

SSLC - 2021-22 PASSING PACKGE PREPARED BY KREIS, B ANGLORE

Sl.No	Name	Phone Number	School Code	School Address
1	Venktachala N	9538904081	KRCRS-391	KRCRS, Honnayakanahalli, Channapatna Tq. \& Dt.Ramanagar
2	Raghavendra	8861740720	KRCRS-485	KRCRS VADDANAKATTI TQ:SANDUR BALLERY
3	Chetana S H M	9741707654	MDRS-328	MDRS MODALAGHATTHA TQ:HADAGALI DT: BALLARY
4	Akshata K	9741360212	BC-142	MDRS Machina Belathangady Dakshina Kannada
5	Ravi.M	9008680654	SC74	MDRS, Mallanayakanahalli Tq. Kunigal Dt. Tumukur
6	Jaganath J	9901507095	GM-105	MDRS Mullegudda Nanjangudu Mysuru
7	Aparna Kukunur	9480263272	SC-183	MDRS, Tumbakere Mandya
8	Shahanawaz Maniyar	9538012268	SC-794	DBRS, Chabbi, Tq.Hubli,Dt.Dharwad
9	Praveenkumar Vastrad	8748069613	SC-498	KRCS, Hosalli Koppal
10	Chetankumar T P	7975664316	ST-27	IGRS SIDDAPUR TQ:HOSADURGA DT:CHITRDURGA
11	Aparana Bhatta	9008854159	SC-171	MDRS Kalathur TQ.Kaup Dt. Udupi

INDEX

Sl. No	Topic	Page Number	Possibility of marks
$\mathbf{1 .}$	Theorems on Triangle	485	4 -5+1(Statement)
$\mathbf{2 .}$	Theorems on Circle	5	3
$\mathbf{3 .}$	Construction	6 to8	9
$\mathbf{4 .}$	Ogive curve	9 to10	10 to 12
$\mathbf{5 .}$	Elimination and graphical method	12 to 13	3
$\mathbf{6 .}$	Mean, median and mode	14	7
$\mathbf{7 .}$	Quadratic equation (Formula and nature of roots)	15	3
$\mathbf{8 .}$	Co-ordinate geometry	15 to 16	4
$\mathbf{9 .}$	Arithmetic Progression	16	7
$\mathbf{1 0}$	Formula		6
		17 to19	3
$\mathbf{1 1}$	(Weakly Two exam) Target 45 question Paper-1,2,3,4	18 to21	$\mathbf{3}$
$\mathbf{1 2}$	Target 45 Question Paper-5,6,7,8,9		$\mathbf{5 0}$

THEOREM(7 to 8 marks)

Theorem 1 : Thales Theorem OR Basic Proportionality Theorem

"A line drawn parallel to one side of a triangle divides the

 other two sides in the same ratio".Data: In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$.
To Prove : $\frac{A D}{D B}=\frac{A E}{E C}$

Construction : Draw $\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$
Proof : $\quad \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle B D E}=\frac{\frac{1}{2} \times A D \times E N}{\frac{1}{2} \times D B \times E N}=\frac{A D}{D B}-\cdots-\cdots$ (1)

$$
\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle D E C}=\frac{\frac{1}{2} \times A E \times D M}{\frac{1}{2} \times E C \times D M}=\frac{A E}{E C}
$$

$$
\frac{A E}{E C}---------\rightarrow(2)
$$

$\triangle \mathrm{BDE}$ and $\triangle \mathrm{DEC}$ stand on the same base DE and between the same parallel lines $D E$ and $B C \therefore$. Area of $\triangle B D E=$ Area of $\triangle D E C$
So from equations (1) and (2), we have $\frac{A D}{D B}=\frac{A E}{E C}$. Hence proved.

Theorem 2 (A A Criterion):

"If the corresponding angles of two triangles are equal, then their corresponding sides are in the same ratio"
Data : In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$
To Prove : $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$
Construction: Mark the points
X and Y on $A B$ and $A C$ such that
$A X=D E$ and $A Y=D F$.
Proof : In $\triangle A X Y$ and $\triangle D E F$,

$\angle A=\angle D$ [By data]
$\mathrm{AX}=\mathrm{DE}[$ By Construction]
$\mathrm{AY}=\mathrm{DF}$ [By construction] $\Rightarrow: . \Delta A X Y \cong \triangle D E F$ [SAS congruence]
$\therefore \angle X=\angle E[C P C T] \Rightarrow \angle \mathrm{B}=\angle \mathrm{E} . \therefore \angle \mathrm{X}=\angle \mathrm{B} \Rightarrow \mathrm{XY} \| \mathrm{BC}$
$\frac{A B}{A X}=\frac{A C}{D F}=\frac{B C}{X Y} \quad$ [Corollary of B.P.T]
$\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F} \quad$ [By Substitution]. Hence proved.

