Government of Karnataka

Department of School Education and Literacy

 OFFICE OF THE DEPUTY DIRECTOR, KOLAR DISTRICT, KOLAR(oses

2022-23

MATHEMATICS MADE EASY We can do it!

-: Guidance :-
Sri. Krishnamurthy
Deputy Director
Dept. of School Education and Literacy Kolar District, Kolar.

*

-: SSLC Exam Nodal Officer :-
Sri. C.R. Ashok
Education Officer, Office of the Deputy Director, Kolar District, Kolar.

*
 -: Concept :-

Sri. V. Krishnappa

Subject Inspector (Mathematics)
Office of the Deputy Director, Kolar District, Kolar.

*

Resource Persons

Sri. P.N.Balakrishna Rao
Asst. Master,
G.H.S. Nambihalli,

Srinivasapura Taluk

Sri. M.H. Shantha Kumar
Asst. Master,
G.H.S. Kudiyanur, Malur Taluk

Sri.B.R. Madhusudana
Asst. Master, G.J.C. Tayalur, Mulbagal Taluk

1. ARITHMETIC PROGRESSIONS

Example

1. Find the $12^{\text {th }}$ term of an A.P, 2, 5, 8, 11, . using formula

$$
\begin{aligned}
& \mathrm{a}=2, \quad \mathrm{~d}=5-2=3, \quad \mathrm{n}=12 \\
& \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& \mathrm{a}_{12}=2+(12-1) 3 \\
& \quad=2+33=35 \\
& \therefore \mathbf{a}_{\mathbf{1 2}}=\mathbf{3 5}
\end{aligned}
$$

Marks:-2
2. Find the $20^{\text {th }}$ term A.P, $61,58,55, \ldots \ldots$. using formula.

$$
\begin{array}{lll}
\mathrm{a}=61 & \mathrm{~d}=58-61=-3, & \mathrm{n}=20 \\
\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} & \\
\mathrm{a}_{20}=61+(20-1)(-3) & \\
=61+19(-3) & \\
& =61-57=4 \quad & \therefore \mathbf{a}_{\mathbf{2 0}}=\mathbf{4}
\end{array}
$$

Problems to practice

1) Find the $30^{\text {th }}$ term of the Arithmetic

Progression 3, 7, 11, -----------
3) Find the $20^{\text {th }}$ term of the A.P given

72, 68, 64,

Example

1. Find the sum of first 20 terms of an arithmetic series $2+7+12+$ \qquad using
the formula. $a=2, d=5, \quad n=20$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
& \mathrm{S}_{20}=\frac{20}{2}[2(2)+(20-1)(5)]=10[4+95] \\
& \quad=10[99]=990 \\
& \therefore \mathbf{S}_{\mathbf{2 0}}=\mathbf{9 9 0}
\end{aligned}
$$

2) Find the $18^{\text {th }}$ term of the A.P given $5,8,11,14$,
3) Find the $12^{\text {th }}$ term of the A.P given $-2,-7,-12,-17$,

Problems to solve practice

1) Find the sum of an arithmetic series upto 30 terms $2+7+12+$. \qquad
2) Find the sum of first 15 terms of the A.P $3,7,11,15$, \qquad
3) Find the sum of first 10 terms of an A.P $5,8,11,14$, \qquad

2. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Examples

1. Solve the following pair of linear equations by elimination method.
$x+y=8$ and $2 x-y=7$
$x+y=8$
$\frac{2 x-y=7}{3 x=15} \quad$ (addition)
$x=5$
Substituting the value of x in $x+y=8$

$$
\begin{gathered}
5+y=8 \\
y=3
\end{gathered}
$$

$\therefore x=5$ and $y=3$
2. Solve by elimination method: $x+y=5$
and $\quad 2 x+3 y=12$

$$
\begin{align*}
x+y= & 5---(1) \\
& 2 x+3 y=12 \tag{2}
\end{align*}
$$

Multiplying the equation (1) by 2 we get
$2 x+2 y=10-----(3)$
Solving equation (2) and (3)

$$
\begin{aligned}
2 x+\quad 3 y=12 \\
(-) 2 x+(-) 2 y=(-) 10
\end{aligned} \quad \text { (subtraction) }
$$

