared by:

T.SHIVAJI, state level Maths RP, MwD

MMDRS, HARAPANAHALLI TOWN VIJAYANAGARA DIST Mob. 9916142961

Methodology: Demonstration cum problem solving method

Unit: 01

Unit name: Arithmetic Progression

Date: From
to

Objectives:

1. Knowledge of sequence and series
2. Motivation for studying arithmetic progression (A.P).
3. Deviation of nth term of an A.P
4. Deviation of formula to find the nth term from the end of the sequence.
5. Deviation of sum to n terms of an A.P.
6. Application of the formulas of A.P to solve the daily life problems.

Steps	Activities To Favourable For Learning		Evaluation	Teachers Introspection	\sum_{E}^{M}
		TLM	Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions of number system like natural numbers, whole numbers, odd numbers \& even numbers, multiplies of 7,5 ect.	Chart of numbers, board.	Discussion \& group discussion.	Will try to answers	
Explore	Teachers asks to students for identifying the next four terms in the sequence 1. $5,10,15,20$ \qquad 2. $1,7,13$. \qquad	Chart Calendar	Questionnaire	Answering for supplementary questions.	

Unit: 02
Unit name: Triangles
Date: From
Objectives:

1. Identifying types of triangles \& similarity
2. Constructing triangles on the bases of similarity and congruent.
3. Proving the theorems on the basis of similarity and congruent.
4. Solving the problems on the basis of triangles in day to day life.

Steps	Activities To Favourable For Learning	TLM	Evaluation Tools \& Techniques	Teachers Introspection	$\sum_{i}^{\text {M }}$
Engage	Start the session by checking the previous knowledge, by asking the question on congruence of triangles and its conditions.	Chart, Modals, board ect.	Discussion \& group discussion.	Will try to answers	
Explore	Teachers asks to students for identifying congruence and similarities in different modals. 1. All circles are similar to each other. 2. All squares are similar to each other. Ect.	Chart, modals \& plane figures	Questionnaire	Answering for supplementary questions.	
Explain	Now teacher will explain the difference between the similarity and congruency of the plane figures bring examples and counter examples. Basic Proportionality Theorem:	Board	Discussion \& group activities		

Now teacher will write the statement of Basic Proportionality Theorem
the board and explain the meaning of this statement by drawing
the figure. After this teacher will explain the proof of the theorem which include the
components: Given,To Prove,Construction, Proof. After the complete explanation of the BPT teacher will motivate thestudents for the converse of Basic Proportionality theorem and also give its complete proof. Now teacher will explain the procedure of implementing these theorems in different problems. Teacher may also provide sufficient number of problems to the students so that the students will completely understand the theorem.

Similarity Conditions

Now teacher will define all similarity conditions (SSS, SAS, AAA, AA) to the students. Teacher will also motivate the students for the proof of these theorems.
Pythagoras theorem: Now teacher introduce the this, will explain statement of this theorem with diagrams. After this solving the problems on exercise problems.
Converse of Pythagoras theorem: now teacher will introduce the concept of converse of this Pythagoras theorem, statement with the diagram.

Unit: 03

Methodology: Demonstration \& project method

Unit name: Pair of linear equations in two variables
Date: From
to
Objectives:

1. Knowledge of linear equations in two variables.
2. To know about construction of ax $+\mathrm{by}+\mathrm{c}=0$.
3. To draw how the pair of linear equations in two variables form in graph.
4. Discuss the nature of solution, types of graphs, consistency or inconsistency in pair of equations.
5. Substitution method, cross multiplication method and elimination method solving the equations.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions linear equations in two variables.	Chart board.	Discussion \& group discussion.	Will try to answers	
Explore	Teachers asks to students like 1. What is the cost of one pen and two pencils cost? 3. Two bats and three balls cost. ect.	Chart Board, some puzzles	Questionnaire	Answering for supplementary questions.	

Unit: 04

Unit name: Circles

Date: From

Objectives:

1. Definition of circle, and terms related to the circle like center, radius, diameter, chord, segment \& sector of the circle.
2. Tangent to the circle at the point of contact, secant of the circle.
3. Proof of Tangent to the circle is perpendicular to the point of contact.
4. Proof of the length of the tangent drawn from an external point to the circle are equal.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	$\sum_{i}^{\text {M }}$
			Tools \& Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions related to the circle and terms associated with it. Also explain the difference between circle and sphere.	Chart, Modals, board.	Discussion \& group discussion.	Will try to answers	
Explore	Teachers asks to students that are learnt in class $9^{\text {th }}$ in previous year like chord, diameter, radius ect.	Chart Geometry kit	Questionnaire	Answering for supplementary questions.	

