
MATHEMATICS LESSON PLAN

Prepared by:

T.SHIVAJI, State level Maths RP, MWD
MMDRS, HARAPANAHALLI TOWN
VIJAYANAGARA DIST
Mob.9916142961

Methodology: Demonstration cum problem solving method

Unit: 01

Unit name: Arithmetic Progression

Date: From to

Objectives:

1. Knowledge of sequence and series

2. Motivation for studying arithmetic progression (A.P).

3. Deviation of nth term of an A.P

4. Deviation of formula to find the nth term from the end of the sequence.

5. Deviation of sum to n terms of an A.P.

6. Application of the formulas of A.P to solve the daily life problems.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions of number system like natural numbers, whole numbers, odd numbers & even numbers, multiplies of 7, 5 ect.	Chart of numbers, board.	Discussion & group discussion.	Will try to answers	
Explore	Teachers asks to students for identifying the next four terms in the sequence 1. 5, 10, 15, 20	Chart Calendar	Questionnaire	Answering for supplementary questions.	

Explain	Arithmetic progression: introduction Now teacher may introduce the concept of A.P by writing some examples on board. General form of A.P: $a_n=a+(n-1)d$ Explaining about arithmetic progression and nth term of an A.P. Finding first term, last term and common difference Sum of First <i>n</i> Terms of an AP: $S_n=\frac{n}{2}(2a+(n-1)d)$ Finding the sum of nth term of an A.P, derive the formula to find the nth term. Solving different problems on sum of nth term of an A.P using formula, find the value of a, d and nth term also.	Board	Discussion & group activities		
Elaborate	Teacher given some problems to students for solving individually. By taking different examples in exercise, teacher will summarize the lesson.	Exercise problems In textbook	Activity	Discussion with students	
Evaluate	Now teacher will assign some word problems based on our daily life situations and help the students in the implementation of the above formulas in this problems.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher

Head master or mistress/Principal

10TH STANDARD

MATHEMATICS

LESSON PLAN

Unit: 02 Methodology: Demonstration & synthetic method.

Unit name: Triangles

Date: From to

Objectives:

1. Identifying types of triangles & similarity

2. Constructing triangles on the bases of similarity and congruent.

3. Proving the theorems on the basis of similarity and congruent.

4. Solving the problems on the basis of triangles in day to day life.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the question on congruence of triangles and its conditions.	Chart, Modals, board ect.	Discussion & group discussion.	Will try to answers	
Explore	Teachers asks to students for identifying congruence and similarities in different modals. 1. All circles are similar to each other. 2. All squares are similar to each other. Ect.	Chart, modals & plane figures	Questionnaire	Answering for supplementary questions.	
Explain	Now teacher will explain the difference between the similarity and congruency of the plane figures bring examples and counter examples. Basic Proportionality Theorem:	Board	Discussion & group activities		

statement by drawing the figure. After this teacher will explain the proof of the theorem which include the **components:** Given, To Prove, Construction, Proof. After the complete explanation of the BPT teacher will motivate the students for the converse of Basic Proportionality theorem and also give its complete proof. Now teacher will explain the procedure of implementing these theorems in different problems. Teacher may also provide sufficient number of problems to the students so that the students will completely understand the theorem.

Now teacher will write the statement of Basic

the board and explain the meaning of this

Similarity Conditions

Proportionality Theorem

Now teacher will define all similarity conditions (SSS, SAS, AAA, AA) to the students. Teacher will also motivate the students for the proof of these theorems.

Pythagoras theorem: Now teacher introduce the this, will explain statement of this theorem with diagrams. After this solving the problems on exercise problems.

Converse of Pythagoras theorem: now teacher will introduce the concept of converse of this Pythagoras theorem, statement with the diagram.

Elaborate	Teacher given some problems to students for solving individually. By taking different examples in exercise, teacher will summarize the lesson.	Exercise problems In textbook	Activity	Discussion with students
Evaluate	Now teacher will assign some problems to the students to learn the implementation of this theorems.	Textbook	Evaluation	Try to do all problems in textbook.

