KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD

MODEL KEY ANSWERS

1. Answer: (B) 13
2. Answer: (C) $\frac{5}{2 \times 7}$

Explanation: since the denominator has not in the form of $2^{m} \times 5^{n}$.
3. Answer: (A) $X-Y=5$
4. Answer: (D) $x^{2}-4 x+5$.
5. Answer: (C) $(3,2)$
6. Answer: (B) 6 cm .
7. Option (a) 40°.
8. Option (b) $\Pi r(r+l) \mathbf{c m}^{2}$
9. 1
10. If a pair of linear equations is consistent, then the lines are intersecting or coincident i.e they will have at least one solution or infinitely many solutions.
11. Degree is 4 .
12. $\Delta>0$, then Roots are real and distinct.
13. Volume $V=\frac{\pi}{3} h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
14. 0.25
15. $\frac{8}{11}$
16. 5 units
17. Consider the given equation.
$2 \mathrm{x}+\mathrm{y}=7$
$x-y=2$
On adding both equation (1) and (2), we get
$3 x=9$
$\mathrm{x}=3$
Now, put the value of x in equation (1), we get
$6+y=7$
$\mathrm{y}=1$
Hence, the value of x is 3 and y is 1
18.

Solution:
7, 11, 15, \qquad here $a=7, d=4$ we have to find $a_{30}=a+29 d$

$$
\begin{aligned}
& =7+29 \times 4 \\
& =7+116
\end{aligned}
$$

19. Solution

Here $\mathrm{a}=1, \mathrm{~b}=4$ \& $\mathrm{c}=5$
We have $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4 \pm \sqrt{4^{2}-4 \times 1 \times(5)}}{2 \times 1}=\frac{-4 \pm \sqrt{16-20}}{2}=\frac{-4 \pm \sqrt{-4}}{2}$

$$
x=\frac{-4+\sqrt{-4}}{2} \text { or } x=\frac{-4-\sqrt{-4}}{2}
$$

OR
Given equation is $2 x^{2}+x-4=0$
By using completing the square method, $x^{2}+\frac{1}{2} x-\frac{4}{2}=0$

$$
\begin{aligned}
& \left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{4}\right)^{2}-\left(\frac{4}{2}\right)=0 \\
& \left(x+\frac{1}{4}\right)^{2}-\left(\frac{1}{16}\right)-\left(\frac{4}{2}\right)=0 \\
& \left(x+\frac{1}{4}\right)^{2}=\frac{33}{16} \\
& \left(x+\frac{1}{4}\right)=\sqrt{\frac{33}{16}} \\
& x=-\frac{1}{4} \pm \sqrt{\frac{33}{16}}
\end{aligned}
$$

$x=-\frac{1}{4} \pm \frac{\sqrt{33}}{4}$
$x=-\frac{1}{4}+\frac{\sqrt{33}}{4}$ or $x=-\frac{1}{4}-\frac{\sqrt{33}}{4}$
20. Let us assume that $5+\sqrt{3}$ is a rational number with p and q as co-prime integer and $\mathrm{q} \neq 0$
$\Rightarrow 5+\sqrt{3}=\mathrm{p} / \mathrm{q}$
$\Rightarrow \sqrt{3}=\mathrm{p} / \mathrm{q}-5$
$\Rightarrow \sqrt{3}=\mathrm{p} / \mathrm{q}-5$
$\Rightarrow \mathrm{p} / \mathrm{q}-5$ is a rational number
However, $\sqrt{3}$ is in irrational number
This leads to a contradiction that $5+\sqrt{3}$ is a rational number wrong
Hence $5+\sqrt{3}$ is an irrational number. OR
Let the three numbers are $12,15,21$
By prime factorization
$12=2 \times 2 \times 3$
$15=3 \times 5$
$21=3 \times 7$
\therefore HCF of 12,15 and $21=3$
and $\mathrm{LCM}=2 \times 2 \times 3 \times 5 \times 7=420$.
21. Solution:

We have $\sin \mathrm{P}=\frac{R Q}{P R}=\frac{1}{\sqrt{2}}$

$$
\operatorname{Sin}(90-\mathrm{R})=\operatorname{Cos} \mathrm{R}=\frac{Q R}{P R}=\frac{1}{\sqrt{2}}
$$

22. Solution:

23. Possible outcomes are, $(6+5+4)=15$ balls
i) not green $(6+5)=11$

The probability of not green balls is $=\frac{11}{15}$
ii)red (6) $=6$

The probability of red balls is $=\frac{6}{15}$
24. Solution: To prove: $\mathrm{BC}^{2}=4 \mathrm{AD}^{2}$.

By Pythagoras theorem for triangle ABC ,

$$
\mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}
$$

\qquad (1)

In triangle $\mathrm{ABD} \&$ triangle ADC
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \quad \& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \quad$ By adding these we get
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}$

$$
\begin{aligned}
& =2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2} \quad(\mathrm{BD}=\mathrm{DC}) \\
& =2 \mathrm{AD}^{2}+2 \mathrm{BD}^{2}
\end{aligned}
$$

According to corollary, $\mathrm{AD}=\mathrm{BD} . \mathrm{DC} \rightarrow--\rightarrow \mathrm{AD}=\mathrm{BD} \cdot \mathrm{BD}=\mathrm{BD}^{2}$.

$$
\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2 \mathrm{AD}^{2}---\rightarrow(2)
$$

Put equation (2) in (1) we get $\mathrm{BC}^{2}=4 \mathrm{AD}^{2}$.
25.

$$
\begin{gathered}
p(x)=x^{3}-3 x^{2}+5 x-3 \\
q(x)=x^{2}-2 \\
x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 } \\
x^{3}+2 x \\
\frac{-3 x^{2}+7 x-3}{-3 x^{2}+6} \\
\frac{-3 x-9}{+\quad-9}
\end{gathered}
$$

26. Solution: Let breadth of rectangle be b and length be l area of rectangle will be $l^{*} b$ and perimeter is $2(l+b)$ according to given condition $2(\mathrm{l}+\mathrm{b})=32$ and $\mathrm{l} \times \mathrm{b}=60$
$\mathrm{lx} \mathrm{b}=60$
therefore $l=60 / b$
$2(l+b)=32$
$l+b=16$
$60 / b+b=16$
$b^{2}+60 / b=16$
$b^{2}+60=16 b$
$b^{2}-16 b+60=0$
$b^{2}-10 b-6 b+60=0$
$b(b-10)-6(b-10)=0$
$b=10$ or $b=6$
if $b=6$, then $l=10$
so length and breadth of the rectangle is 10 m and 6 m respectively.
OR
Given: distance $=360 \mathrm{~km}$
Condition (1)let speed be ' x ' and time be t hours

$$
\begin{gathered}
\mathrm{s}=\mathrm{d} / \mathrm{t} \\
\mathrm{x}=360 / \mathrm{t}
\end{gathered}
$$

t=360/x ----------.

Condition (2) let speed be ' $x+10$ ' and time be $t-3$ hours $\mathrm{t}-3=360 / \mathrm{x}+10$
from (1) and (2)

$$
\begin{align*}
& \frac{360}{x}-\frac{360}{x+10}=3 \text { after convertion this, we get } \tag{2}\\
& x^{2}+10 x-1200=0 \\
& x=30
\end{align*}
$$

speed of the bus is $30 \mathrm{~km} / \mathrm{hr}$
27. Solution:

We have to find mean

C.I	f	x	fx
$0-20$	12	10	120
$20-40$	14	30	420
$40-60$	8	50	400
$60-80$	6	70	420
$80-100$	10	90	900
	$\mathrm{~N}=50$		2260