Unit: 05
Methodology: Demonstration, analytic \& synthetic method
Unit name: Areas related to circles.
Date: From
to

Objectives:

1. Introduction and definitions related to circle, radius, diameter, chord, segment, sector, ect.
2. Circumference and perimeter of circle, semi-circle, quadrant and length of arc.
3. Area of circle, minor sector, major sector, minor and major segment.
4. Deviation of formula to find the nth term from the end of the sequence.
5. Calculating area of segment of a circle, problems should be restricted to $60^{\circ}, 90^{\circ} \& 120^{\circ}$.
6. Area related to the other plane figures like triangles and quadrilaterals should be taken.
7. Problems based on the combinations of figure.

Steps	Activities To Favourable For Learning	TLM	Evaluation Tochniques	Teachers Introspection	Eng
Engage	Start the session by checking the previous knowledge, by asking the questions related to the circle like radius, tangent, diameter ect.	Chart of circles, Modals, board.	 group discussion.	Will try to answers	
Explore	Teachers will explain different properties of circle to the students and explain the difference between circumference and perimeter of the circle.	Chart	Questionnaire	Answering for supplementary questions.	

Unit: 06

Methodology: Demonstration \& Learning by doing

Unit name: Constructions
Date: From
to
Objectives:

1. To understand how to divide a line segment in the given ratio.
2. To construct a triangle similar to a given triangle as per a given scale factor which may be less than 1 or greater than 1.
3. To construct the pair of tangents to the circle from an external point to the circle.

Steps	Activities To Favourable For Learning		TLM	Evaluation Techniques	Teachers Introspection
Engage	Knowledge of Similarity of Triangles. Draw a Drawing a parallel line using compass	Pen/Pencil and notebook. Compass scale.	 group discussion.	Will try to answers	
		Start the class with the following activity Draw two line segments of equal measurements on the board. The lengths of the line segments should be in decimals. For example, you may draw Two line segments, each measuring 15.7 cm. Then, select two students and ask them to divide the given line segments using only a ruler. Ask one of the students to divide the line segment in the ratio 5:7 and the other	Chart Calendar	Questionnaire	Answering for supplementary questions.

Unit: 07

Methodology: Demonstration cum lecture method

Unit name: Coordinate Geometry.

Date: From

to

Objectives:

1. Concept \& introduction of coordinate geometry.
2. Graphs of linear equations \& methods of representing the order pair on the graph.
3. Distance formula and its applications in different problems.
4. Section formula and mid-point formula \& related problems.
5. Area of triangle and method of proving the three points are collinear.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	$\sum_{\vec{E}}^{\mathrm{M}}$
			 Techniques		
Engage	Start the session by checking the previous knowledge, by asking the questions related to the Cartesian coordinate system and the method of representing them on the graphs.	Chart Board Ppt Oral test	Discussion \& group discussion.	Will try to answers	
Explore	Now teacher will introduce the topic coordinate geometry, it is the combination algebra \& geometry. Here teacher will explain horizontal line, vertical line, coordinates abscissa, origin ect.	Chart Class test Board	Questionnaire	Answering for supplementary questions.	

Unit: 08

Methodology: Demonstration cum lecture method

Unit name: Real numbers

Date: From
to

Objectives:

1. Definition of natural, whole, rational, irrational numbers, integers, real, even, odd, prime, composite numbers.
2. Different types of decimals.
3. Rational and irrational decimals.
4. To find HCF by using EDA.
5. To find HCF \& LCM by using FTA.
6. Methods of proving the numbers as irrational numbers.
7. Explanation of terminating or non-terminating decimals.

Steps	Activities To Favourable For Learning		TLM	Evaluation Techniques	Teachers Introspection
Engage	Start the session by proving historical and biological details about Euclid. Explain about him to students.	Chart of numbers, Photos	 group discussion.	Will try to answers	
Explore	First of all teacher give the complete knowledge of number system. Along with the numbers explain about decimal system.	Chart Calendar	Questionnaire	Answering for supplementary questions.	

Unit: 09

Methodology: Demonstration cum lecture method

Unit name: Polynomials

Date: From
to

Objectives:

1. Understand the degree of the polynomials
2. Zeros of the polynomials
3. To understand the coefficient of the polynomials
4. To know the quadratic polynomial have 2 zeros and cubic polynomial have 3 zeros.
5. To find the solutions of the quadratic polynomials whose sum and products are given.
6. Dividing the polynomials and verifying that using division algorithm.