Subject teacher

Head master or mistress/Principal

Unit: 03 Methodology: Demonstration & project method

Unit name: Pair of linear equations in two variables

Date: From to

Objectives:

1. Knowledge of linear equations in two variables.

2. To know about construction of ax+by+c=0.

3. To draw how the pair of linear equations in two variables form in graph.

- 4. Discuss the nature of solution, types of graphs, consistency or inconsistency in pair of equations.
- 5. Substitution method, cross multiplication method and elimination method solving the equations.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions linear equations in two variables.	Chart board.	Discussion & group discussion.	Will try to answers	
Explore	Teachers asks to students like 1. What is the cost of one pen and two pencils cost? 3. Two bats and three balls cost. ect.	Chart Board, some puzzles	Questionnaire	Answering for supplementary questions.	

	Introduce the chapter to pupils, how it forms the	Board,	Discussion &	
	pair of linear equations in two variables by giving	Graph,	group activities	
	some examples in every day situations.	Ppt,		
	Explaining about how to form Linear pair of	Geogebra,		
	equations come and solving them.	Flash cards	Oral test	
	Graphical method of solutions for solving			
	linear pair of equations:		Introspection	
	Solving the problems of linear equations in two			
	variables by graphical method by taking 2-3		Writing test	
	examples.			
	Algebraic pair of linear equations in two			
	<u>variables:</u>			
	Explain How to solve the linear pair of equations			
	by algebraic method by taking different examples.			
Explain	Elimination method:			
	Explain How to solve the linear pair of equations			
	by elimination method by taking different			
	examples.			
	Cross multiplication method:			
	Explain How to solve the linear pair of equations			
	by cross multiplication method by taking different			
	examples.			
	Equations Reducible to a Pair of Linear			
	Equations in Two Variables:			
	Solve the following pair of equations by reducing			
	them to a pair of			
	linear equations			

Elaborate	Teacher given some problems to students for solving individually. By taking different examples in exercise, teacher will summarize the lesson.	Exercise problems In textbook	Activity	Discussion with students
Evaluate	Now teacher will assign some word problems based on our daily life situations and help the students in the implementation of the above formulas in this problems.	Textbook	Evaluation	Try to do all problems in textbook.

Subject teacher

Head master or mistress/Principal

Unit: 04 Methodology: Demonstration cum lecture method

Unit name: Circles

Date: From to

Objectives:

1. Definition of circle, and terms related to the circle like center, radius, diameter, chord, segment & sector of the circle.

2. Tangent to the circle at the point of contact, secant of the circle.

3. Proof of Tangent to the circle is perpendicular to the point of contact.

4. Proof of the length of the tangent drawn from an external point to the circle are equal.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions related to the circle and terms associated with it. Also explain the difference between circle and sphere.	Chart, Modals, board.	Discussion & group discussion.	Will try to answers	
Explore	Teachers asks to students that are learnt in class 9 th in previous year like chord, diameter, radius ect.	Chart Geometry kit	Questionnaire	Answering for supplementary questions.	

	Tangent: now teacher explain about the tangent	Class test	Discussion &		
	with an examples.	Oral	group activities		
	A Hoo+	discussion worksheets			
		Board			
	Now teacher will taught Proof of 'Tangent to the				
	circle is perpendicular to the point of contact'.				
	Help the students by solving the problems based				
	on above theorem.				
	Now teacher explain the theorem 'length of the				
Explain	tangent drawn from an external point to the circle				
	are equal'.				
	Radius Radius				
	Help the students by solving the problems based				
	on above theorem.				
	After studying this lesson students should know	Exercise	Activity	Discussion	
	the circle and the different terms associated with	problems		with students	
Elaborate	circle. Students should know the proofs of the	In textbook			
	theorems and tangent to the circle. Students				
	should be able to apply all the results in this				
	problems.				
Evaluate	Review questions, students can prepare	Textbook	Evaluation	Try to do all	
	presentation on circle which include all important			problems in	
	terms. Solve all the problems in textbook and do			textbook.	
	the assignment that teacher given.				

