

Department of School Education and Literacy

OFFICE OF THE DEPUTY DIRECTOR, KOLAR DISTRICT, KOLAR

Weight (in kg)

-: Guidance :-Sri. Krishnamurthy

Deputy Director Dept. of School Education and Literacy Kolar District, Kolar.

*

-: SSLC Exam Nodal Officer :-

Sri. C.R. Ashok

Education Officer, Office of the Deputy Director, Kolar District, Kolar.

*

-: Concept :-

Sri. V. Krishnappa

Subject Inspector (Mathematics) Office of the Deputy Director, Kolar District, Kolar.

*

Resource Persons		
Sri. P.N.Balakrishna Rao	Sri. M.H. Shantha Kumar	Sri.B.R. Madhusudana
Asst. Master, G.H.S. Nambihalli, Srinivasapura Taluk	Asst. Master, G.H.S. Kudiyanur, Malur Taluk	Asst. Master, G.J.C. Tayalur, Mulbagal Taluk

1. ARITHMETIC PROGRESSIONS

Example	Marks:-2
1. Find the 12 th term of an A.P, 2, 5, 8, 11,	2. Find the 20^{th} term A.P, 61, 58, 55,
using formula	using formula.
a=2, d=5-2=3, n=12	a=61 $d=58-61=-3$, $n=20$
$a_n = a + (n-1)d$	$a_n = a + (n-1)d$
$a_{12}=2+(12-1)3$ = 2+33 = 35	$a_{20}=61 + (20-1)(-3)$
$\therefore a_{12} = 35$	= 61 + 19(-3)
$a_{12} - 55$	$= 61 - 57 = 4$ $\therefore a_{20} = 4$
Problems to practice	
1) Find the 30 th term of the Arithmetic	2) Find the 18 th term of the A.P given
Progression 3, 7, 11,	5, 8, 11, 14,
3) Find the 20 th term of the A.P given	4) Find the 12 th term of the A.P given
72, 68, 64,	-2, -7, -12, -17,
72,00,01,	2, 7, 12, 17,
Evenue	Problems to colve prostice
Example 1. Find the sum of first 20 terms of an	Problems to solve practice 1) Find the sum of an arithmetic series upto
arithmetic series 2+7+12+ using	$30 \text{ terms } 2 + 7 + 12 + \dots + \dots$
	50 ter mis 2 + 7 + 12 +
the formula. $a = 2$, $d = 5$, $n = 20$	
$S_n = \frac{n}{2} [2a + (n-1)d]$	2) Find the sum of first 15 terms of the A.P
$S_{20} = \frac{20}{2} [2(2) + (20 - 1)(5)] = 10[4 + 95]$	3, 7, 11, 15,
= 10[99] = 990	
$\therefore S_{20} = 990$	3) Find the sum of first 10 terms of an A.P
320 - 770	5, 8, 11, 14,
2. PAIR OF LINEAR EQUATIONS IN TWO VA	RIABLES
Examples	Marks:-2
Examples 1. Solve the following pair of linear equations	2. Solve by elimination method: $x + y = 5$
by elimination method.	and $2x + 3y = 12$
	$\begin{array}{cccc} x + y &= 5 & & (1) \end{array}$
x + y = 8 and $2x - y = 7$	2x + 3y = 12 (2)
$\frac{2x-x=7}{3x=15}$ (addition)	Multiplying the equation (1) by 2 we get
32-13	2x + 2y = 10 (3)
x=5	Solving equation (2) and (3)
Substituting the value of x in $x + y = 8$	$\begin{array}{rcl} & 2x + & 3y = & 12\\ & (-)2x + (-)2y = (-)10\\ & & (subtraction) \end{array}$
5 + y = 8	$\frac{(-)2x+(-)2y-(-)10}{y = 2}$ (subtraction)
y = 3	y – 2
$\therefore x = 5 and y = 3$	Substitute the value of y in $x + y = 5$,
	we get $x = 3$
	$\therefore x = 3 \text{ and } y = 2$
	3