Steps	Activities To Favourable For Learning		TLM	Evaluation Techniques	Teachers Introspection
Engage	Start the session by checking their previous knowledge asking different questions like monomial, binomials, trinomial, degree ect.	Chart of numbers, Photos	 group discussion.	Will try to answers	
Explore	Teacher will start the session by giving many examples of algebraic expressions. Now teacher will introduce the topic polynomials with examples. Ex: $5 \mathrm{x}^{2}, 2 \mathrm{x}^{3}+5 \mathrm{x}^{2}+5,-2 \mathrm{y}-5 \mathrm{y}, 8 \mathrm{z}$.	Chart Worksheet Oral test	Questionnaire	Answering for supplementary questions.	

Unit: 10

Methodology: Demonstration cum lecture method

Unit name: Quadratic Equations
Date: From
to

Objectives:

1. To know about equations and quadratic equations
2. To understand how to form a quadratic equations.
3. To understand the roots of the quadratic equations equating the zero.
4. To solve the quadratic equations by different methods like completing the square method and formula method.
5. To know about a nature of the roots of the quadratic equation.

Steps	Activities To Favourable For Learning	TLM	Evaluation Tools \& Techniques	Teachers Introspection	\sum_{E}^{M}
Engage	Start the session by checking their previous knowledge, asking different questions like quadratic polynomials, its general form, degrees and zeroes ect.	Black board, graph ect	Discussion \& group discussion.	Will try to answers	
Explore	Teacher should write the quadratic equation on the board, then explain. General form of Q.equation is $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$. Now introduce the concept quadratic equation.	Chart Oral test	Questionnaire	Answering for supplementary questions.	

Unit: 11
 Methodology: demonstration cum lecture method

Unit name: Introduction to trigonometry
Date: From
to

Objectives:

1. Introduction and basic formulas of trigonometry.
2. Problems based on basic formulas.
3. Values of trigonometric ratios on standard angles $0^{0}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$.
4. Trigonometric transformation on first quadrant.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{\top}
			Tools \& Techniques		
Engage	Start the session by checking their previous knowledge, asking different questions related to right angled triangle and Pythagoras theorem, \& algebraic identities ect.	Black board, sheet ect	Discussion \& group discussion.	Will try to answers	
Explore	Teacher will ask some questions about different types of triangles, then explain the properties of right angled triangle \& Pythagoras theorem.	Chart modals Oral test	Questionnaire	Answering for supplementary questions.	

Unit: 13 Methodology: Demonstration cum lecture method

Unit name: Statistics

Date: From to

Objectives:

1. Introduction, method of finding mean of grouped frequency with three methods.
2. Method of finding mode of grouped frequency.
3. Method of finding median of grouped frequency.
4. Method of drawing less than and more than o-give.
5. Method of finding median from less than and more than type of o-give.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	$\sum_{E}^{\text {M }}$
			Tools \& Techniques		
Engage	Start the session by checking their previous knowledge, asking different questions related to mean, median and mode.	Black board, chart ppt ect	Discussion \& group discussion.	Will try to answers	
Explore	Explaining about mean median and mode, ask some question related to them. Then introduce the chapter.	Chart Oral test	Questionnaire	Answering for supplementary questions.	

Unit: 14 Methodology: Demonstration cum lecture method
 Unit name: Probability
 Date: From
 to
 Objectives:

1. Classical definition of probability.
2. Probability of sure event, impossible event and concept of equally likely events \& range of probability.
3. Concept of probability of one die, two die, coins and their sample space.
4. Concept of probability of cards, simple problems on finding the probability of of an event.

Steps	Activities To Favourable For Learning	TLM	Evaluation	Teachers Introspection	\sum_{E}^{M}
			Tools \& Techniques		
Engage	Start the session by checking their previous knowledge, asking different questions like simple probability of an event.	Black board, chart, coins ppt ect	Discussion \& group discussion.	Will try to answers	
Explore	Explaining about probability of an event introduce the chapter. Then classical definition of probability.	Chart Oral test	Questionnaire	Answering for supplementary questions.	

Unit: 15
 Methodology: Demonstration \& problem solving

Unit name: Surface area \& Volumes

Date: From
to

Objectives:

1. Introduction of different types of solid figure and their comparison with the plane figures.
2. Curved surface area, total surface area and volumes of different solid figures.
3. Surface area and volumes of combinations of solid figures.
4. Method of converting one type of solid figures to another.
5. Other mixed problems.

Steps	Activities To Favourable For Learning		TLM	Evaluation Engagechniques	Teachers Introspection