Unit: 05 Methodology: Demonstration, analytic & synthetic method

Unit name: Areas related to circles.

Date: From to

Objectives:

1. Introduction and definitions related to circle, radius, diameter, chord, segment, sector, ect.

2. Circumference and perimeter of circle, semi-circle, quadrant and length of arc.

3. Area of circle, minor sector, major sector, minor and major segment.

4. Deviation of formula to find the nth term from the end of the sequence.

5. Calculating area of segment of a circle, problems should be restricted to 60°, 90° & 120°.

6. Area related to the other plane figures like triangles and quadrilaterals should be taken.

7. Problems based on the combinations of figure.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions related to the circle like radius, tangent, diameter ect.	Chart of circles, Modals, board.	Discussion & group discussion.	Will try to answers	
Explore	Teachers will explain different properties of circle to the students and explain the difference between circumference and perimeter of the circle.	Chart	Questionnaire	Answering for supplementary questions.	

	Area of sector and segment:	Board	Discussion &		
	Now teacher will explain the formula and method	Class test	group activities		
	to find the area of circle, semi-circle, quadrant,	Oral test			
	minor & major segments and sectors with central	Assignment			
1	angle is 60° , 90° & 120° .	ppt			
	Area of circle= πr^2 .				
Explain	Area of minor sector= $\frac{\theta}{360} \pi r^2$.				
Expluin	Area of major sector= $\frac{360-\theta}{360} \pi r^2$.				
•	Area of minor segment= $\frac{\theta}{360} \pi r^2 - \frac{1}{2} r^2 \sin \theta$.				
	Area of major segment= πr^2 - area of min segment.				
	Area of quadrant= $\frac{1}{2} \pi r^2$.				
	Now teacher will introduce the topic combination				
	of different plane figures and explain the topic by				
	taking different examples.				
	Now students should know the circle and its	Exercise	Activity	Discussion	
Elaborate	components, method of solving the problems on	problems		with students	
	combinations of plane figures.	In textbook			
	Now teacher will assign some word problems	Textbook	Evaluation	Try to do all	
Evaluate	based plane figures, students can prepare the			problems in	
	presentation on the formulas related to figures.			textbook.	
	Solve assignment given by the teacher.				

Subject teacher

Head master or mistress/Principal

10TH STANDARD

Unit: 06 Methodology: Demonstration & Learning by doing

Unit name: Constructions
Date: From to

Objectives:

1. To understand how to divide a line segment in the given ratio.

2. To construct a triangle similar to a given triangle as per a given scale factor which may be less than 1 or greater than 1.

3. To construct the pair of tangents to the circle from an external point to the circle.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Knowledge of Similarity of Triangles. Draw a Drawing a parallel line using compass	Pen/Pencil and notebook. Compass	Discussion & group discussion.	Will try to answers	
Explore	Start the class with the following activity Draw two line segments of equal measurements on the board. The lengths of the line segments should be in decimals. For example, you may draw Two line segments, each measuring 15.7 cm. Then, select two students and ask them to divide the given line segments using only a ruler. Ask one of the students to divide the line segment in the ratio 5:7 and the other	scale. Chart Calendar	Questionnaire	Answering for supplementary questions.	

	learner to divide the other line segment in the ratio 2:3. Here after, ask the students to measure the divisions to check if the line segments are divided according to the given ratios			
Explain	Division of a Line Segment: List and execute steps of construction in order to divide a line segment in a given ratio. Construction of a similar triangle: List and execute steps of construction in order to construct a similar triangle as per a given scale factor. Construction of Tangents to a Circle: List and execute steps of construction in order to construct tangent(s) to a given circle.	Geometry kit Board, ppt, You tube videos related to circles.	Discussion & group activities	
Elaborate	Examines each step and reasons out each step, in order to: A) Construct a triangle similar to a given triangle as per a given scale factor. B) Construct a pair of tangents from an external point to a circle and justify procedures	Exercise problems In textbook	Activity	Discussion with students
Evaluate	Now teacher will assign some problems to students to workout. Solve assignment given by teacher.	Textbook	Evaluation	Try to do all problems in textbook.