Mean $=\frac{\sum f x}{N}=\frac{\sum 2260}{50}=45.5$
OR

C.I	f	fc
$0-10$	5	5
$10-20$	8	13
$20-30$	20	33
$30-40$	15	48
$40-50$	7	55
$50-60$	5	60
	$\mathrm{~N}=60$	

Data is $\frac{N}{2}=30, \mathrm{LRL}=20, \mathrm{f}=20, \mathrm{fc}=13$ and $\mathrm{h}=10$

$$
\begin{aligned}
\text { Median } & =\text { LRL }+\left\{\frac{\frac{N}{2}-f c}{f}\right\} \mathrm{xh} \\
& =20+\left\{\frac{30-13}{20}\right\} \mathrm{x} 10 \\
& =20+8.5 \\
& \text { Median }=28.5
\end{aligned}
$$

28. Solution:

C.I	Frequency	Coordinates
<20	12	$(20,12)$
<25	25	$(25,25)$
<30	66	$(30,40)$
<35	84	$(40,84)$
<40	100	$(45,100)$
<45		

Less than type of O-give
scale: along x-axis $1 \mathrm{~cm}=5$ units and y-axis $1 \mathrm{~cm}=20$ units

29.

To prove that: $\mathrm{SK}=\mathrm{RK}$
Proof:
Normal and tangent at a point on the circle are perpendicular to each other.
$\angle O S K=\angle O R K=90 \circ$
Using Pythagoras Theorem,
$\mathrm{OK}^{2}=\mathrm{OS}^{2}+\mathrm{SK}^{2}$.
$\mathrm{OK}^{2}=\mathrm{OR}^{2}+\mathrm{RK}^{2}$
Subtracting (ii) from (i),

$$
\begin{aligned}
& \mathrm{OK}^{2}-\mathrm{OK}^{2}=\mathrm{OS}^{2}+\mathrm{SK}^{2}-\mathrm{OR}^{2}-\mathrm{RK}^{2} \\
& \Rightarrow \mathrm{SK}^{2}=\mathrm{RK}^{2} \quad \because \mathrm{OS}=\mathrm{OR} \\
& \mathrm{SK}=\mathrm{RK}
\end{aligned}
$$

30.

$$
\begin{aligned}
& \text { LHS }=(\operatorname{cosec} A-\sin A)(\sec A-\cos A) \\
& =\left(\operatorname{cosec} A-\frac{1}{\operatorname{cosec} A}\right)\left(\sec A-\frac{1}{\sec A}\right) \\
& =\left(\frac{\operatorname{cosec}^{2} A-1}{\operatorname{cosec} A}\right)\left(\frac{\sec ^{2} \mathrm{~A}-1}{\sec \mathrm{~A}}\right) \\
& =\frac{\cot ^{2} \mathrm{~A}}{\operatorname{cosec} \mathrm{~A}} \times \frac{\tan ^{2} \mathrm{~A}}{\sec \mathrm{~A}} \\
& =\frac{\sin \mathrm{A}}{\tan ^{2} \mathrm{~A}} \times \cos \mathrm{A} \tan ^{2} \mathrm{~A}=\sin \mathrm{A} \cos \mathrm{~A}
\end{aligned}
$$

$$
\text { RHS }=\frac{1}{\tan A+\cot A}=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}
$$

OR

$$
\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{\sqrt{3}+2 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{4+\sqrt{3}+2 \sqrt{3}}{2 \sqrt{3}}} \\
& =\frac{\sqrt{3}+2 \sqrt{3}-4}{4+\sqrt{3}+2 \sqrt{3}}=\frac{3 \sqrt{3}-4}{4+3 \sqrt{3}} \times \frac{4-3 \sqrt{3}}{4-3 \sqrt{3}} \\
& =\frac{12 \sqrt{3}-27-16+12 \sqrt{3}}{-11}=\frac{24 \sqrt{3}-43}{-11} \\
& =\frac{\mathbf{4 3 - 2 4 \sqrt { 3 }}}{\mathbf{1 1}} .
\end{aligned}
$$

31.