Theorem 3(Areas of Similar Triangles)

"The areas of two similar triangles are proportional to the squares of their corresponding sides". A

Data: $\triangle A B C \sim \triangle . D E F$

$$
\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}
$$

To Prove: $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}}$

Construction: Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$.

In $\triangle \mathrm{ABL}$ and $\triangle \mathrm{DEM}, \angle \mathrm{B}=\angle \mathrm{E}$ By data $\angle \mathrm{L}=\angle \mathrm{M} \quad$ [Right angles]

$$
\therefore \triangle A B L \sim \triangle D E M \quad[\text { AA Criterion] }
$$

$\frac{A B}{D E}=\frac{B L}{E M}=\frac{A L}{D M} ; \quad$ But $\quad \frac{A B}{D E}=\frac{B C}{E F} ; \quad \frac{A B}{D E}=\frac{B C}{E F}-\cdots>(2)$
Substitute (2) in (1) $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}}$ Hence proved.

Theorem 4(Pythagoras Theorem):

"In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides" Data : ABC is a right angled triangle, $\angle B=90^{\circ}$
To Prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Construction: Draw BD $\perp \mathrm{AC}$.
Proof : \quad In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$,
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angles]
$\angle \mathrm{B}=\angle \mathrm{D}$ [Right angles]
$\therefore \triangle A B C \sim \triangle A D B \quad$ [AA Criterion]
$\frac{A B}{A D}=\frac{B C}{D B}=\frac{A C}{A B} \quad \mathrm{AB}^{2}=\mathrm{AC} \times \mathrm{AD}-\cdots-(1)$
Similarly, $\ln \triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}, \angle \mathrm{C}=\angle \mathrm{C}$
[Common angles] $\quad \angle \mathrm{B}=\angle \mathrm{D}$ [Right angles] $\therefore \triangle A B C \sim \triangle B D C \quad\left[\right.$ AA Criterion] $\Rightarrow \frac{A B}{B D}=\frac{B C}{D C}=\frac{A C}{B C}$ $\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{DC}------$ (2)Adding equations (1)and (2), $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{AD}+\mathrm{AC} \times \mathrm{DC} .=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})=\mathrm{AC} \times \mathrm{AC}$ $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \quad$ Hence proved.

I CAN DO IT

1) Draw a pair of tangents to a circle of radius 5 cm , such that the radii are inclined at an angle 60°
2) Draw a pair of tangents to a circle of radius 5 cm , such that the radius is inclined at an angle 125°
3) Draw a pair of tangents to a circle of radius 3.5 cm , such that the radii are inclined at an angle 80°
4) Draw a pair of tangents to a circle of radius 4 cm , such that the radii are inclined at an angle 75°. and write the measure of its length.
5) Draw a pair of tangents to a circle of radius 3 cm , such that the radii are inclined at an angle 70°.

Type 2 : Angle between the tangents is given.

1) Draw a pair of tangents to a circle of radius 5 cm , which are inclined at an angle of 60°. Measure the length of the tangents.

Angle between the radii $=180^{\circ}-60^{\circ}=120^{\circ}$
3) Draw a line segment of length 7.6 cm and divide it in the ratio of 4:2.

Measure the two parts.
4) Draw a line segment of length 12 cm and divide it in the ratio of 5:2
5) Draw a line segment of length 9 cm and divide it in the ratio of 3:4

CONSTRUCTION OF TANGENTS TO A CIRCLE Type 1 : Angle between the radii is given.

1) Draw a pair of tangents to a circle of radius 3 cm , such that the radii are inclined at an angle 140°.

$R P$ and $R Q$ are the tangents.

STEPS:

1) cm.
2) Make an angle of 140° between the radii $O P$ and $O Q$.
3) Draw perpendicular line at P and Q and produce to intersect at R.
4) $R P$ and $R Q$ are the tangents.
5) Draw a pair of tangents to a circle of radius 3.5 cm , which are inclined at an angle of 80°
6) Draw a pair of tangents to a circle of diameter 6 cm , which are inclined at an angle of 55°
7) Draw a pair of tangents to a circle of radius 3.5 cm , which are inclined at an angle of 80°
8) Draw a pair of tangents to a circle of radius 4 cm , which are inclined at an angle of 100°
9) Draw a pair of tangents to a circle of radius 5 cm , which are inclined at an angle of 600 . Measure the length of the tangents. Type 3 : Construction of tangents on the circumference of the circle
10) Draw a circle of radius 2.5 cm and Construct a chord of length 3 cm . and Draw the tangents at the end points of the chord.