Subject teacher

Head master or mistress/Principal

Unit: 07 Methodology: Demonstration cum lecture method

Unit name: Coordinate Geometry.

Date: From to

Objectives:

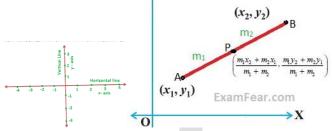
1. Concept & introduction of coordinate geometry.

2. Graphs of linear equations & methods of representing the order pair on the graph.

3. Distance formula and its applications in different problems.

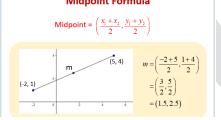
4. Section formula and mid-point formula & related problems.

5. Area of triangle and method of proving the three points are collinear.


<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection
Engage	Start the session by checking the previous knowledge, by asking the questions related to the Cartesian coordinate system and the method of representing them on the graphs.	Chart Board Ppt Oral test	Discussion & group discussion.	Will try to answers
Explore	Now teacher will introduce the topic coordinate geometry, it is the combination algebra & geometry. Here teacher will explain horizontal line, vertical line, coordinates abscissa, origin ect.	Chart Class test Board	Questionnaire	Answering for supplementary questions.

Distance formula: plot the two points on the
graph, and derive the formula by applying
Pythagoras formula.

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}.$$


Section formula:

Explaining how to use this section formula to find the coordinates by using formula, derivation and some problems.

Mid-point formula: now teacher will introduce this, will do some problems on it.

Midpoint Formula

Area of triangle: now teacher will introduce this, will do some problems on it.

Geometry biscussion & group activities ppt,

chart Board

Explain

	The formula of area of triangle formula in coordinate geometry the area of triangle in coordinate $x_1 = \frac{1}{2} x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) $ $A^{(x_1, y_1)}$ The formula of area of triangle formula in coordinate geometry the area of triangle in coordinate $x_1 = \frac{1}{2} x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) $				
Elaborate	Students will learn the formulas of finding the distance, section and area of triangles. Also they are learn how to solve the problems on it using textbook.	Exercise problems In textbook	Activity	Discussion with students	
Evaluate	Now teacher will assign some problems to students to workout. Solve assignment given by teacher.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher

Head master or mistress/Principal

Unit: 08 Methodology: Demonstration cum lecture method

Unit name: Real numbers

Date: From to

Objectives:

- 1. Definition of natural, whole, rational, irrational numbers, integers, real, even, odd, prime, composite numbers.
- 2. Different types of decimals.
- 3. Rational and irrational decimals.
- 4. To find HCF by using EDA.
- 5. To find HCF & LCM by using FTA.
- 6. Methods of proving the numbers as irrational numbers.
- 7. Explanation of terminating or non-terminating decimals.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by proving historical and biological details about Euclid. Explain about him to students.	Chart of numbers, Photos	Discussion & group discussion.	Will try to answers	
Explore	First of all teacher give the complete knowledge of number system. Along with the numbers explain about decimal system.	Chart Calendar	Questionnaire	Answering for supplementary questions.	