Substitute the value of y in $x+y=5$, we get $x=3$
$\therefore x=3$ and $y=2$

Problems to practice

1) Solve the following pair of linear equations by elimination method

$$
2 x+y=5 \text { and } x+y=4
$$

3) Solve the following pair of linear equations by elimination method

$$
3 x+2 y=11 \text { and } 5 x-2 y=13
$$

5) Solve the following pair of linear equations by elimination method

$$
x+y=5 \text { and } 2 x-3 y=5
$$

2) Solve the following pair of linear equations by elimination method
$2 \mathrm{x}+\mathrm{y}=8$ and $\mathrm{x}-\mathrm{y}=1$
3) Solve the following pair of linear equations by elimination method

$$
2 x+y=11 \text { and } x+y=8
$$

6) Solve the following pair of linear equations by elimination method

$$
3 x+2 y=15 \text { and } 2 x-3 y=-4
$$

Example

1) Solve graphically:
$2 x+y=8$ and $x-y=1$.

$y=x-1$		
x 0 1 y -1 0		

8) Solve graphically:
$x+y=5$ and $x+2 y=6$
$x+y=5$
$x+2 y=6$
$y=5-x$
$2 y=6-x$

x	0	5
y	5	0

x	0	6
y	3	0

Solution:
Marks:-4

$$
\therefore x=3 \text { and } y=2
$$

1) Solve graphically $x+3 y=6$

$$
2 x-y=5
$$

3) Solve graphically $3 x+2 y=12$

$$
x-y=-1
$$

2) Solve graphically $3 x-y=1$

$$
x+y=7
$$

4) Solve graphically $2 x+y=6$

$$
2 x-y=2
$$

3. CONSTRUCTIONS

Example

1) Draw a circle of radius 3 cm and construct two tangents to the circle from a point 7 cm away from the centre.

2) Draw a circle of radius 4 cm and construct a tangent at any point ' P ' on the circle.

3) Draw a circle of radius 3.5 cm and construct two tangents to it such that the angle between the tangents is 70°

Problems to construct

1) Draw a circle of radius 4.5 cm and construct two tangents to the circle from a point 8 cm away from the centre.
2) Draw a circle of radius 4 cm and construct two tangents to the circle from a point 9 cm away from the centre.
3) Draw a circle of radius 5 cm and construct a tangent at any point ' P ' on the circle.
Example
1. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm , then construct a triangle similar to it whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle.

2) Draw a circle of radius 4 cm and construct two tangents such that the angle between the tangents is 60°
3) Draw a circle of radius 4.5 cm and construct two tangents such that the angle between the tangents is 80°
2. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then construct a triangle similar to it whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Problems for practice

1) Construct a triangle similar to triangle ABC in which $A B=4 \mathrm{~cm}, \angle A B C=60^{\circ}$ and $B C=6 \mathrm{~cm}$ such that each side of the new triangle is $\frac{3}{4}$ of the corresponding sides of the triangle ABC .
2) Construct a triangle similar to triangle ABC in which $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$, and $\mathrm{AC}=4.5 \mathrm{~cm}$ such that each side of the new triangle is $\frac{3}{5}$ of the corresponding sides of the triangle ABC.
3) Draw a triangle DEF with $\mathrm{EF}=7 \mathrm{~cm}$, $\angle D E F=60^{\circ}$ and $D E=6 \mathrm{~cm}$ then construct a triangle whose sides are $\frac{4}{3}$ of the corresponding sides of the triangle DEF.
4) Construct the triangle with sides $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm , then construct the similar triangle which is $\frac{5}{3}$ of the given triangle.

4. COORDINATE GEOMETRY

Example

Marks:-2

1) Find the distance between the points $(3,2)$ and $(-5,8)$.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-5-3)^{2}+(8-2)^{2}} \\
& =\sqrt{(-8)^{2}+(6)^{2}} \\
& =\sqrt{(64+36)} \\
& =\sqrt{100} \\
& \therefore \boldsymbol{d}=\mathbf{1 0} \text { units }
\end{aligned}
$$

2) If the distance between the points $(4, p)$ and $(1,0)$ is 5 units, find the value of ' p ' $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$5=\sqrt{(1-4)^{2}+(0-p)^{2}} \quad$ [Squaring on both sides]
$25=(-3)^{2}+p^{2}$
$25=9+p^{2}$
$25-9=p^{2}$
$16=p^{2}$
$\therefore \boldsymbol{p}= \pm 4$

Problems to practice

1) Find the distance between $A(8,3)$ and $B(2,11)$ using distance formula.
$3)$ Find the distance between $(3,4)$ and $(4,7)$ using distance formula.