PA and PB are the tangents.

Type 2 : Construction of tangents from an external point.

1. Draw a circle of radius 3.5 cm from a point 8 cm away from the center; construct the pair of tangents to the circle. Measure the tangents and write.

Tangents $P A=P B=7.2 \mathrm{~cm}$

> STEPS:

1) Draw a circle of radius 3.5 cm .
2) Draw a line segment $O P$ of length 8 cm .
3) Draw perpendicular bisector of OP
4) With the midpoint of OP as centre draw a circle points O and P on it.
5) Join the intersection points A and B to P.
6) PA and PB are the tangents.
I. Draw a circle of radius 5 cm . from a point 5 cm away from the circle, construct the pair of tangents to the circle.
\mathbf{I}_{2}. Draw a circle of radius 4 cm . from a point 8 cm away from the center, I construct the pair of tangents to the circle.
I3. Draw a circle of diameter 6 cm . from a point 8 cm away from the center, I construct the pair of tangents to the circle.
14. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameters each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .
15. 6)Draw two concentric circles of radii 3 cm and 5 cm . Taking a point on the outer circle, construct the pair of tangents to the inner circle.
I 6. Draw two concentric circles of radii 3 cm and 5 cm . Construct a I tangent to smaller circle from a point on the larger circle. Also measure its length. length.

Construction of Similar Triangles

Type 1: When proper fraction (ratio) given :

1) Construct a triangle of sides $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 4.5 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

IType 2: When improper fraction (ratio) given :

I1)Draw a triangle ABC with sides $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\llcorner\mathrm{ABC}=60$
I ${ }^{0}$ Then construct a triangle whose sides are $\frac{7}{5}$ of the corresponding sides of triangle ABC.

$\triangle A B C \sim \triangle A B^{\prime} C^{\prime}$

STEPS:

1) Draw a triangle ABC with $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$
2) Draw $A X$ such that which makes an acute angle.
3) Make equal 7 parts on AX .
4) Join 5th point ie A_{5} to B.
5) Make same measure of angle as $A_{5 \text { in }} 7$ th point ie at A_{7}. Join $A_{7} B^{\prime}$
6) Make same measure of angle B at point B^{\prime} and Produce to C^{\prime}

I CAN DO IT

5) Construct a triangle of sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then a triangle similar to it whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.
6) Draw a triangle ABC with sides $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{LABC}=80^{\circ}$ Then construct a triangle whose sides are $\frac{4}{3}$ of the corresponding sides of triangle ABC .
7) Construct a triangle $A B C$ with sides $A B=6 \mathrm{~cm}$ and $\angle B A C=50^{\circ}$ and LABC $=60^{\circ}$. Then construct a triangle whose sides are $1 \frac{1}{2}$ of the corresponding sides triangle ABC .
8) Construct a triangle ABC with sides $\mathrm{BC}=4.5 \mathrm{~cm}$ and $\mathrm{AB}=5.5 \mathrm{~cm}$ and $\left\llcorner A=55^{\circ}\right.$. Then construct a triangle whose sides are $\frac{5}{2}$ the corresponding I sides of triangle ABC .
9) Draw a right triangle in which the sides (other than hypotenuse) are of lengths 8 cm and 6 cm , then construct another triangle whose sides are $\frac{5}{3}$ I of times the corresponding sides of the given triangle.
10) Draw a triangle ABC with side base $\mathrm{BC}=8 \mathrm{~cm}$ and altitude 4 cm , and then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the isosceles triangle ABC .
11) Draw a right triangle in which the sides (other than hypotenuse) are I of lengths 4 cm and 3 cm , then construct another triangle whose sides are $\frac{5}{3}$ of times the corresponding sides of the given triangle.
12) Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

Ogive Curve: (Target-3marks)

1. Draw more than ogive curve for following data.

CI	$\mathbf{0 - 5 0}$	$\mathbf{5 0 - 1 0 0}$	$\mathbf{1 0 0 - 1 5 0}$	$\mathbf{1 5 0 - 2 0 0}$	$\mathbf{2 0 0 - 2 5 0}$	$\mathbf{2 5 0 - 3 0 0}$
f	$\mathbf{1 2}$	$\mathbf{1 8}$	$\mathbf{2 7}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{6}$

It should be converted like this.
I Dear students this question can also be asked like this.