	Real Number Rational Number Whole Number Whole Number Lirretional Number Integers Odd Number Frime Number Composite Number Twin Prime Number				
	Euclid's Division lemma:	Ppt,	Discussion &		
	For given two positive integers a & b there exist a	Chart	group activities		
	unique integers q & r such that a=bq+r where	Board			
	0 <r </r b.				
	HCF By Using EDL:				
	Explain the method of finding the HCF by using				
	Euclid's division lemma taking different examples.				
Explain	Fundamental theorem of arithmetic: now				
	teacher will introduce F.T.A with the following.				
	HCFXLCM= Product of two numbers.				
	Explain the method of contradict to prove				
	irrational numbers. Also explain the terminating				
	and non-terminating decimals.				
	Teacher will give some problems to students and	Exercise	Activity	Discussion	
Elaborate	he should guide them to solve.	problems		with students	
Evaluate	Teacher will assign some problems to do by using	Textbook	Evaluation	Try to do all	
	textbook.			problems in	
				textbook.	
_			_	_	

Subject teacher

Head master or mistress/Principal

10TH STANDARD

Unit: 09 Methodology: Demonstration cum lecture method

Unit name: Polynomials Date: From to

Objectives:

1. Understand the degree of the polynomials

2. Zeros of the polynomials

3. To understand the coefficient of the polynomials

4. To know the quadratic polynomial have 2 zeros and cubic polynomial have 3 zeros.

5. To find the solutions of the quadratic polynomials whose sum and products are given.

6. Dividing the polynomials and verifying that using division algorithm.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge asking different questions like monomial, binomials, trinomial, degree ect.	Chart of numbers, Photos	Discussion & group discussion.	Will try to answers	
Explore	Teacher will start the session by giving many examples of algebraic expressions. Now teacher will introduce the topic polynomials with examples. Ex: 5x², 2x³+5x²+5, -2y-5y, 8z.	Chart Worksheet Oral test	Questionnaire	Answering for supplementary questions.	

	Zeroes of the polynomials: Teacher will explain	Ppt,	Discussion &		
	about zeroes the polynomials. Graph of quadratic	Chart	group activities		
	polynomial is always parabolic.	Board			
i	Zeroes of quadratic polynomials: : Teacher will	Class test			
	explain about zeroes the quadratic polynomials				
1	by taking different examples.				
•	Division algorithm:				
Explain	By taking some examples teacher will explain				
<u> </u>	method of dividing one polynomial to another.				
1	Then verify it				
<u> </u>	Dividend=divisor x quotient + remainder.				
1	Now concept of cubic polynomials is also				
	introduce.				
i	Students will be able to explain the relationship	Exercise	Activity	Discussion	
Elaborate	between zeroes and coefficients. They also able to	problems		with students	
i	factorize the quadratic, cubic polynomials with				
	the exercise problems.				
Evaluate	Teacher will assign some problems on zeroes and	Textbook	Evaluation	Try to do all	
	coefficients, quadratic, cubic polynomials with the			problems in	
	exercise problems.			textbook.	

Subject teacher

Head master or mistress/Principal

10TH STANDARD

Unit: 10 Methodology: Demonstration cum lecture method

Unit name: Quadratic Equations

Date: From to

Objectives:

1. To know about equations and quadratic equations

2. To understand how to form a quadratic equations.

3. To understand the roots of the quadratic equations equating the zero.

4. To solve the quadratic equations by different methods like completing the square method and formula method.

5. To know about a nature of the roots of the quadratic equation.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge, asking different questions like quadratic polynomials, its general form, degrees and zeroes ect.	Black board, graph ect	Discussion & group discussion.	Will try to answers	
Explore	Teacher should write the quadratic equation on the board, then explain. General form of Q.equation is ax²+bx+c=0. Now introduce the concept quadratic equation.	Chart Oral test	Questionnaire	Answering for supplementary questions.	