Example

1. Find the co-ordinates of the midpoint of the line segment joining the points $(0,8)$ and $(4,0)$.
$P(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$P(x, y)=\left(\frac{0+4}{2}, \frac{8+0}{2}\right)$
$P(x, y)=\left(\frac{4}{2}, \frac{8}{2}\right)$
$P(x, y)=(2,4)$
2) Find the distance between $(-5,7)$ and $(-1,3)$ using distance formula.
3) Find the distance between $P(1,2)$ and $Q(7,10)$ using distance formula.

Problems to practice

1) Find the co-ordinates of the midpoint of the line segment joining the points $(5,4)$ and $(3,6)$.
2) Find the co-ordinates of the midpoint of the line segment joining the points $M(-2,5)$ and $N(6,-3)$.

5. QUADRATIC EQUATIONS

Example

1. Solve $2 x^{2}-5 x+3=0$ by using the quadratic formula.

$$
a=2, \quad b=-5, \quad c=3
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
2. Solve $x^{2}+2 x+4=0$ by using the quadratic formula.

$$
\begin{array}{r}
\quad a=1, \quad b=2, \quad c=4 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

$$
\begin{array}{l|l}
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(3)}}{2(2)} & x=\frac{-(2) \pm \sqrt{(2)^{2}-4(1)(4)}}{2(1)} \\
x=\frac{5 \pm \sqrt{25-24}}{4} & x=\frac{-2 \pm \sqrt{4-16}}{2} \\
x=\frac{5 \pm 1}{4} & x=\frac{-2 \pm \sqrt{-12}}{2} \\
x=\frac{5+1}{4} \text { or } \frac{5-1}{4} & x=\frac{-2 \pm \sqrt{4(-3)}}{2} \\
\boldsymbol{x}=\frac{\mathbf{3}}{2} \text { or } \boldsymbol{x}=\mathbf{1} & x=\frac{2(-1 \pm \sqrt{-3})}{2} \\
& x=(-\mathbf{1}+\sqrt{-\mathbf{3}}) \text { or } \boldsymbol{x}=(-\mathbf{1}-\sqrt{-\mathbf{3}})
\end{array}
$$

Problems for practice

1) Find the roots of the quadratic equation $x^{2}+3 x-5=0$ using quadratic formula.
2) Find the roots of the quadratic equation $x^{2}+2 x-15=0$ using quadratic formula.
3) Find the roots of the quadratic equation $4 x^{2}-12 x+9=0$ using quadratic formula.
4) Find the roots of the quadratic equation $2 x^{2}-3 x+5=0$ using quadratic formula.

Example

1. Find the discriminant of the quadratic equation
$4 x^{2}-12 x+9=0$ and write the nature of roots.
$a=4, \quad b=-12$,

$$
c=9
$$

$b^{2}-4 a c=(-12)^{2}$
$-4(4)(9)$

$$
=144-144
$$

$b^{2}-4 a c=0$
\therefore Roots are Real and Equal
2. Find the discriminant of the quadratic equation
$x^{2}+2 x-15=0$ and write the nature of roots.

$$
\begin{gathered}
a=1, \quad b=2, \\
c=-15 \\
b^{2}-4 a c=(2)^{2} \\
\\
=4(1)(-15) \\
=4+60 \\
=
\end{gathered}
$$

Here $b^{2}-4 a c>0$

\therefore Roots are Real and Distinct

3. Find the discriminant of the quadratic equation $x^{2}-x+12=0$ and write the nature of roots.

$$
\begin{gathered}
a=1, \quad b=-1, \\
c=12 \\
b^{2}-4 a c=(-1)^{2} \\
\\
=4(1)(12) \\
=1-48 \\
=-47
\end{gathered}
$$

Here $b^{2}-4 a c<0$

\therefore The equation has no real

 roots.1) Find the discriminant of the quadratic equation $x^{2}+4 x+4=0$ and write the nature of roots.
2) Find the discriminant of the quadratic equation $x^{2}+x-6=0$ and write the nature of roots.
3) Find the discriminant of the quadratic equation $x^{2}+2 x+1=0$ and write the nature of roots.
4) Find the discriminant of the quadratic equation $2 x^{2}-15 x+18=0$ and write the nature of roots.