Problems to construct	
1) Draw a circle of radius 4.5cm and construct two tangents to the circle from a point 8cm	2) Draw a circle of radius 4cm and construct two tangents such that the angle between the tangents is 60°
away from the centre.	tangents is 60 ⁰
3) Draw a circle of radius 4cm and construct two tangents to the circle from a point 9cm away from the centre.	4) Draw a circle of radius 4.5cm and construct two tangents such that the angle between the tangents is 80 ^o
5) Draw a circle of radius 5cm and construct a tangent at any point 'P' on the circle.	C'
Example	Marks:-3
1. Construct a triangle with sides 5cm, 6cm and 7cm, then construct a triangle similar to	2. Construct a triangle of sides 4cm, 5cm and 6cm and then construct a triangle similar to it $\sqrt{2}$
it whose sides are $\frac{3}{4}$ of the corresponding	whose sides are $\frac{7}{5}$ of the corresponding sides
sides of the first triangle.	of the first triangle.
Problems for practice	A A A A A A A A A A A A A A A A A A A
1) Construct a triangle similar to triangle ABC	2) Draw a triangle DEF with EF=7 cm,
in which AB =4 cm, \angle ABC=60° and BC= 6 cm	$\angle DEF=60^{\circ}$ and DE=6 cm then construct a
such that each side of the new triangle is $\frac{3}{4}$ of	triangle whose sides are $\frac{4}{2}$ of the
the corresponding sides of the triangle ABC.	corresponding sides of the triangle DEF.
3) Construct a triangle similar to triangle ABC in which BC=3cm, AB =6 cm, and AC=4.5cm	4) Construct the triangle with sides 4cm, 6cm and 8cm, then construct the similar triangle
such that each side of the new triangle is $\frac{3}{5}$ of	-
the corresponding sides of the triangle ABC.	3 of the Bron thangle.

4. COORDINATE GEOMETRY	
Example	Marks:-2
1) Find the distance between the points (3,2) and (-5,8).	2) If the distance between the points $(4, p)$ and $(1, 0)$ is 5 units, find the value of 'p'
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
$= \sqrt{(-5-3)^2 + (8-2)^2}$	$5 = \sqrt{(1-4)^2 + (0-p)^2}$ [Squaring on both sides]
$= \sqrt{(-8)^2 + (6)^2}$	$25 = (-3)^2 + p^2$
$=\sqrt{(64+36)}$	$25 = 9 + p^2$ $25 - 9 = p^2$
$=\sqrt{100}$	$16 = p^2$
$\therefore d = 10$ units	$\therefore p = \pm 4$
Problems to practice	
1) Find the distance between A(8,3) and B(2,11) using distance formula.	2) Find the distance between (-5,7) and (-1,3) using distance formula.
3) Find the distance between (3,4) and (4,7) using distance formula.	4) Find the distance between P(1,2) and Q(7,10) using distance formula.
Example	Problems to practice
1. Find the co-ordinates of the midpoint of the line segment joining the points (0, 8) and (4, 0). $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	1) Find the co-ordinates of the midpoint of the line segment joining the points (5, 4) and (3, 6).
(4, 0). $P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $P(x, y) = \left(\frac{0 + 4}{2}, \frac{8 + 0}{2}\right)$ $P(x, y) = \left(\frac{4}{2}, \frac{8}{2}\right)$ $P(x, y) = (2, 4)$	2) Find the co-ordinates of the midpoint of the line segment joining the points M(-2 , 5) and N(6, -3).
P(x,y)=(2, 4)	
5. QUADRATIC EQUATIONS	
Example	Marks:-2
1. Solve $2x^2 - 5x + 3 = 0$ by using the	2. Solve $x^2 + 2x + 4 = 0$ by using the
quadratic formula.	quadratic formula.
a = 2, b = -5, c = 3	a = 1, b = 2, c = 4
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	7