I	CI	More than	More	More than				
	0	50	100	150	200	than 250	300	
I	0	50	150					
	CF	100	88	70	43	23	6	0

CI	F	CI	\mathbf{f}	(\mathbf{x}, \mathbf{y})
$\mathbf{0 - 5 0}$	$\mathbf{1 2}$	More than 0	$\mathbf{1 0 0}$	$\mathbf{(0 , 1 0 0)}$
$\mathbf{5 0 - 1 0 0}$	$\mathbf{1 8}$	More than 50	$\mathbf{8 8}$	$\mathbf{(5 0 , 8 8})$
$\mathbf{1 0 0 - 1 5 0}$	$\mathbf{2 7}$	More than 100	$\mathbf{7 0}$	$\mathbf{(1 0 0 , 7 0})$
$\mathbf{1 5 0 - 2 0 0}$	$\mathbf{2 0}$	More than 150	$\mathbf{4 3}$	$\mathbf{(1 5 0 , 4 3)}$
$\mathbf{2 0 0 - 2 5 0}$	$\mathbf{1 7}$	More than 200	$\mathbf{2 3}$	$\mathbf{(2 0 0 , 2 3})$
$\mathbf{2 5 0 - 3 0 0}$	$\mathbf{6}$	More than 250	$\mathbf{6}$	$\mathbf{(2 5 0 , 6})$

If they given question like this then you can plot graph directly.

Here lines intersect at $(\mathbf{1 , 0})$ so solution is $\mathbf{x}=\mathbf{1}$ and $\mathbf{y}=\mathbf{0}$
For practice: Solve these questions by elimination method and also solve by graphical method.*

| $1.3 \mathrm{x}+2 \mathrm{y}=1 ; 5 \mathrm{x}-3 \mathrm{y}=2 \quad 2.5 \mathrm{x}-3 \mathrm{y}=2 ; 4 \mathrm{x}-\mathrm{y}=1 \quad 3.2 \mathrm{x}+3 \mathrm{y}=2 ; 3 \mathrm{x}-1=4 \mathrm{y}$ | $4.5 \mathrm{x}+\mathrm{y}=1 ; \mathrm{x}-\mathrm{y}=8$ |
| :--- | :--- | :--- | :--- | | $5.3 \mathrm{x}+2=\mathrm{y} ; \mathrm{y}-3=4 \mathrm{x}$ | $6.5 \mathrm{x}+\mathrm{y}=7 ; \mathrm{x}-3 \mathrm{y}=5$ | $7 . \mathrm{y}-\mathrm{x}=2 ; 2 \mathrm{x}-\mathrm{y}=-2$ | $8.3 \mathrm{x}+\mathrm{y}=7 ; 4 \mathrm{x}-\mathrm{y}=2$ |
| :--- | :--- | :--- | :--- | :--- |
| $9.3 \mathrm{x}+2 \mathrm{y}=5 ; 5 \mathrm{x}-3 \mathrm{y}=1$ | $10.3 \mathrm{x}-\mathrm{y}=7 ; \mathrm{x}+3 \mathrm{y}=5$ | $11.4 \mathrm{x}-\mathrm{y}=3 ; 3 \mathrm{x}-2 \mathrm{y}=1$ | $12.2 \mathrm{x}-\mathrm{y}=7 ; \mathrm{x}-3=4 \mathrm{y}$ | $13.3 \mathrm{x}+5 \mathrm{y}=4 ; \mathrm{x}-5 \mathrm{y}=8 \quad 14 . \mathrm{y}-\mathrm{x}+2=0 ; \mathrm{x}-2 \mathrm{y}-4=0 \quad 15.2 \mathrm{x}+\mathrm{y}=3 ; \mathrm{x}+3 \mathrm{y}=-10 \quad 16 . \mathrm{y}=2 \mathrm{x}-2 ; \mathrm{y}=4 \mathrm{x}-4$ $\begin{array}{llll}17 . x-y=4 ; x+y=10 & 18.2 x-y-2=0 ; x+y=6 & 19 . x+y=10 ; x-y=2 & 20.2 x+y=8 ; x+2 y=7\end{array}$

*Solve daily one problem from above on elimination method and graphical method to get $\mathbf{6 m}$.

IMean, Median and Mode : (Target-3marks)

IMean: Mean is the ratio of sum of all observations to the total number of Iobservations.
IMedian : The middle most observation in an orderly arranged data distribution I is called Median.
IMode: The most repeated observation in a data distribution is called Mode.

IFormulae to find mean, median and mode:

${ }_{\text {I }}$ 1) \quad Mean $=\frac{\sum f x}{\sum f}$ where ' f ' is frequency and ' x ' is class mark of class
I interval
I
I2) \quad Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$ where
 cf - Cumulative frequency of class preceding the median class
f- Frequency of median class.
IMode $=l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \quad$ where,
1 - Lower limit of the modal class h - Class size
f_{1} - Frequency of modal class f_{0} - Frequency of class preceding modal class $\mathbf{I}_{\mathrm{f}_{2}}$ - Frequency of class succeeding modal class.
I Example 1): Calculate mean, median and mode for the following data
Idistribution.