32. Solution:

Length of the arc is given $=11 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{\theta}{360} \times 2 \prod \mathrm{r}=11 \\
& \frac{1}{4} \times 2 \mathrm{x} \frac{22}{7} \times \mathrm{r}=11 \text { then } r=7 \mathrm{~cm}
\end{aligned}
$$

Given $O P=4 \mathrm{~cm}$ and we have $O B=7 \mathrm{~cm}$
Then area of the shaded region $=$ area of quadrant - area of triangle OPB

$$
\begin{aligned}
& =\frac{1}{4} \times \prod \mathrm{r} 2-\frac{1}{2} \mathrm{x} \text { Base } \mathrm{x} \text { height } \\
& =\frac{77}{2}-\frac{1}{2} \mathrm{x} 7 \times 7 \\
& =38.5-14 \\
& =24.5 \mathrm{~cm}^{2} .
\end{aligned}
$$

33. Given points are $(-1,7)(4,-3)$ in the ratio of $2: 3$

By section formula (x, y) $=\left[\frac{m x 2+n x 1}{m+n}, \frac{m y 2+n y 1}{m+n}\right]$

$$
\begin{aligned}
& =\left[\frac{2 x 4+3(-1)}{2+3}, \frac{2(-3)+3 x 7}{2+3}\right] \\
& =\left[\frac{5}{5}, \frac{15}{5}\right] \\
& =(1,3)
\end{aligned}
$$

OR
Area of the triangle is $A=\frac{1}{2}\{x 1(y 2-y 3)+x 2(y 3-y 1)+x 3(y 1-y 2)\}$

$$
\begin{aligned}
& =\frac{1}{2}\{7(1-4)+5(4-(-2))+1(-2-1)\} \\
& =\frac{1}{2}(30-24) \\
& =3 \text { sq units. }
\end{aligned}
$$

34. Given equations are $x+y=5$ and $2 x+y=7$

x	0	5
y	5	0

$2 x+y=7$

x	0	3.5
y	7	0

35. Basic Proportionality Theorem states that, "if a line is parallel to a side of a triangle which intersects the other sides into two distinct points, then the line divides those sides of the triangle in proportion".

Let ABC be the triangle.
The line \mathbf{l} parallel to $\mathbf{B C}$ intersect $\mathbf{A B}$ at \mathbf{D} and $\mathbf{A C}$ at \mathbf{E}.
To prove: $\frac{D B}{\mathrm{AD}}=\frac{C B}{\mathrm{AE}}$
Join BE,CD
Draw EF $\perp A B$, $\mathbf{D G} \perp \mathbf{C A}$
Since $E F \perp A B$,
EF is the height of triangles ADE and DBE
Area of $\triangle A D E=1 / 2 \times$ base \times height $=1 / 2 \times A D \times E F$
Area of $\triangle D B E=1 / 2 \times D B \times E F$
$\frac{\text { areaof } \triangle D B E}{\text { areaof } \triangle \mathrm{ADE}}=\frac{1 / 2 \times D B \times E F}{1 / 2 \times A D \times E F} \times \frac{D B}{\mathrm{AD}}$
Similarly,
$\frac{\text { areaof } \triangle D B E}{\text { areaof } \triangle A D E}=\frac{1 / 2 \times C B \times E F}{1 / 2 \times A E \times E F} \times \frac{C B}{A E}$
But \triangle DBE and \triangle DCE are the same base DE and between the same parallel straight line BC and DE.
Area of $\triangle D B E=$ area of $\triangle D C E$
From (1), (2) and (3), we have
$\frac{D B}{A D}=\frac{C B}{A E}$
Hence proved.
36. Solution:

In triangle ABC ,
$\operatorname{Tan} \boldsymbol{\theta}=\frac{A B}{B C}$
Tan $60=\frac{A B}{B C}$
$\sqrt{3}=\frac{A B}{B C}$
$A B=\sqrt{3} B C$
In triangle $A B P, \operatorname{Tan} \boldsymbol{\theta}=\frac{A B}{B P}$

$$
\operatorname{Tan} 30=\frac{A B}{B P}
$$

$$
\begin{equation*}
\frac{1}{\sqrt{3}}=\frac{A B}{B P}==\Rightarrow \quad \mathrm{AB}=\frac{B P}{\sqrt{3}} \tag{2}
\end{equation*}
$$

From (1) and (2)
$3 \mathrm{BC}=\mathrm{BP}$
From figure, $\mathrm{CP}=\mathrm{BP}-\mathrm{BC}$
CP=3BC-BC
$C P=2 B C$
Hence the proof
37. We know $S_{n}-S_{n-1}=a_{n}$

$$
222-187=a_{n}
$$

$$
35=a_{n}
$$

$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(\mathrm{a}+\mathrm{an})$
$222=\frac{n}{2}(2+35)(\mathrm{a}=2$ and $\mathrm{an}=35$ we found)
444=nx37
$\mathrm{n}=12$
an $=a+(n-1) d$
$35=2+11 \mathrm{~d}$
$33=11 \mathrm{~d}$
d=3
then A.P is $2,5,8$........

OR

Given $\mathrm{a}_{12}=37, \mathrm{n}=12$ according to problem, $\mathrm{a}_{6}+\mathrm{a}_{7}=41$

$$
\begin{equation*}
a+11 d=37 \quad---\rightarrow(1) \tag{2}
\end{equation*}
$$

subtract above equations we get $a=4$ and $d=3$
A.P is $4,7,10$ \qquad
$\mathrm{Sn}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$\mathrm{S}_{12}=6(2 \times 4+(11) 3)$
$S_{12}=246$.
38. Given : Cylinder $\mathrm{r}=6 \mathrm{~cm}, \mathrm{~h}=14 \mathrm{~cm}$

Sphere $\mathrm{r}=2.1 \mathrm{~cm}$
We have to find Volume of the memento, then enter volume is given by
$\mathrm{V}=$ Volume of cylinder + volume of sphere

$$
\begin{aligned}
& =\prod^{2} \mathrm{~h}+\frac{4}{3} \Pi \mathrm{r}^{3} . \\
& =\prod_{2}\left(\mathrm{r}^{2} \mathrm{~h}+\mathrm{r}^{3}\right) \\
& =\frac{22}{7}(36 \mathrm{x} 14+9.261) \\
& =\frac{22}{7}(513.261)
\end{aligned}
$$

$=\frac{11291.742}{7}$
Required metal is $=1613.106 \mathrm{~cm}^{3}$
Surface area of the sphere $=4 \prod^{2}$.

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times 2.1 \times 2.1 \\
& =55.44
\end{aligned}
$$

Cost is $0.1 \times 55.44=$ ₹ 5.5

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD

Malleshwaram, Bengaluru-560003

S.S.L.C. MODEL QUESTION PAPER 2022-23

Subject : MATHEMATICS Medium : English

Subject Code : 81E
Time : $\mathbf{3}$ hours $\mathbf{1 5}$ minutes
Max. Marks : 80

CCE-RF
Regular Fresh

General Instructions to the Candidate :

1. This question paper consists of objective and subjective types of 38 questions.
2. This question paper has been sealed by reverse jacket. You have to cut on the right side to open the paper at the time of commencement of the examination. Check whether all the pages of the question paper are intact.
3. Follow the instructions given against both the objective and subjective types of questions.
4. Figures in the right hand margin indicate maximum marks for the questions.
5. The maximum time to answer the paper is given at the top of the question paper. It includes 15 minutes for reading the question paper.
I. Four alternatives are given for each of the following questions/ incomplete statements. Choose the correct alternative and write the complete answer along with its letter of alphabet.