$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)^2}}{2(2)}$	3)	$-(2) \pm \sqrt{(2)}$	$(2)^2 - 4(1)(4)$	
x – <u>2(2)</u>		$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(1)(4)}}{2(1)}$		
$5 \pm \sqrt{25 - 24}$		$-2 + \sqrt{4} -$	16	
$x = \frac{5 \pm \sqrt{25 - 24}}{4}$		$x = \frac{-2 \pm \sqrt{4 - 16}}{2}$		
$x = \frac{5 \pm 1}{4}$		$2 \pm \sqrt{-1}$	<u>n</u>	
1		$x = \frac{-2 \pm \sqrt{-12}}{2}$		
$x = \frac{5+1}{4}$ or $\frac{5-1}{4}$				
		$x = \frac{-2 \pm \sqrt{4(-3)}}{2}$		
$x = \frac{3}{2} or x = 1$		2		
2		$r = \frac{2(-1 \pm \sqrt{-1})}{2}$	$x = \frac{2(-1 \pm \sqrt{-3})}{2}$	
		<i>x</i> – 2		
		$x = (-1 + \sqrt{-3})$	$(\overline{3})$ or $x = (-1 - \sqrt{-3})$	
Problems for practice				
1) Find the roots of the quadrat	=	2) Find the roo	2) Find the roots of the quadratic equation	
$x^2 + 3x - 5 = 0$ using quadratic			$4x^2 - 12x + 9 = 0$ using quadratic formula.	
3) Find the roots of the quadratic $x^2 + 2x - 15 = 0$ using quadr	-		ts of the quadratic equation	
$x^2 + 2x - 13 - 0$ using quau	alic IOI IIIuia.	$2x^2 - 3x + 5 =$	= 0 using quadratic formula.	
Example				
1. Find the discriminant of the	2. Find the disc		3. Find the discriminant of the	
quadratic equation $4\pi^2$ 12 π + 0 = 0 and comits	quadratic equa $x^2 + 2x - 15$		quadratic equation $x^2 - x + 12 = 0$ and write	
$4x^2 - 12x + 9 = 0$ and write the nature of roots.	$4x^2 - 12x + 9 = 0$ and write $x^2 + 2x - 15$ the nature of roots.		$x^2 - x + 12 = 0$ and write the nature of roots.	
			a = 1, b = -1,	
a = 4, b = -12,	a=1, b=2,		c = 12	
$a = 4, b = -12, \\ c = 9$		<i>2,</i> = −15	$b^2 - 4ac = (-1)^2$	
$b^2 - 4ac = (-12)^2$	$b^2 - 4ac = ($		b = 4ac = (-1) - 4(1)(12)	
$ \begin{array}{r} b - 4ac - (-12) \\ - 4(4)(9) \end{array} $		(-15)	= 1 - 48	
= 144 - 144		+ 60	= -47	
$b^2 - 4ac = 0$	= 64	-	Here $b^2 - 4ac < 0$	
∴ Roots are Real and Equal	Here $b^2 - 4ac$	> 0	\therefore The equation has no real	
	∴ Roots are Rea	l and Distinct	roots.	
1) Find the discriminant of the quadratic 2) Find the discriminant of the quadratic				
equation $x^2 + 4x + 4 = 0$ and write the nature		-	+ $2x + 1 = 0$ and write the	
of roots.		nature of roots.		
3) Find the discriminant of the quadratic				
equation $x^2 + x - 6 = 0$ and write the nature		4) Find the discriminant of the quadratic equation $2x^2 - 15x + 18 = 0$ and write the		
of roots.		nature of roots.		
8				

6. PROBABILITY	
Examples	Marks:-2
1. A die, numbered from 1 to 6 on its each face is rolled once. Find the probability of getting an odd number.	2. A box contains 4 red marbles, 8 green marbles and 5 white marbles. One marble is taken out at random. Find the probability of the marble
Number of all possible outcomes,	taken out to be red.
n(S) = 6	Number of all possible outcomes,
Let <i>A</i> be the event of getting an odd number.	n(S) = 4 + 5 + 8 = 17
$\therefore n(A) = 3$	Let A be the event of taking out the red
$P(A) = \frac{n(A)}{n(S)} = \frac{3}{6}$	marble.
	$\therefore n(A) = 4$
$\therefore P(A) = \frac{1}{2}$	$P(A) = \frac{n(A)}{n(S)}$ $\therefore P(A) = \frac{4}{17}$
	$\therefore P(A) = \frac{4}{17}$
Problems for practice	
1) A cubical die whose faces are marked from	2) Two identical coins are tossed
1 to 6 is rolled once, find the probability of	simultaneously, find the probability of getting at least one head.
getting a perfect square number.	
3) 12 defective pens got mixed with 132 good ones. One pen is taken randomly from the lot.	4) Two dice, numbered from 1 to 6 on their each face are together rolled once. Find the
Find the probability of getting a defective	probability of getting the numbers whose sum
pen.	is greater than 8.

7. REAL NUMBERS

Example	Marks:-2
1. Prove that $5 + \sqrt{2}$ is an irrational number.	2. Prove that $2 - \sqrt{3}$ is an irrational number.
Proof : Let $5 + \sqrt{2}$ is a rational number.	Proof : Let $2 - \sqrt{3}$ is a rational number.
$\Rightarrow 5 + \sqrt{2} = \frac{p}{q}$ where $q \neq 0$, $p, q \in Z$	$\Rightarrow 2 - \sqrt{3} = \frac{p}{q}$ where $q \neq 0$, $p, q \in Z$
$\sqrt{2} = \frac{p}{q} - 5$	$2 - \frac{p}{q} = \sqrt{3}$
$\sqrt{2} = \frac{p-5q}{q}$	$\frac{2q-p}{q} = \sqrt{3}$
Irrational number ≠ Rational number	Rational number \neq Irrational number
LHS ≠ RHS	$LHS \neq RHS$
Our assumption is wrong.	Our assumption is wrong.
$\therefore 5 + \sqrt{2}$ is an irrational number.	$\therefore 2 - \sqrt{3}$ is an irrational number.