6. PROBABILITY

Examples

1. A die, numbered from 1 to 6 on its each face is rolled once. Find the probability of getting an odd number.
Number of all possible outcomes,

$$
n(S)=6
$$

Let A be the event of getting an odd number.
$\therefore n(A)=3$

$$
\begin{aligned}
P(A) & =\frac{n(A)}{n(S)} \quad=\frac{3}{6} \\
& \therefore \boldsymbol{P}(\boldsymbol{A})=\frac{\mathbf{1}}{\mathbf{2}}
\end{aligned}
$$

2. A box contains 4 red marbles, 8 green marbles and 5 white marbles. One marble is taken out at random. Find the probability of the marble taken out to be red.
Number of all possible outcomes,

$$
n(S)=4+5+8=17
$$

Let A be the event of taking out the red marble.
$\therefore n(A)=4$

$$
\begin{aligned}
& P(A)=\frac{n(A)}{n(S)} \\
& \therefore \boldsymbol{P}(\boldsymbol{A})=\frac{\mathbf{4}}{\mathbf{1 7}}
\end{aligned}
$$

Problems for practice

1) A cubical die whose faces are marked from 1 to 6 is rolled once, find the probability of getting a perfect square number.
2) 12 defective pens got mixed with 132 good ones. One pen is taken randomly from the lot. Find the probability of getting a defective pen.
3) Two identical coins are tossed simultaneously, find the probability of getting at least one head.
4) Two dice, numbered from 1 to 6 on their each face are together rolled once. Find the probability of getting the numbers whose sum is greater than 8 .

7. REAL NUMBERS

Example

1. Prove that $5+\sqrt{2}$ is an irrational number.

Proof : Let $5+\sqrt{2}$ is a rational number.
$=>5+\sqrt{2}=\frac{p}{q}$ where $q \neq 0, p, q \in Z$

$$
\begin{aligned}
& \sqrt{2}=\frac{p}{q}-5 \\
& \sqrt{2}=\frac{p-5 q}{q}
\end{aligned}
$$

Irrational number \neq Rational number

$$
\text { LHS } \neq \text { RHS }
$$

Our assumption is wrong.
$\therefore 5+\sqrt{2}$ is an irrational number.

Marks:-2
2. Prove that $2-\sqrt{3}$ is an irrational number.

Proof : Let $2-\sqrt{3}$ is a rational number.
$\Rightarrow 2-\sqrt{3}=\frac{p}{q}$ where $q \neq 0, p, q \in Z$

$$
\begin{aligned}
2-\frac{p}{q} & =\sqrt{3} \\
\frac{2 q-p}{q} & =\sqrt{3}
\end{aligned}
$$

Rational number \neq Irrational number

$$
\text { LHS } \neq \text { RHS }
$$

Our assumption is wrong.
$\therefore 2-\sqrt{3}$ is an irrational number.

Problems for practice

1) Prove that $3+\sqrt{5}$ is an irrational number.
2) Prove that $5-\sqrt{7}$ is an irrational number.

Example

1. Prove that $\sqrt{2}$ is an irrational number.

Proof: Let $\sqrt{2}$ is a rational number.
$\sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}$ where $q \neq 0, p$ and q are co-prime
$\sqrt{2} q=p \quad$ squaring on both sides
$2 q^{2}=p^{2}$
$\therefore p^{2}$ is divisible by 2 and also p is divisible by 2

$$
\begin{equation*}
\Rightarrow p=2 r \tag{2}
\end{equation*}
$$

Substitute equation (3) in (1)

$$
\begin{align*}
& 2 q^{2}=(2 r)^{2} \\
& 2 q^{2}=(2 r)^{2} \\
& 2 q^{2}=4 r^{2} \\
& \quad q^{2}=2 r \tag{4}
\end{align*}
$$

$\therefore q^{2}$ is divisible by 2 and also q is divisible by 2
(2) and (4) => Both p and q have a common factor.
\therefore both p and q are not co-primes. It is contradictory to our assumption.
$\therefore \sqrt{2}$ is an irrational number.

1) Prove that $\sqrt{3}$ is an irrational number.
2) Prove that $\sqrt{5}$ is an irrational number.
8. INTRODUCTION TO TRIGONOMETRY

Example

1. If $5 \sin \theta=3$ then find $\cos \theta$ and $\tan \theta$.
$\sin \theta=\frac{3}{5}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\mathrm{BC}^{2}=5^{2}-3^{2}$
$\mathrm{BC}^{2}=25-9$
$\mathrm{BC}^{2}=16$