$$
[8 \times 1=8]
$$

1. If the $\mathrm{n}^{\text {th }}$ term of an arithmetic progression is $\mathrm{a}_{\mathrm{n}}=3 \mathrm{n}+1$, then the $4^{\text {th }}$ term of the progression is
(A) 10
(B) 13
(C) 11
(D) 12
2. The rational number having a non-terminating and repeating decimal expansion in the following is
(A) $\frac{1}{5^{2}}$
(B) $\frac{7}{2^{2} \times 5}$
(C) $\frac{5}{2 \times 7}$
(D) $\frac{1}{2^{3}}$
3. In a class, "the number of boys (x) is 5 more than the number of girls (y)." The linear equation form of this statement is
(A) $x-y=5$
(B) $x=5 y$
(C) $y-x=5$
(D) $x+y=5$
4. The quadratic polynomial whose sum and product of zeroes are 4 and 5 respectively is
(A) $p(x)=x^{2}-4 x-5$
(B) $p(x)=x+4 x-5$
(C) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+4$
(D) $p(x)=x^{2}-4 x+5$
5. The coordinates of the midpoint of the line segment joining the points $(4,3)$ and $(2,1)$ is
(A) $(2,3)$
(B) $(2,2)$
(C) $(3,2)$
(D) $(1,1)$
6.

In the figure $\triangle A B C \backsim \triangle D E F$. If $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $\mathrm{DE}=4.5 \mathrm{~cm}$, then the measure of EF is
(A) 8 cm
(B) 6 cm
(C) 7 cm
(D) 6.5 cm
7. In the figure, BP and BQ are the tangents to the circle with centre ' O '. If $\triangle O P Q=20^{\circ}$, then the measure of $\triangle \mathrm{PBQ}$ is

(A) 40°
(B) 160°
(C) 140°
(D) 20°
8. The total surface area of the solid given in the figure is

(A) $\mathrm{A}=\pi \mathrm{rl} \mathrm{cm}{ }^{2}$
(B) $\mathrm{A}=2 \pi \mathrm{rh} \mathrm{cm}^{2}$
(C) $\mathrm{A}=\pi \mathrm{r}(\mathrm{r}+\mathrm{l}) \mathrm{cm}^{2}$
(D) $\mathrm{A}=\pi \mathrm{r}^{2} 1 \mathrm{~cm}^{2}$

II. Answer the following questions

9. Find the HCF of 7 and 11.
10. How many solutions do the pair of linear equations has, if the lines represented by them are coincident?
11. Write the degree of the polynomial $p(x)=x^{2}+2 x^{3}-5 x^{4}+6$?
12. Find the discriminant of the quadratic equation $x^{2}-2 x-3=0$.
13. Write the formula to find the volume of the frustum of a cone, if the radii of its circular bases are ' r_{1} ' and ' r_{2} ' and its height is ' h '.
14. If the probability of raining on a particular day is 0.75 , then find the probability of not raining on the same day.
15. If the ratio of the areas of two similar triangles is $64: 121$, then find the ratio of their corresponding sides.
16. Find the distance between the origin and the point $(3,4)$.

III. Answer the following questions.

17. Solve the given pair of linear equations.
$2 x+y=7$
$x-y=2$
18. Find the $30^{\text {th }}$ term of the arithmetic progression $7,11,15$ \qquad using formula.
19. Find the roots of the quadratic equation $x^{2}+4 x+5=0$, using the 'quadratic formula'.

OR

Find the roots of the quadratic equation $2 x^{2}+x-4=0$ by the method of completing the square.
20. Prove that $5+\sqrt{3}$ is an irrational number.

OR
Find the LCM of 12,15 and 21 by the method of prime factorization.
21. In the figure, write the value of $\sin \mathrm{P}$ and $\sin \left(90^{\circ}-\mathrm{R}\right)$.