	Roots of the quadratic equation: now explain	Ppt,	Discussion &		
	the relationship between roots and coefficients of	Chart	group activities		
	quadratic equations.	Board			
	x ² -Ax+B=0, where A is sum of roots & B is product	Class test			
	of roots.				
	Methods of finding the roots: now explain how				
	to find the roots by using different methods like				
Explain	factor method, method of completing square &				
	using formula.				
	quadratic formula				
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$				
	Discriminant and nature of roots: introduce				
	this concept and explain with some examples.				
	The Discriminant				
	The discriminant tells us whether the roots are rational or irrational				
	$\Delta \geq 0$: two different real roots (cuts the x axis twice) $\Delta = 0$: two equal real roots (touches the x axis once)				
	$\frac{\Delta < 0}{\Delta \text{ is a perfect square : roots are rational}}$				
	Applications: teacher will explain the problems.				
	Students will be able to explain the relationship	Exercise	Activity	Discussion	
Elaborate	between zeroes and coefficients. They also able to	problems		with students	
	find the roots of the quadratic equations with the				
	exercise problems.				
	Students will review the questions given by	Textbook	Evaluation	Try to do all	
Evaluate	teacher, they will solve problems in textbook with			problems in	
	the help of teacher.			textbook.	

Subject teacher

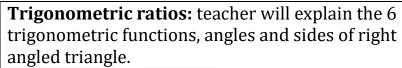
Head master or mistress/Principal

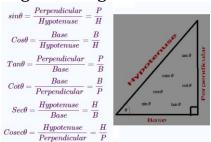
Unit: 11 Methodology: demonstration cum lecture method

Unit name: Introduction to trigonometry

Date: From to

Objectives:


1. Introduction and basic formulas of trigonometry.


2. Problems based on basic formulas.

3. Values of trigonometric ratios on standard angles 0° , 30° , 45° , 60° , 90° .

4. Trigonometric transformation on first quadrant.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge, asking different questions related to right angled triangle and Pythagoras theorem, & algebraic identities ect.	Black board, sheet ect	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask some questions about different types of triangles, then explain the properties of right angled triangle & Pythagoras theorem. Base	Chart modals Oral test	Questionnaire	Answering for supplementary questions.	

Ppt, Discussion & group activities modals

Explain

Trigonometric functions with standard angles: teacher will provide sufficient problems to the students for practice.

Transformations of trigonometric functions:

```
\begin{array}{lll} & \circ \sin{(-\theta)} = -\sin{\theta} & ; & \cos{(-\theta)} = \cos{\theta} \\ & \circ \sin{(90^\circ - \theta)} = \cos{\theta} & ; & \cos{(90^\circ - \theta)} = \sin{\theta} \\ & \circ \sin{(90^\circ + \theta)} = \cos{\theta} & ; & \cos{(90^\circ - \theta)} = \sin{\theta} \\ & \circ \sin{(180^\circ - \theta)} = \sin{\theta} & ; & \cos{(180^\circ - \theta)} = -\cos{\theta} \\ & \circ \sin{(180^\circ - \theta)} = -\sin{\theta} & ; & \cos{(180^\circ - \theta)} = -\cos{\theta} \\ & \circ \sin{(270^\circ - \theta)} = -\cos{\theta} & ; & \cos{(270^\circ - \theta)} = -\sin{\theta} \\ & \circ \sin{(270^\circ + \theta)} = -\cos{\theta} & ; & \cos{(270^\circ - \theta)} = \sin{\theta} \\ & \circ \tan{(90^\circ - \theta)} = \cot{\theta} & ; & \cot{(90^\circ - \theta)} = \tan{\theta} \end{array}
```

Trigonometric identities: now teacher will introduce this concept explains some identities and work some problems on it.