Problems for practice	
1) Prove that $3 + \sqrt{5}$ is an irrational number.	2) Prove that $5 - \sqrt{7}$ is an irrational number.
Example	Marks:-3
1. Prove that $\sqrt{2}$ is an irrational number.	
Proof: Let $\sqrt{2}$ is a rational number.	
$\sqrt{2} = \frac{p}{q}$ where $q \neq 0$, <i>p</i> and <i>q</i> are co-prime	me
$\sqrt{2} q = p$ squaring on both sides	
$2q^2 = p^2$ (1)	
$\therefore p^2$ is divisible by 2 and also p is divisible	le by 2(2)
$\Rightarrow p = 2r$ (3)	
Substitute equation (3) in (1)	
$2q^2 = (2r)^2$	
$2q^2 = (2r)^2$	
$2q^2 = 4r^2$	
$q^2 = 2r$	
$\therefore q^2$ is divisible by 2 and also q is div	
(2) and (4) => Both p and q have a contained by the set of p and q have a contained by thave a contained by the set of p and q have a contain	
\therefore both <i>p</i> and <i>q</i> are not co-primes. It	is contradictory to our assumption.
$\therefore \sqrt{2} \text{ is an irrational number.}$	
1) Prove that $\sqrt{3}$ is an irrational number.	2) Prove that $\sqrt{5}$ is an irrational number.
8. INTRODUCTION TO TRIGONOMETRY	
Example	Marks:-2
1. If $5\sin\theta = 3$ then find $\cos\theta$ and $\tan\theta$.	2. Evaluate:
$\sin\theta = \frac{3}{5}$ $AC^2 = AB^2 + BC^2$	$sin18^{\circ} - cos72^{\circ} - cos18^{\circ} + sin72^{\circ}$.
$BC^{2} = 5^{2} - 3^{2}$	
$BC^{2}=25-9$ $BC^{2}=16$ $B = \theta C$	$= sin18^o - cos72^o - cos18^o + sin72^o$
$BC = \sqrt{16} = 4$	$= sin(90^{o} - 72^{0}) - cos72^{o} - cos(90^{o} -$
	$72^{0}) + sin72^{o}$
$\cos\theta = \frac{4}{5}$ $\tan\theta = \frac{3}{4}$	$= \cos 72^{\circ} - \cos 72^{\circ} - \sin 72^{\circ} + \sin 72^{\circ}$
5 4	= 0
1	10

Problems for practice	
1) From the figure find the value of	2) If $\sin\theta = \frac{5}{13}$ then find $\cos\theta$
$\sin\theta$ and $\tan\alpha$ AN	
	13 5
4 5	
	G Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
в в	
$\frac{-3}{3}$	$4) Exclusts + \tan 200 \arctan 620 - \sin 720 \mod 100$
3) Find the value of sin30 ⁰ +cos60 ⁰	4) Evaluate: tan28 ⁰ .cot62 ⁰ – sin72 ⁰ .cos18 ⁰
9. POLYNOMIALS	
Example	Marks:-2
1. Find the quadratic polynomial having zeroes	5 and 3
Let $\alpha = 5$ and $\beta = 3$ $\alpha + \beta = 8$ (sum of the roots)	
$\alpha + \beta = 8$ {sum of the roots}	
$\alpha\beta = 15$ {product of the roots}	
The quadratic polynomial is of the form	
$x^2 - (\alpha + \beta)x + \alpha\beta$	
	$x^{2} - 8x + 15$
Problems for practice	2. Find the quadratic polynomial if sum and
1. Frame a quadratic polynomial given sum of the zeros 4 and product of the zeros as 1	2. Find the quadratic polynomial if, sum and product of its zeroes are -5 and 4
the zeros r and product of the zeros as r	respectively.
Example	Marks:-3
1. Find the quotient and the remainder when	2. Check whether the polynomial $(t - 3)$ is a
$3x^3 + x^2 + 2x + 5$ is divided by $x^2 + 2x + 1$.	factor of $t^2 - 6t + 9$ by suitable method.
3x-5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t-3
	$t-3$ t^2-6t+9
$3x^3 + 6x^2 + 3x$	$t^2 - 3t$
(-) (-) (-)	(-) (+)
$-5x^2 - x + 5$	-3t + 9
$-5x^2 - 10x - 5$	-3t+9
(+) $(+)$ $(+)$	(+) $(-)$
9x + 10	0
\therefore Quotient = $3x - 5$ and	Here the remainder =0
Remainder = 9x + 10	\therefore $(t-3)$ is a factor of $t^2 - 6t + 9$.
1	1