$\mathrm{BC}=\sqrt{16}=4$

$$
\cos \theta=\frac{4}{5} \quad \tan \theta=\frac{3}{4}
$$

2. Evaluate:

$$
\sin 18^{\circ}-\cos 72^{\circ}-\cos 18^{\circ}+\sin 72^{\circ}
$$

$=\sin 18^{\circ}-\cos 72^{\circ}-\cos 18^{\circ}+\sin 72^{\circ}$
$=\sin \left(90^{\circ}-72^{\circ}\right)-\cos 72^{\circ}-\cos \left(90^{\circ}-\right.$ $\left.72^{0}\right)+\sin 72^{\circ}$
$=\cos 72^{\circ}-\cos 72^{\circ}-\sin 72^{\circ}+\sin 72^{\circ}$ $=0$

Problems for practice

1) From the figure find the value of $\sin \theta$ and $\tan \alpha$

2) If $\sin \theta=\frac{5}{13}$ then find $\cos \theta$

3) Find the value of $\sin 30^{0}+\cos 60^{\circ}$
4) Evaluate: $\tan 28^{0} \cdot \cot 62^{0}-\sin 72^{0} \cdot \cos 18^{0}$

9. POLYNOMIALS

Example
Marks:-2

1. Find the quadratic polynomial having zeroes 5 and 3 .

Let $\alpha=5$ and $\beta=3$
$\alpha+\beta=8$ \{sum of the roots\}
$\alpha \beta=15 \quad$ \{product of the roots $\}$
The quadratic polynomial is of the form
$x^{2}-(\alpha+\beta) x+\alpha \beta$
\therefore The polynomial is $x^{2}-8 x+15$
Problems for practice

1. Frame a quadratic polynomial given sum of the zeros 4 and product of the zeros as 1

Example

2. Find the quadratic polynomial if, sum and product of its zeroes are -5 and 4 respectively.

Marks:-3

1. Find the quotient and the remainder when $3 x^{3}+x^{2}+2 x+5$ is divided by $x^{2}+2 x+1$.

\therefore Quotient $=3 x-5$ and
Remainder $=9 x+10$
2. Check whether the polynomial $(t-3)$ is a factor of $t^{2}-6 t+9$ by suitable method.

$t-3$	
$t-3$	$\begin{gathered} t^{2}-6 t+9 \\ t^{2}-3 t \\ (-) \quad(+) \end{gathered}$
	$\begin{aligned} & -3 t+9 \\ & -3 t+9 \\ & (+) \quad(-) \end{aligned}$
	0

Here the remainder $=0$
$\therefore(t-3)$ is a factor of $t^{2}-6 t+9$.

Problems for practice

1) Divide $p(x)=x^{3}-3 x^{2}+3 x-5 \quad$ by $g(x)=x^{2}-x+1$ and find the quotient and remainder.
2) Divide $p(x)=x^{3}+3 x^{2}+3 x+1 \quad$ by $g(x)=x+1$ and find the quotient and remainder.
10. CIRCLES

Theorems
A) Prove that "the lengths of tangents drawn from an external point to a circle are equal."

Given : ' O ' is the centre of the circle, ' P ' is an external point. AP and BP are the tangents

To Prove : AP = BP
Construction: Join OA, OB and OP.

Proof:

In $\triangle O Q P$ and $\triangle O R P$

$$
\begin{array}{lc}
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ} & {[\text { Theorem 4.1] }} \\
\mathrm{OP}=\mathrm{OP} & {[\text { Common side }]} \\
\mathrm{OA}=\mathrm{OB} & {[\text { Radii of same circle }]} \\
\triangle O A P \cong \triangle O B P & {[\text { RHS Postulate }]} \\
\mathrm{AP}=\mathrm{BP} & {[\text { CPCT }]}
\end{array}
$$

B) Prove that " the tangent at any point of a circle is perpendicular to the radius through the point of contact."

Given : XY is the tangent at P to the circle with centre To Prove : OP \qquad XY
Construction : Mark Any point 'Q' on XY, join OQ and it cuts the circle at R
Proof: OR < OQ

$$
\mathrm{OR}=\mathrm{OP} \quad(\text { Radii of the same circle })
$$

$\therefore \quad \mathrm{OP}<\mathrm{OQ}$
This holds good for all the points on XY
$\therefore \mathrm{OP}$ is the least distance

$$
=>O P_{~}
$$

11. STATISTICS

Example
Marks:-3

1. The marks scored by 30 Students of class X, in the Mathematics are given below. Draw a less than type ogive.

Marks	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of students	5	3	11	2	9