22. Construct a pair of tangents to the circle of radius 3.5 cm , which are inclined to each other at an angle of 80°.
23. There are 6 red, 5 blue and 4 green balls in a box. A ball is drawn at random from the box. What is the probability that the ball drawn is
(i) not green
(ii) red
24. In the figure, ABC is a right angled triangle and $\mathrm{BAC}=90^{\circ}$. If $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{BD}=\mathrm{DC}$ then prove that $\mathrm{BC}^{2}=4 \mathrm{AD}^{2}$.

IV. Answer the following questions
25. Divide the polynomial $p(x)=x^{3}-3 x^{2}+5 x-3$ by the polynomial $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-2$ and find the quotient $\mathrm{q}(\mathrm{x})$ and remainder $\mathrm{r}(\mathrm{x})$.
26. The area and perimeter of a rectangular field are $60 \mathrm{~m}^{2}$ and 32 m respectively. Find the length and breadth of the field.

OR
A bus travels 360 km distance with uniform speed. If the speed of the bus had been $10 \mathrm{~km} / \mathrm{h}$ more, it would have taken 3 hours less for the same journey. Find the speed of the bus.
27. Find the 'mean' for the following grouped data.

Class-Interval	Frequency
$0-20$	12
$20-40$	14
$40-60$	8
$60-80$	6
$80-100$	10

OR
Find the 'median' for the following grouped data

Class-Interval	Frequency
$0-10$	5
$10-20$	8
$20-30$	20
$30-40$	15
$40-50$	7
$50-60$	5

28. A life insurance agent found the following data for distribution of age of 100 policy holders. Draw 'less than type' ogive for the given data.

Age (In years)	Number of policy holders (cumulative frequency)
Less than 20	12
Less than 25	25
Less than 30	40
Less than 35	66
Less than 40	84
Less than 45	100

29. Prove that "the lengths of tangents drawn from an external point to a circle are equal".
30. Prove that $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

OR
Find the value of $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
31. Construct a triangle of sides $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the given triangle.
32. In the figure, the length of the $\operatorname{arc} \mathrm{AB}$ of the circle with centre ' O ' is. 11 cm . If $\mathrm{OP}=4 \mathrm{~cm}$ then find the area of the shaded region.

33. Find the coordinates of the point which divides the line segment joining the points $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$.

OR

Find the area of the triangle whose vertices are $(7,-2),(5,1)$ and $(1,4)$
V. Answer the following questions.
[$4 \times 4=16]$
34. Find the solution of the given pair of linear equations by graphical method.
$x+y=5$
$2 x+y=7$
35. State and prove 'Basic Proportionality Theorem' (Thales Theorem).
36. As observed from the top of a building standing vertically on the ground, the angle of depression of a point ' C ' on the ground is 60°. From the foot (B) of the building when moved through point ' C ' in a straight line and observe the top of the building, from point ' P ', if the angle of elevation has to be 30° (as shown in the figure) then show that the distance moved from ' C ' to ' P ' is twice the distance BC.

37. The sum of first 'n' terms of an arithmetic progression is 222 and sum of its first ($\mathrm{n}-1$) terms is 187 . If the first term of the progression is 2 , then find the arithmetic progression.

OR

The last term of an arithmetic progression consisting of 12 terms is 37. If the sum of the two middle terms of the progression is 41 , then find the arithmetic progression and also the sum of the terms of the arithmetic progression.

VI. Answer the following question.

38. A metal memento has to be prepared by placing a solid sphere on a solid cylinder as shown in the figure. Find quantity of the metal required to prepare this memento, such that the radius of the cylinder is 6 cm and its height is 14 cm and the radius of the sphere is 2.1 cm . And also calculate the cost of painting the surface of the sphere with golden colour at the rate of 10 paise per cm^{2}.