Problems for practice

1) During the medical check-up of 35 students of a class, their weights were recorded as follows. Draw a less than type Ogive for the given data.

Weights (ir	ı kg)	Number of
		students
Less than	40	3
Less than	45	5
Less than	50	9
Less than	55	14
Less than	60	28
Less than	65	32
Less than	70	35

2) Details of daily income of 50 workers in a food industry are given below. Draw a more than type Ogive for the following data.

Daily Income (in Rs.)	Number of workers
More than or equal to 80	50
More than or equal to100	38
More than or equal to 120	24
More than or equal to 140	16
More than or equal to 160	10
More than or equal to 180	0

3) The marks obtained by 40 students in Mathematics examination held in the school is given. Draw the less than type of Ogive.

Marks obtained	No of students
Less than 10	2
Less than 20	5
Less than 30	8
Less than 40	12
Less than 50	15
Less than 60	25
Less than 70	35
Less than 80	40

4) The yield of rice in the fields in a village is given. Draw more than type of Ogive to the data.

Yield (tons)	Number of farmers
>8	80
>12	60
>16	55
>20	45
>24	40
>28	35
>32	20
>36	15
>40	10

Example

Marks:-3

Бхатріе							1				Mai	<u>132</u>
1) Find mean for the following frequency distribution.						2) Find the Median of the following frequency distribution.						
Class	0-	10-	20-	30-	40-							
Interval	10	20	30	40	50	_	Class	0-10	10-20	20-30	30-40	40 50
Frequenc v	3	5	9	5	3		interval	0-10	10-20	20-30	30-40	40-50
Class	F	reque	nc a	;	fx	1	Frequency	4	7	13	9	3
Interval		У										
0-10		3	5	5	15							
10-20		5	1	5	75		Class Interval		Frequency		Cumulative	
20-30		9	2		225	_			1 - 5		Frequency	
30-40		5	3		175		0-10		4		4	
40-50	+-	3	4		135	-	10-20		7		4+7= 11	
	2	$\Sigma f = 2$	5		fx = 625		20-30 13			3	11+13	=24
					020	J	30-40 9			24+9=33		
							40-50		3		33+3:	=36
		$\frac{\Sigma f x}{\Sigma f} = \frac{\epsilon}{25}$		5		S	n = 36, Median = 1 Median = 1 ∴ Media n	$h = \frac{1}{l} + \left[\frac{\frac{n}{2}}{2}\right]$ $lian = \frac{1}{20} + 5$	$\frac{-cf}{f} \times 20 + \begin{bmatrix} 1\\ -\frac{1}{2} \end{bmatrix}$	l = 20 h		- 11,
						1	.5					