Marks	Number of students
Less than 20	5
Less than 40	$5+3=8$
Less than 60	$8+11=19$
Less than 80	$19+2=21$
Less than 100	$21+9=30$

6. Heights of 60 children are given below. Draw a more than type Ogive.

Height (in cm)	$90-100$	$100-110$	$110-120$	$120-130$	$130-140$	$140-150$
Number of children	5	10	7	24	11	3

Height(in cm)	Number of children				
More than or equal to 90	60	$	$	More than or equal to 100	$60-5$ $=55$
:---:	:---:				
More than or equal to 110	$55-10$ $=45$				
More than or equal to 120	$45-7$ $=38$				
More than or equal to 130	$38-24$ $=14$				
More than or equal to 140	$14-11$ $=3$				

Problems for practice

1) During the medical check-up of 35 students of a class, their weights were recorded as follows. Draw a less than type Ogive for the given data.

Weights (in kg)		Number of students
Less than	40	3
Less than	45	5
Less than	50	9
Less than	55	14
Less than	60	28
Less than	65	32
Less than	70	35

3) The marks obtained by 40 students in Mathematics examination held in the school is given. Draw the less than type of Ogive.

Marks obtained	No of students
Less than 10	2
Less than 20	5
Less than 30	8
Less than 40	12
Less than 50	15
Less than 60	25
Less than 70	35
Less than 80	40

2) Details of daily income of 50 workers in a food industry are given below. Draw a more than type Ogive for the following data.

Daily Income (in Rs.)	Number of workers
More than or equal to 80	50
More than or equal to100	38
More than or equal to 120	24
More than or equal to 140	16
More than or equal to 160	10
More than or equal to 180	0

4) The yield of rice in the fields in a village is given. Draw more than type of Ogive to the data.

Yield (tons)	Number of farmers
>8	80
>12	60
>16	55
>20	45
>24	40
>28	35
>32	20
>36	15
>40	10

1) Find mean for the following frequency distribution.

Class Interval	$0-$ 10	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50
Frequenc y	3	5	9	5	3
Class Interval	Frequenc \mathbf{y}	\boldsymbol{x}	$\boldsymbol{f x}$		
$0-10$	3	5	15		
$10-20$	5	15	75		
$20-30$	9	25	225		
$30-40$	5	35	175		
$40-50$	3	45	135		
	$\mathbf{\Sigma f}=\mathbf{2 5}$		$\mathbf{\Sigma f} \boldsymbol{x}$ $\mathbf{= 6 2 5}$		

Mean $=\frac{\Sigma f x}{\Sigma f}=\frac{625}{25}$

$$
\therefore \text { Mean }=\mathbf{2 5}
$$

2) Find the Median of the following frequency distribution.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	4	7	13	9	3

Class Interval	Frequency	Cumulative Frequency
$0-10$	4	4
$10-20$	7	$4+7=\mathbf{1 1}$
$\mathbf{2 0 - 3 0}$	$\mathbf{1 3}$	$11+13=24$
$30-40$	9	$24+9=33$
$40-50$	3	$33+3=36$

$n=36, \quad \frac{n}{2}=18, \quad f=13, \quad c f=11$, $h=10, \quad l=20$

Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$

$$
\text { Median }=20+\left[\frac{18-11}{13}\right] \times 10
$$

Median $=20+5.38$
\therefore Median $=\mathbf{2 5} .38$

Problems for practice

1) Find the average or mean of the given data.

Class Interval	Frequency
$10-20$	2
$20-30$	3
$30-40$	7
$40-50$	8
$50-60$	5
	$\boldsymbol{\Sigma f}=25$

3) Find the average or mean of the given data.

Class Interval	Frequency
$1-5$	2
$6-10$	3
$11-15$	5
$16-20$	3
$21-25$	2
	$\boldsymbol{\Sigma f}=15$

3. Find the mode of the following frequency distribution.

Class interval	Frequency
$30-40$	4
$40-50$	7
$50-60$	9
$60-70$	11
$70-80$	6
$80-90$	2

$$
f_{1}=11, \quad f_{0}=9, \quad f_{2}=6, \quad l=60, \quad h=10
$$

Mode $=l+\left[\frac{f_{1-f_{0}}}{2 f_{1}-f_{0}-f_{2}}\right] \times h$
Mode $=60+\left[\frac{11-9}{2(11)-9-6}\right] \times 10$
Mode $=60+2.86$
\therefore Mode $=62.86$
2) Find the median for the following data.