C-I	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
I	6	8	7	3	1

Solution: To find mean

C-I	\mathbf{f}	\mathbf{X}	$\mathbf{f x}$
$0-10$	6	5	30
$10-20$	8	15	120
	$20-30$	7	25
	$30-40$	3	35
	$40-50$	1	45

$$
\begin{aligned}
\text { Mean } & \bar{x}=\frac{\sum f x}{\sum f} \\
= & \frac{475}{25} \\
= & 19 \\
& \sum \boldsymbol{f}=25 \quad \sum \boldsymbol{f} \boldsymbol{x}=475
\end{aligned}
$$

SSLC - 2021-22 PASSING PACKGE PREPARED B Y KREIS, B A N GLORE $13 \mid$ Page
5) Mean $=33.71$

Median $=28.61$
Mode $=30.27$
8. $3 x^{2}-5 x+2=0$
17. $5 x^{2}-7 x+12=0$
6) Mean $=545.2$

Median $=538.33$
Mode = 525
Median = 18.53
Mode = 19.63
8) Mean $=59.15$

Median $=\mathbf{6 6 . 4 2}$
Mode $=75$
9) Mean $=12$

Median = $\mathbf{1 0}$
Mode = 7
10) Mean $=223.33$

Median $=229.41$
Mode $=258.33$
*Practice all above you will get definitely $\mathbf{6 m a r k s}$.

QUADRATIC EQUATIONS

1) Solving quadratic equations by formula method:

Ex:1) $x^{2}+10 x+25=0$

Solution: Given $x^{2}+10 x+24=0$
Here $\mathrm{a}=1, \mathrm{~b}=10$ and $\mathrm{c}=24$

$$
\begin{aligned}
\therefore x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-10 \pm \sqrt{(10)^{2}-4(1)(24)}}{2(1)}=\frac{-10 \pm \sqrt{100-96}}{2} \\
= & \frac{-10 \pm \sqrt{4}}{2} \quad=\frac{-10 \pm 2}{2} \\
= & \frac{-10+2}{2} \quad \text { or } \quad=\frac{-10-2}{2} \\
= & \frac{-8}{2} \quad \text { or } \quad=\frac{-12}{2} \\
= & -4 \quad \text { or } \quad=-6
\end{aligned}
$$

1. For practice:
2. $x^{2}-7 x+12=0$
3. $x^{2}+5 x-3=0$
4. $x^{2}-8 x+9=0$
5. $x^{2}-6 x+8=0$
6. $x^{2}-4 x+5=0$
7. $x^{2}+4 x-5=0$
8. $x^{2}-10 x+13=0$
9. $y^{2}-8 y+10=0$
10. $\mathrm{m}^{2}-8 \mathrm{~m}+10=0$
11. $x^{2}-5 a+6=0$
12. $4 x^{2}-5+2 x=0$
13. $7 \mathrm{x}^{2}+3 \mathrm{x}-5=0$
14. $2 x^{2}-3 x-8=0$
15. $\mathrm{X}^{2}=8 \mathrm{x}-5$
16. $x^{2}+3 x=1$
17. $4 x^{2}-1=8$
$11.4 x^{2}-5=6 x$
18. $3 \mathrm{x}^{2}+1=8 \mathrm{x}$
19. Find the nature of the roots of the following equations:
20. $\mathrm{x}^{2}-7 \mathrm{x}+12=0$
$11 . x^{2}+5 x-3=0$
21. $x^{2}-8 x+9=0$
22. $x^{2}-6 x+8=0$
23. $x^{2}-4 x+5=0$
24. $x^{2}+4 x-5=0$
25. $x^{2}-10 x+13=0$
26. $y^{2}-8 y+10=0$
27. $\mathrm{m}^{2}-8 \mathrm{~m}+10=0$
28. $x^{2}-5 a+6=0$
29. $4 x^{2}-5+2 x=0$
30. $7 x^{2}+3 x-5=0$
31. $3 x^{2}-5 x+2=0$
32. $5 x^{2}-7 x+12=0$
33. $2 x^{2}-3 x-8=0$
34. $x^{2}=8 x-5$
35. $x^{2}+3 x=1$
36. $4 x^{2}-1=8$
37. $4 x^{2}-5=6 x$
38. $3 x^{2}+1=8 x$
39. If the roots of the following quadratic equations are equal, then find the value of ' k '.
1) $x^{2}+k x+4=0$
2) $x^{2}+8 x-k=0$
3) $4 x^{2}+k x+25=0$
4) $K x^{2}+10 x+25=0$
5) $2 x^{2}+k x+5=0$
6) $X^{2}-k x+64=0$
7) $X^{2}+10 x+k=0$
8) $K x^{2}-12 x+4=0$
9) $X^{2}+k x+10=0$
10) $X^{2}+5 x+k=0$
11) $x^{2}+6 x+k=0$
12) $x^{2}-12 x+k=0$
13) $25 X^{2}-k x+9=0$
14) $k x^{2}-14 x+49=0$
15) $x^{2}-5 x+k=0$
16) $x^{2}+k x+81=0$
17) $x^{2}-10 x+k=0$
18) $k x^{2}-36 x+4=0$
19) $x^{2}-k x+20=0$
20) $x^{2}-k x+100=0$