Reciprocal Identities:	Pythagorean Identities:
$\sin \theta = \frac{1}{\csc \theta} \qquad \qquad \csc \theta = \frac{1}{\sin \theta}$	$\sin^2\theta + \cos^2\theta = 1$
$\cos \theta = \frac{1}{\sec \theta}$ $\sec \theta = \frac{1}{\cos \theta}$	$1 + \tan^2 \theta = \sec^2 \theta$
	$1 + \cot^2 \theta = \csc^2 \theta$
$\tan \theta = \frac{1}{\cot \theta}$ $\cot \theta = \frac{1}{\tan \theta}$	Even Odd Identities:
Cofuntion Identities :	$\sin(-\theta) = -\sin\theta$, $\csc(-\theta) = -\csc\theta$
$\sin \theta = \cos \left(\frac{\pi}{2} - \theta \right), \cos \theta = \sin \left(\frac{\pi}{2} - \theta \right)$	$\tan(-\theta) = -\tan \theta$, $\cot(-\theta) = -\cot \theta$ $\cos(-\theta) = \cos \theta$, $\sec(-\theta) = \sec t\theta$
$\sec \theta = \csc \left(\frac{\pi}{2} - \theta \right), \csc \theta = \sec \left(\frac{\pi}{2} - \theta \right)$	Quotient Identities :
$\tan \theta = \cot \left(\frac{\pi}{2} - \theta \right), \cot \theta = \tan \left(\frac{\pi}{2} - \theta \right)$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$

modals
Board
Class test

10TH STANDARD

MATHEMATICS

LESSON PLAN

Elaborate	Teacher will explain the different situations in which trigonometry can be implemented.	Exercise problems	Activity	Discussion with students
Evaluate	Students will review the questions given by teacher, they will solve problems in textbook with the help of teacher.	Textbook	Evaluation	Try to do all problems in textbook.

Unit: 12 Methodology: demonstration cum lecture method

Unit name: Applications of trigonometry

Date: From to

Objectives:

- 1. To know about the line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.
- 2. To understand the definition angle of elevation and angle of depression.
- 3. To solve the applied problems on angle of elevation and angle of depression.
- 4. The height or length of an object or the distance between two distant objects can be determined with the help of trigonometric ratios.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge, asking different questions on trigonometric ratios, identities, functions.	Black board, chart ect	Discussion & group discussion.	Will try to answers	

Explore	Explaining about how trigonometric ratios will help to find the height and distance in the daily life. Then introduce the topic applications of trigonometry.	Chart Oral test	Questionnaire	Answering for supplementary questions.	
	Heights and distance: teacher will explain about this then introduce the concept angle of elevation and depression. Angle of elevation horizontal	Ppt, Chart Board Class test	Discussion & group activities		
Explain	angle of depression Explain the applications of trigonometry in the				
	problems like heights and distances or on complex daily life problems.				
Elaborate	Students will be able to find the height and distance in different situations. He may guide them to find the height of their home.	Exercise problems	Activity	Discussion with students	
Evaluate	Students will be solve all problems in the textbook with the help of teacher.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher

Head master or mistress/Principal

Unit: 13 Methodology: Demonstration cum lecture method

Unit name: Statistics

Date: From to

Objectives:

1. Introduction, method of finding mean of grouped frequency with three methods.

2. Method of finding mode of grouped frequency.

3. Method of finding median of grouped frequency.

4. Method of drawing less than and more than o-give.

5. Method of finding median from less than and more than type of o-give.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge, asking different questions related to mean, median and mode.	Black board, chart ppt ect	Discussion & group discussion.	Will try to answers	
Explore	Explaining about mean median and mode, ask some question related to them. Then introduce the chapter.	Chart Oral test	Questionnaire	Answering for supplementary questions.	

	Mean: explain how to find the mean value by	Ppt,	Discussion &		
	different methods by taking problems.	Chart	group activities		
i	• Direct Method:	Board			
	$\overline{X} = \frac{\sum fm}{N}$	Graph sheet			
	• Short cut method :	worksheet			
	$\overline{X} = A + \frac{\sum fd}{N}$	Class test			
	• Step deviation Method:	diabb test			
Explain	• Step deviation Method: $\overline{X} = A + \frac{\sum f d}{N} \times i$				
	Median: explain how to find the median by using				
	formula.				
	$\left(\frac{N}{m}-m\right)$				
	$Median = l + \frac{\left(\frac{N}{2} - m\right)}{f} \times c$				
	,				
<u> </u>	Mode: explain how to find the median by using				
	formula.				
	$M_o = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$				
	o-give graph: now explain how to draw both less				
	than and more than o-give also explain how to				
	find median in this graph.				
	Students will be able to find mean, median and	Exercise	Activity	Discussion	
Elaborate	mode by using different problems.	problems		with students	
	Students will be solve all problems in the textbook	Textbook	Evaluation	Try to do all	
Evaluate	with the help of teacher.			problems in	
				textbook.	