Class Interval	Frequency
$50-60$	12
$60-70$	14
$70-80$	8
$80-90$	6
$90-100$	10

4) Find the median for the following data.

Class Interval	Frequency
$20-40$	7
$40-60$	15
$60-80$	20
$80-100$	8

1) Find the mode of the following data.

Class interval	Frequency
$1-3$	6
$3-5$	9
$5-7$	15
$7-9$	9
$9-11$	1

2) Find the mode of the following data.

Class interval	Frequency
$10-25$	2
$25-40$	3
$40-55$	7
$55-70$	6
$70-85$	6
$85-100$	6

3) Find the mode of the following data.

Class interval	Frequency
$1-3$	7
$3-5$	8
$5-7$	2
$7-9$	2
$9-11$	1

13. THEOREMS

1. State and prove the Basic proportionality (Thales') theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Data: $\ln \triangle \mathrm{ABC}$ DE $\| \mathrm{BC}$.

To Prove : $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Draw DM $\perp \mathrm{AC}$ and $E N \perp A B$. Join BE and CD .

Proof:
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN}} \quad\left(\because\right.$ Area of $\Delta=\frac{1}{2} \times$ base \times height $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CED})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}} \quad\left(\because\right.$ Area of $\Delta=\frac{1}{2} \times$ base \times height $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CED})}=\frac{\mathrm{AE}}{\mathrm{EC}}$
But $\triangle \mathrm{BDE}$ and $\triangle \mathrm{CED}$ are standing on the same base DE and between $\mathrm{DE} \| \mathrm{BC}$.
$\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CED})$ \qquad
\therefore from equations (1), (2) and (3)
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

Hence the proof.
2. State and prove the Pythagoras theorem.
" In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on other two sides ".

Data : $\triangle \mathrm{ABC}$ is a right triangle and $\angle \mathrm{B}=90^{\circ}$
To Prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Construction: Draw BD $\perp \mathrm{AC}$
Proof: In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{D}=\angle \mathrm{B}=90^{\circ} \quad(\because$ Data and Construction $)$
$\angle \mathrm{A}=\angle \mathrm{A} \quad(\because$ Common angle $)$
$\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC} \quad(\because$ AAA Similarity Criterion)
$\therefore \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}} \quad(\because$ Proportional sides $)$
AC. $\mathrm{AD}=\mathrm{AB}^{2}$------> (1)
Similarly
In $\triangle B D C$ and $\triangle A B C$
$\angle \mathrm{D}=\angle \mathrm{B}=90^{\circ} \quad(\because$ Data and Construction)
$\angle \mathrm{C}=\angle \mathrm{C} \quad(\because$ Common angle)
$\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC} \quad(\because$ AAA Similarity Criterion)
$\therefore \frac{D C}{B C}=\frac{B C}{A C} \quad(\because$ Proportional sides $)$
AC. $\mathrm{DC}=\mathrm{BC}^{2}$ \qquad
$\mathrm{AC} \cdot \mathrm{AD}+\mathrm{AC} \cdot \mathrm{DC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}[\because \mathrm{By}$ adding (1) and (2) $]$
$\mathrm{AC}(\mathrm{AD}+\mathrm{DC})=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$A C \times A C=A B^{2}+B C^{2} \quad(\because$ from fig. $A D+D C=A C)$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Hence the proof.
3. Prove that "The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides".

Data: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\Rightarrow \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
To Prove : $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Construction : Draw AM $\perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}$.
Proof: $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}}\left(\because\right.$ Area of $\Delta=\frac{1}{2} \times$ base \times height $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}}$
In $\triangle A B M$ and $\triangle P Q N$
$\angle \mathrm{B}=\angle \mathrm{Q} \quad(\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR})$
$\angle \mathrm{M}=\angle \mathrm{N}=90^{\circ} \quad(\because$ Construction)
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{PQN} \quad(\because$ AA Similarity criterion)
$\therefore \frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
But $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R} \cdots-\cdots(3)(\because$ Data $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}} \quad(\because$ substituting eqs. (2) and (3) in (1))
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}$
Now from eq.(3)
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Hence the proof.
4. Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (proportion) and hence the two triangles are similar".