CO-ORDINATE GEOMETRY:

1) Find the distance of a point ($4,-3$) from the origin.(1m)

Solution: We know that formula for distance from origin is

$$
\begin{aligned}
& d=\sqrt{x^{2}+y^{2}}=\sqrt{(4)^{2}+(-3)^{2}} \\
& d=\sqrt{16+9} \quad d=\sqrt{25} \quad d=5 \text { units }
\end{aligned}
$$

I CAN DO IT

1.Find the distance of a point $(2,-3)$ from the origin.
2.Find the distance of a point $(-6,-8)$ from the origin.
3. Find the distance of a point $(-5,12)$ from the origin.
4.Find the distance of a point $(7,-24)$ from the origin.
5.Find the length of diameter of a circle whose centre is $(-4,3)$ which passes through the origin.
2) Find the distance between the points $(2,4)$ and $(5,8)$. $(2 \mathrm{~m})$

Solution: We know that formula for distance from origin is
$\mathrm{d}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}=\sqrt{(2-5)^{2}+(4-8)^{2}}$
$\mathrm{d}=\sqrt{(-3)^{2}+(-4)^{2}} \quad \mathrm{~d}=\sqrt{9+16}$
$\mathrm{d}=\sqrt{25} \quad \Rightarrow \mathrm{~d}=5$ units

I CAN DO IT

1.Find the distance between the points $(-3,5)$ and $(3,-3)$.
2. Find the distance between the points $(-7,5)$ and $(6,3)$
3.Find the distance between the points $(-12,5)$ and $(13,5)$
4.Find the distance between the points $(-1,5)$ and $(6,5)$
5.Find the distance between the points $(-6,5)$ and $(8,5)$
3) Find the perimeter of triangle whose vertices are $(5,2),(-3,4)$ and $(2,-5)$.
(3m)

Solution:

$\mathrm{x}_{1}=5, \mathrm{x}_{2}=-3, \mathrm{x}_{3}=2, \mathrm{y}_{1}=2, \mathrm{y}_{2}=4, \mathrm{y}_{3}=-5$
Area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{2}[5(4-(-5))+(-3)((-5)-2)+2(2-4)] \\
& =\frac{1}{2}[5(4+5)-3(-5-2)+2(2-4)] \\
& =\frac{1}{2}[5 \times 9+3 \times 7+2 \times(-2)] \\
& =\frac{1}{2}[45+21-4] \\
& =\frac{1}{2}[62] \\
& =31 \text { square units }
\end{aligned}
$$

4) Find the type of triangle whose vertices are,
i) $(1,0),(-4,-2)$ and $(4,-2)$
ii) $(2,6),(-2,3)$ and $(6,3)$
iii) $(4,9),(4,3)$ and $(8,6)$
iv)(4, -5), (-3, -7) and (4, -7)
v) $(-5,6),(-10,3)$ and $(-6,3)$
5) Find the areas of triangles whose vertices are given below.
1. $(2,-1),(3,2)$ and ($5,-3$)
6) $(3,0),(-2,-3)$ and (5, -2)
2. $(-3,1),(-4,-3)$ and $(2,1)$
7) $(5,-3),(2,-5)$ and $(-3,4)$
3. $(-2,1),(4,5)$ and $(-1,-4)$
8) $(-1,-4),(-5,-6)$ and $(3,2)$
4. $(5,6),(3,-7)$ and $(-3,-5)$
9) $(-6,-3),(-8,-1)$ and $(1,0)$ 5. $(3,2),(5,-1)$ and $(4,0)$
10) $(0,8),(-8,0)$ and $(0,0)$
11) Find the perimeters of triangles whose vertices are given below.
i) $(1,0),(-4,-2)$ and $(4,-2)$
ii) $(2,6),(-2,3)$ and $(6,3)$
iii) $(4,9),(4,3)$ and $(8,6)$
iv)(4, -5), (-3, -7) and (4, -7)
v) $(-5,6),(-10,3)$ and $(-6,3)$
12) Find the value of ' k ' if the given points are collinear.
$\begin{array}{ll}\text { I } 1)(4, \mathrm{k})(3,-2) \text { and }(2,1) & 6)(3, \mathrm{k}),(-2,-3) \text { and }(5,-2\end{array}$
13) $(-1,2),(-3,4)$ and $(k, 1) \quad 7)(5,-3),(4, k)$ and $(7,-2)$
14) $(3,1),(5-2)$ and $(2,-k) \quad$ 8) $(\mathrm{k},-3),(6,5)$ and $(4,8)$
15) $(\mathrm{k}, 2),(3,-1)$ and $(5,2) \quad 9)(-3,-5),(-4,5)$ and $(0$, k)
16) $(-1,-3),(k,-3)$ and $(1,2) \quad 10)(6, k),(k, 2)$ and $(-2,-3)$