.) Find the average of	mean of the give	n data.	2) Fin	d the median for	the following data.	
Class Interval	Frequency			Class Interval	Frequency	
10-20	2			50 - 60	12	
20-30	3			60 - 70	14	
30-40	7		70 - 80	8		
40-50	8		80 - 90	6		
50-60	5		90 - 100	10		
	Σf =25			70 100	10	
) Find the average of		n data.	4) Fir	d the median for	the following data	
Class Interval	Frequency	-)	Class Interval	Frequency		
1 - 5	2			20 - 40	7	
6 - 10	3			40 - 60	15	
11 - 15	5			60 - 80	20	
16 - 20	3			80 - 100	8	
21 - 25	2					
	Σf =15					
) Find the mede of th	a fallandar		1) 1:	J 41, 4 44 44 44 44 44 44 44 44 44 44 44 44	fallouing data	
3. Find the mode of the	-	1) Find the mode of the following data.				
frequency distributio	п.			Class interval	Frequency	
		7		$\frac{1-3}{3-5}$	6	
Class interva	1 5				-	
30-40	4			5 – 7	15	
	1 5			5 - 7 7 - 9	15 9	
30-40	4	5		5 – 7	15	
30-40 40-50 50-60	4 7 9	5	2) Fir	5 - 7 7 - 9 9 - 11	15 9 1	
30-40 40-50 50-60 60-70	4 7 9 11	5	2) Fir	5 – 7 7 – 9 9 - 11 ad the mode of the	15 9 1 e following data.	
30-40 40-50 50-60 60-70 70-80	4 7 9 11 6	5	2) Fir	5 - 7 $7 - 9$ $9 - 11$ ad the mode of the Class interval	15 9 1 e following data. Frequency	
30-40 40-50 50-60 60-70	4 7 9 11		2) Fir	5 - 7 7 - 9 9 - 11 ad the mode of the <i>Class interval</i> 10 - 25	15 9 1 e following data. <i>Frequency</i> 2	
30-40 40-50 50-60 60-70 70-80 80-90	4 7 9 11 6 2		2) Fir	5 - 7 $7 - 9$ $9 - 11$ ad the mode of the Class interval $10 - 25$ $25 - 40$	1591e following data.Frequency23	
30-40 40-50 50-60 60-70 70-80 80-90	4 7 9 11 6 2	= 10	2) Fir	5 - 7 7 - 9 9 - 11 ad the mode of the <i>Class interval</i> 10 - 25 25 - 40 40 - 55	15 9 1 e following data. Frequency 2 3 7	
$\begin{array}{c c} & 30-40 \\ & 40-50 \\ \hline & 50-60 \\ \hline & 60-70 \\ \hline & 70-80 \\ \hline & 80-90 \end{array}$ $f_1 = 11, \ f_0 = 9, \ f_2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10	2) Fir	5 - 7 7 - 9 9 - 11 0 the mode of the Class interval 10 - 25 25 - 40 40 - 55 55 - 70	15 9 1 e following data. Frequency 2 3 7 6	
30-40 40-50 50-60 60-70 70-80 80-90	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10	2) Fir	5 - 7 7 - 9 9 - 11 d the mode of the <i>Class interval</i> 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85	15 9 1 e following data. Frequency 2 3 7 6 6	
$\begin{array}{c c} 30-40 \\ \hline 40-50 \\ \hline 50-60 \\ \hline 60-70 \\ \hline 70-80 \\ \hline 80-90 \\ \end{array}$ $f_{1} = 11, \ f_{0} = 9, \ f_{2} \\ Mode = l + \left[\right.$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10	2) Fir	5 - 7 7 - 9 9 - 11 0 the mode of the Class interval 10 - 25 25 - 40 40 - 55 55 - 70	15 9 1 e following data. Frequency 2 3 7 6	
$\begin{array}{c} 30-40 \\ 40-50 \\ 50-60 \\ 60-70 \\ \hline 70-80 \\ 80-90 \end{array}$ $f_{1} = 11, \ f_{0} = 9, \ f_{2} \\ Mode = l + \left[\right.$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 6 d the mode of the Class interval 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100	15 9 1 e following data. Frequency 2 3 7 6 6 6 6 6	
$30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $f_{1} = 11, f_{0} = 9, f_{2}$ $Mode = l + [$ $Mode = 60 + 1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 d the mode of the Class interval 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100 d the mode of the	15 9 1 e following data. Frequency 2 3 7 6 6 6 6 6 6 6 6 2	
$\begin{array}{c} 30-40 \\ 40-50 \\ 50-60 \\ \hline 60-70 \\ \hline 70-80 \\ \hline 80-90 \end{array}$ $f_{1} = 11, \ f_{0} = 9, \ f_{2} \\ Mode = l + \left[\right.$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 ad the mode of the <i>Class interval</i> 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100 d the mode of the <i>Class interval</i>	1591e following data.Frequency237666666666766799910991099910 <t< td=""></t<>	
$\begin{array}{c} 30-40 \\ 40-50 \\ 50-60 \\ 60-70 \\ \hline 70-80 \\ 80-90 \end{array}$ $f_{1} = 11, \ f_{0} = 9, \ f_{2} \\ Mode = l + \begin{bmatrix} \\ Mode = 60 \\ + \\ Mode = 60 \\ + \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 ad the mode of the Class interval 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100 d the mode of the Class interval 1 - 3	15 9 1 e following data. Frequency 2 3 7 6 6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	
$30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $f_{1} = 11, f_{0} = 9, f_{2}$ $Mode = l + [$ $Mode = 60 + 1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 ad the mode of the <i>Class interval</i> 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100 d the mode of the <i>Class interval</i> 1 - 3 3 - 5	15 9 1 e following data. Frequency 2 3 7 6 6 6 6 6 7 8	
$\begin{array}{c} 30-40 \\ 40-50 \\ 50-60 \\ 60-70 \\ \hline 70-80 \\ 80-90 \end{array}$ $f_{1} = 11, \ f_{0} = 9, \ f_{2} \\ Mode = l + \begin{bmatrix} \\ Mode = 60 \\ + \\ Mode = 60 \\ + \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 ad the mode of the Class interval 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100 d the mode of the Class interval 1 - 3 3 - 5 5 - 7	15 9 1 e following data. Frequency 2 3 7 6 6 6 6 6 7 8 2	
$\begin{array}{c} 30-40 \\ 40-50 \\ 50-60 \\ 60-70 \\ \hline 70-80 \\ 80-90 \end{array}$ $f_{1} = 11, \ f_{0} = 9, \ f_{2} \\ Mode = l + \begin{bmatrix} \\ Mode = 60 \\ + \\ Mode = 60 \\ + \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 10		5 - 7 7 - 9 9 - 11 ad the mode of the <i>Class interval</i> 10 - 25 25 - 40 40 - 55 55 - 70 70 - 85 85 - 100 d the mode of the <i>Class interval</i> 1 - 3 3 - 5	15 9 1 e following data. Frequency 2 3 7 6 6 6 6 6 7 8	