Subject teacher

Head master or mistress/Principal

Unit: 14 Methodology: Demonstration cum lecture method

Unit name: Probability
Date: From to

Objectives:

1. Classical definition of probability.

2. Probability of sure event, impossible event and concept of equally likely events & range of probability.

3. Concept of probability of one die, two die, coins and their sample space.

4. Concept of probability of cards, simple problems on finding the probability of of an event.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge, asking different questions like simple probability of an event.	Black board, chart,coins ppt ect	Discussion & group discussion.	Will try to answers	
Explore	Explaining about probability of an event introduce the chapter. Then classical definition of probability.	Chart Oral test	Questionnaire	Answering for supplementary questions.	

Explain	Probability: explain the concept of P(E)+ P(not E)=1. The probability of sure event is one. Range of probability 0 <p<1. &="" 1="" 2="" 3="" a="" about="" associated="" at="" cards,="" coin="" coin,="" coins="" explain="" is="" outcomes.<="" playing="" possible="" sample="" space:="" terms="" th="" that="" the="" this.="" thorough="" time.="" we="" when="" with=""><th>Ppt, Coins Cards Die Board</th><th>Discussion & group activities</th><th></th><th></th></p<1.>	Ppt, Coins Cards Die Board	Discussion & group activities		
Elaborate	Students should know this possible outcomes, sure events, impossible events ect.	Exercise problems	Activity	Discussion with students	
Evaluate	Review this questions given by the teacher. Students should prepare presentation on the sample space of different number of coins and die. They will solve all the problems in textbook.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher

Head master or mistress/Principal

Unit: 15 Methodology: Demonstration & problem solving

Unit name: Surface area & Volumes

Date: From to

Objectives:

1. Introduction of different types of solid figure and their comparison with the plane figures.

2. Curved surface area, total surface area and volumes of different solid figures.

3. Surface area and volumes of combinations of solid figures.

4. Method of converting one type of solid figures to another.

5. Other mixed problems.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking their previous knowledge, asking questions related to the surface area and volumes of different solid figure.	Solid fugures Modals	Discussion & group discussion.	Will try to answers	
Explore	Detailed explanation of curved surface area, total surface area and volumes of different types of solid figures. Then introduce the chapter.	Modals Figures Board	Questionnaire	Answering for supplementary questions.	

	Surface area of solid figures: Explain how to	Ppt,	Discussion &	
	find the surface area of solid figures by taking	Solid	group activities	
	different examples.	fugures		
	Sphere Cylinder Cone	Modals		
	SA= 410 ⁻³ v= 4/3 πt ³ SA= 210 ⁻² + 2100 v= 10 ⁻³ SA= 110 + 10 ⁻² v= 1/3 πt ³			
i	Rectangular Prism Triangular Prism			
Explain				
	SA= 2((w+lh+wh) v= lwh			
	Volumes of solid figures: Explain how to find the			
i	volumes of solid figures by taking different exp.			
	Combinations of solid figures: Explain how to			
	find their surface area and volumes of combined			
	solid figures by taking different examples.			
	some figures by taking unferent examples.			
	h=2r $h=2r$			
	h = 2r			
		Formalian	A -4::4	Diamarian
Flakonsta	Students should know all formulas and all	Exercise	Activity	Discussion
Elaborate	important concepts in this chapter.	problems	D 1	with students
. , .	Review this questions given by the teacher.	Textbook	Evaluation	Try to do all
Evaluate	Students should prepare presentation on the			problems in
	combinations of solid figures.			textbook.
	They will solve all the problems in textbook.			

Subject teacher

Head master or mistress/Principal