Arithmetic progressions

Find a_{n} for the following.

1) In an A.P.If $a=5, d=3$, then find $10^{\text {th }}$ term.

Solution: Given $\mathrm{a}=5, \mathrm{~d}=3$

$$
\begin{aligned}
& \text { W.K.T. } a_{n}=a+(n-1) d \\
& \therefore a_{10}=5+(10-1)(3) \\
& \therefore a_{10}=5+(9)(3) \quad \therefore a_{10}=5+27=32
\end{aligned}
$$

\therefore The $10^{\text {th }}$ term of the A.P. is 32 .
For practice:

1. $a=3, d=2, a_{15}=$?
2. $a=4, d=3, a_{20}=$? 4. $a=-1, d=-3, a_{40}=$?
3. $a=-2, d=5, a_{10}=$?

Find number of terms for the following.

| 1. $2,5,8, \ldots \ldots \ldots 98$ | $5.8,4,0, \ldots \ldots \ldots \ldots-48$ |
| :--- | :--- | :--- |
| 2. $1,4,7, \ldots \ldots \ldots 100$ | $6.12,7,5, \ldots \ldots \ldots-138$ |
| 3. $10,4,7, \ldots \ldots \ldots-47$ | $7.1,5,9, \ldots \ldots \ldots .57$ |
| 4. $-3,-8,-13, \ldots \ldots \ldots$ | $8.3,5,7, \ldots \ldots \ldots 99$ |

Find the A.P. for the following.

1. $\mathrm{a}_{12}=35, \mathrm{a}_{18}=53$ find a_{20}.
2. $\mathrm{a}_{32}=65, \mathrm{a}_{40}=81$ find a_{26}.
3. $a_{13}=37, a_{17}=49$ find a_{15}.
4. $a_{8}=-15, a_{15}=-29$ find a_{12}.
5. $a_{5}=-23, a_{15}=-73$ find a_{25}.
6. $a_{7}=15, a_{16}=42$ find a_{20}.
7. $\mathrm{a}_{22}=-76, \mathrm{a}_{30}=-108$ find a_{50}.

TRIGONOMETRY

1. One mark questions
2. If $\sin \theta=\frac{3}{5}$ find all trigonometric ratios.
3. If $\cot \theta=\frac{12}{5}$ find all trigonometric ratios.
4. If $\sec \theta=\frac{7}{3}$ find all trigonometric ratios.
5. If $\cos \theta=\frac{5}{8}$ find all trigonometric ratios.
6. Express $\tan \theta$ in terms of all trigonometric ratios.

Express $\operatorname{cosec} \theta$ in terms of all trigonometric ratios
2. Standard Angles: Evaluate the following.

Ex: 1) Evaluate $\frac{2 \tan 45+3 \sin 30}{2 \operatorname{cosec} 30-\sec 60}$
Solution: $\frac{2 \tan 45+3 \sin 30}{2 \operatorname{cosec} 30-\sec 60}=\frac{2(1)+3\left(\frac{1}{2}\right)}{2(2)-2}=\frac{2+\frac{3}{2}}{4-2}=\frac{\frac{7}{2}}{2}=\frac{7}{4}$
3. For practice:

1. $\frac{\sin 60^{\circ}+\cos 30^{\circ}-2 \cot 45^{\circ}}{\sin 45^{\circ}+\sec 60^{\circ}}$
2. $\frac{\tan 30^{\circ}+\cot 45^{\circ}-\operatorname{cosec} 30^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 60^{\circ}}$
3. $\frac{\cos 45^{\circ}-2 \sec 30^{\circ}}{2 \cos e c 45^{\circ}-3 \cot 30^{\circ}}$
4. $\sin 60^{\circ} \cdot \cos 30^{\circ}+\sin 30^{0} \cdot \cos 60^{\circ}$
5. $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
6. $\frac{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}{\cos 45^{\circ}}$