13. THEOREMS

1. State and prove the Basic proportionality (Thales') theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

 $\frac{AD}{DB} = \frac{AE}{EC}$

Hence the proof.

2. State and prove the Pythagoras theorem.

" In a right angled triangle , the square on the hypotenuse is equal to the sum of the squares on other two sides ".

Data : \triangle ABC is a right triangle and \angle B = 90° **To Prove** : AC² = AB² + BC²

```
Construction : Draw BD ⊥ AC
```

```
Proof: In \triangleADB and \triangleABC
```

 $\angle D = \angle B = 90^{\circ}$ (\because Data and Construction) $\angle A = \angle A$ (∵Common angle) $\Delta ADB \sim \Delta ABC$ (:: AAA Similarity Criterion) $\therefore \frac{AD}{AB} = \frac{AB}{AC}$ (: Proportional sides) $AC. AD = AB^2 ----> (1)$ Similarly In \triangle BDC and \triangle ABC $\angle D = \angle B = 90^{\circ}$ (: Data and Construction) (:: Common angle) $\angle C = \angle C$ $\Delta BDC \sim \Delta ABC$ (:: AAA Similarity Criterion) $\therefore \frac{DC}{BC} = \frac{BC}{AC}$ (∵ Proportional sides) $AC. DC = BC^2 ----> (2)$ AC.AD + AC.DC = $AB^2 + BC^2$ [: By adding (1) and (2)] $AC (AD + DC) = AB^2 + BC^2$ $AC \times AC = AB^2 + BC^2$ (: from fig. AD + DC = AC) $AC^2 = AB^2 + BC^2$ Hence the proof.

3. Prove that "The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides". P Data : $\triangle ABC \sim \triangle PQR$ $\Rightarrow \frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR}$ To Prove: $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PO}\right)^2 = \left(\frac{BC}{OR}\right)^2 = \left(\frac{AC}{PR}\right)^2$ **Construction**: Draw AM \perp BC and PN \perp QR. **Proof**: $\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times QR \times PN}$ (: Area of $\Delta = \frac{1}{2} \times base \times height$) $\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{BC \times AM}{QR \times PN} \dots > (1)$ In $\triangle ABM$ and $\triangle PQN$ $\angle B = \angle Q$ (:: $\triangle ABC \sim \triangle PQR$) $\angle M = \angle N = 90^{\circ}$ (:: Construction) $\therefore \Delta ABM \sim \Delta PQN$ ($\because AA Similarity criterion$) $\therefore \frac{AM}{PN} = \frac{AB}{PO} \quad \dots \rightarrow (2)$ But $\frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR} \dots > (3)$ ("Data) $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \frac{AB}{PQ} \times \frac{AB}{PQ} \quad (\because \text{substituting eqs.}(2) \text{ and } (3) \text{ in } (1))$ $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PQ}\right)^2$ Now from eq.(3) $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PO}\right)^2 = \left(\frac{BC}{OR}\right)^2 = \left(\frac{AC}{PR}\right)^2$ Hence the proof.

4. Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (proportion) and hence the two triangles are similar". **Data:** In $\triangle ABC$ and $\triangle DEF$ D $|\underline{A}| = |\underline{D}|$ A |B| = |E||C| = |F|**To prove:** $\frac{AB}{DF} = \frac{BC}{FF} = \frac{AC}{DF}$ **Construction:** Mark points P and Q on DE and DF such that DP=AB and DO=AC. Join PO. **Proof:** In $\triangle ABC$ and $\triangle DPQ$ [Data] |A| = |D|AB=DP [Construction] [Construction] AC=DQ $\therefore \Delta ABC \cong \Delta DPQ \quad [SAS postulate]$ [By CPCT] BC=PQ ----(1) |B| = |P|[By CPCT] [Data] |B| = |E|[Axiom 1] |P| = |E|PQ||EF $\frac{DP}{DE} = \frac{PQ}{EF} = \frac{DQ}{DF}$ [Corollary of BPT] $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ [From (1) and construction] ∴ Hence the proof.

IMPARTANT DEFINITIONS, STATEMENTS & FORMULAS

1) State 'Basic proportionality theorem' (Thale's Theorem)

The line drawn parallel to any one side of the triangle divides the other two sides proportionally.

2) State 'Pythagoras theorem'.

In right angled triangle the square of the hypotenuse is equal to sum of the squares of the other two sides.

3) State Euclid's Division Lemma.

Given positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 \leq r < b.

4) State 'Fundamental theorem of arithmetic.

Every composite number can be expressed as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur. 5) Define Arithmetic Progression.

Arithmetic Progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term, except the first term. 6) Define tangent of a circle.

The straight line that intersects the circle at only one point is called a **tangent**. 7) Define secant of a circle.

The straight line that intersects the circle at two points is said to be **secant** to the circle.

circle.									
PROBABILITY									
Probability of occurrence of an event 'A'					$P(A) = \frac{Number of outcomes favourable to A}{Number of all possible outcomes}$ i.e., $P(A) = \frac{n(A)}{n(S)}$				
1) Probability of a Sure Event is One					2) Probability of an Impossible Event is Zero				
3) Sum of the probabilities of all primary events of an experiment is One					4) $P(E) + P(\bar{E}) = 1$				
				POL	YNOMI	ALS			
Sl. No							Degree		
1		ar polynom:	ial			x + b		1	
2		atic polynoi				bx + c = 0)	2	
3		c polynomi		ax	$x^{3} + hx^{2}$	+cx+d	= 0	3	
	$\frac{3}{\text{TRIGONOMETRY}}$								
Valı	ues of Trig	gonometri	c ratios	of Stan	dard Ai	ngles.	Trigo	nometric Ratios of	
Angles Ratios★ 0° 30° 45°						90°	0	plementary Angles	
2	sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\sin\left(90^{o}-A\right)=\cos A$		
Ç	cos	1	$\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\cos\left(90^{o}-A\right)=\sin A$		
t	can	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined	$\tan\left(90^{o}-A\right)=\cot A$		
СС	osec	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$cosec \ (90^o - A) = sec \ A$		
S	sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined	sec ($90^{0} - A) = cosec A$	
	cot	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$\cot\left(90^{o}-A\right)=\tan A$		

STATISTICS							
Direct	t method		$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ OR $\bar{x} = \frac{\sum f x}{N}$				
Assumed I	Mean method		$\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$				
Step-devia	ation method		$\bar{x} = a + h\left(\frac{\sum f_i u_i}{\sum f_i}\right)$				
Mode of the	e Grouped data		$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \ge h$				
Median of th	ne Grouped data		$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \ge h$				
Empirical relationsh measures of central	-	·ee	3 Median = Mode + 2 M	lean			
	SURFACE AP	REA A	ND VOLUME OF SOLIDS				
Name of the Solid	C.S.A		T.S.A	Volume			
Cylinder	2πrh		$2\pi r(r+h)$	$\pi r^2 h$			
Cone	πrl		$\pi r(r+l)$ $l = \sqrt{r^2 + h^2}$	$\frac{1}{3}\pi r^2h$			
Sphere	$4\pi r^2$		$4\pi r^2$	$\frac{4}{3}\pi r^3$			
Hemisphere	$2\pi r^2$		$3\pi r^2$	$\frac{2}{3}\pi r^3$			
Frustum of a Cone	$\pi(r_1+r_2)l$		$[l(r_1 + r_2) + r_1^2 + r_2^2]$ = $\sqrt{(r_1 - r_2)^2 + h^2}$	$\frac{1}{3}\pi h[r_1^2 + r_2^2 + r_1r_2]$			