Data: In $\triangle A B C$ and $\triangle D E F$

$$
\begin{aligned}
\mid \underline{A} & =\mid \underline{D} \\
\mid \underline{B} & =\mid \underline{E} \\
\mid \underline{C} & =\mid \underline{F}
\end{aligned}
$$

To prove: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Construction: Mark points P and Q on DE and DF such that $\mathrm{DP}=\mathrm{AB}$ and

$$
\mathrm{DQ}=\mathrm{AC} \text {. Join } \mathrm{PQ} \text {. }
$$

Proof: In $\triangle A B C$ and $\triangle D P Q$
$|\underline{A}=| \underline{D}$
[Data]
$\mathrm{AB}=\mathrm{DP}$
[Construction]
$\mathrm{AC}=\mathrm{DQ}$
$\therefore \triangle A B C \cong \triangle D P Q$
$B C=P Q$
$|\underline{B}=| \underline{P}$
$|\underline{B}=| \underline{E}$
$|\underline{P}=| \underline{E}$
[Axiom 1]
$P Q \| E F$
$\frac{D P}{D E}=\frac{P Q}{E F}=\frac{D Q}{D F} \quad[$ Corollary of BPT]
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} \quad$ [From (1) and construction]

\therefore Hence the proof.

IMPARTANT DEFINITIONS, STATEMENTS \& FORMULAS

1) State 'Basic proportionality theorem' (Thale's Theorem)

The line drawn parallel to any one side of the triangle divides the other two sides proportionally.
2) State 'Pythagoras theorem'.

In right angled triangle the square of the hypotenuse is equal to sum of the squares of the other two sides.
3) State Euclid's Division Lemma.

Given positive integers a and b, there exist unique integers q and r satisfying $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<\mathrm{b}$.
4) State 'Fundamental theorem of arithmetic.

Every composite number can be expressed as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur.
5) Define Arithmetic Progression.

Arithmetic Progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term, except the first term.
6) Define tangent of a circle.

The straight line that intersects the circle at only one point is called a tangent.
7) Define secant of a circle.

The straight line that intersects the circle at two points is said to be secant to the circle.

PROBABILITY

Probability of occurrence of an event ' A '

1) Probability of a Sure Event is One
2) Sum of the probabilities of all primary events of an experiment is One
$P(A)=\frac{\text { Number of outcomes favourable to } A}{\text { Number of all possible outcomes }}$
i.e., $P(A)=\frac{n(A)}{n(S)}$
3) Probability of an Impossible Event is Zero

> POLYNOMIALS

Sl. No	Polynomials	Standard form	Degree
1	Linear polynomial	$\mathrm{ax}+\mathrm{b}$	1
2	Quadratic polynomial	$a x^{2}+b x+c=0$	2
3	Cubic polynomial	$a x^{3}+b x^{2}+c x+d=0$	3

TRIGONOMETRY

Values of Trigonometric ratios of Standard Angles.						Trigonometric Ratios of Complementary Angles
$\xrightarrow{\text { Angles }} \underset{\text { Ratios } \downarrow}{ }$	0°	30°	45 ${ }^{\circ}$	60°	90°	
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\sin \left(90^{\circ}-A\right)=\cos A$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\cos \left(90^{\circ}-A\right)=\sin A$
$a n$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined	$\tan \left(90^{\circ}-A\right)=\cot A$
cosec	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\operatorname{cosec}\left(90^{\circ}-A\right)=\sec A$
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined	$\sec \left(90^{\circ}-A\right)=\operatorname{cosec} A$
cot	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$\cot \left(90^{\circ}-A\right)=\tan A$

STATISTICS

Direct method	$\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}} \quad$ OR $\bar{x}=\frac{\sum f x}{N}$	
Assumed Mean method	$\bar{x}=a+\frac{\sum f_{i} d_{i}}{\sum f_{i}}$	
Step-deviation method	$\bar{x}=a+h\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right)$	
Mode of the Grouped data	$l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$	
Median of the Grouped data	$l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$	
Empirical relationship between the three measures of central tendency	3 Median = Mode +2 Mean	

SURFACE AREA AND VOLUME OF SOLIDS

Name of the Solid	C.S.A	T.S.A	Volume
Cylinder	$2 \pi r h$	$2 \pi r(r+h)$	$\pi r^{2} h$
Cone	$\pi r l$	$\pi r(r+l)$	$\frac{1}{3} \pi r^{2} h$
Sphere	$4 \pi r^{2}$	$l=\sqrt{r^{2}+h^{2}}$	$\frac{4}{3} \pi r^{3}$
Hemisphere	$2 \pi r^{2}$	$4 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$
Frustum of a Cone	$\pi\left(r_{1}+r_{2}\right) l$	$3 \pi r^{2}$	$\frac{1}{3} \pi h\left[r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right]$