$$
\begin{aligned}
& \text { 7. } \frac{\sin 30^{\circ}+\operatorname{cosec} 30^{\circ}}{\cot 45^{\circ}} \\
& \text { 8. } \frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}} \\
& \text { 9. } \frac{\sec 30^{\circ}+2 \cos 60^{\circ}-\cot 45^{\circ}}{3 \tan 45^{\circ}-2 \operatorname{cosec} 60^{\circ}} \\
& \text { 10. } \frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}} \\
& \text { 11. } \frac{3 \sec 30^{\circ}+2 \operatorname{cosec} 30^{\circ}}{3 \cos 45^{\circ}} \\
& \text { 12. } \frac{3 \sin 60^{\circ}+2 \operatorname{cosec} 30^{\circ}}{\tan 45^{\circ}-2 \cot 45^{\circ}} \\
& \text { 13. } \frac{4 \tan 45^{\circ}-3 \cot 30^{\circ}}{3 \operatorname{cosec} 45^{\circ}-\sec 45^{\circ}} \\
& \text { 14. } \frac{34 \cos 30^{\circ}-\cos 60^{\circ}}{2 \sin 45^{\circ}-3 \tan 45^{\circ}} \\
& \text { 15. } \frac{4 \sec ^{2} 45^{\circ}-3 \cos ^{2} 30^{\circ}}{2 \sin 30^{\circ}+3 \operatorname{cosec} 20^{\circ}} \\
& \text { 16. } \frac{3 \cos ^{2} 45^{\circ}-2 \sec ^{2} 30^{\circ}}{\cot ^{2} 30^{\circ}-2 \operatorname{cosec}^{2} 30^{\circ}} \\
& \text { 19. } \frac{4 \sin ^{2} 60^{\circ}-3 \tan ^{2} 30^{\circ}}{4 \cos ^{2} 30^{\circ}-\sec ^{2} 45^{\circ}} \\
& \text { 17. } \frac{2 \tan ^{2} 45^{\circ}-3 \sec ^{2} 60^{\circ}}{2 \cos e c^{2} 30^{\circ}+2 \cot ^{2} 30^{\circ}} \\
& \text { 18. } \frac{4 \cos ^{2} 60^{\circ}-3 \tan ^{2} 30^{\circ}}{5 \sec ^{2} 60^{\circ}+2 \tan 45^{\circ}} 20 . \operatorname{Sin} 60^{\circ} \cdot \cos 30^{\circ}-\cos 60^{\circ} \cdot \sin 30^{\circ}
\end{aligned}
$$

Practice Question Paper-2
 Target-45

7X1=7

I. Answer the following.

1.Find the distance of a point $(3,4)$ from the origin.
2. Find the 3 rd term of AP $a_{n}=3 n+1$.
3. Write the formula to find Volume of Hemisphere.
4. Write algebraic condition of pair of linear equation for coincident lines.
5.Write section formula to find the coordinates of a point which divides the lime segment joining points internally in the given ratio.
6. Find $\tan \theta$ if $\cot \theta=\frac{12}{5}$.
7.State Pythagoras s Theorem.
II. Answer the following.
8. Find the sum of A P1+4+7+ \qquad .upto 30 terms.
9. Solve $.2 \mathrm{x}+\mathrm{y}=3 ; \mathrm{x}+3 \mathrm{y}=18$.
10. Find the distance between the points $(2,4)$ and $(5,8)$.
11. Solve using quadratic formula $3 x^{2}-5 x+2=0$.
12. Draw a line segment $A B$ of length 10 cm and divide it in the ratio of $2: 3$
III. Answer the following.

3X5=15
13. "The tangent at any point of a circle is perpendicular to the radius drawn at the point of contact".
14. Draw less than ogive curve for following data

CI	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$
F	15	10	17	12	6

15. Calculate median and mode for the following data distribution.

C-I	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
F	6	8	7	3	1

16. Draw a pair of tangents to a circle of radius 4 cm , which are
inclined at an angle of 120°.
17. Find the perimeter of triangle whose vertices are $(5,2),(-3,4)$ and $(2,-5)$.
IV. Answer the following.
$4 \times 2=8$
18. Solve the following pair of linear equations in two variables by graphical method : . $2 x-y-2=0 ; \quad x+y=6$.
19. Draw a $\triangle \mathrm{ABC}$ with sides $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\left\llcorner\mathrm{ABC}=60^{\circ}\right.$ Then
construct a triangle whose sides are $\frac{7}{5}$ of the corresponding sides of triangle ABC.
V. Answer the following. 5X1=5
20.State and Prove, "Thale's theorem".

Probable date to conduct Date:05/03/2022

Practice Question Paper-3
 Target-45

I. Answer the following.

I 1.Find the distance of a point $(3,0)$ from the origin.
I 2. Find the 3 rd term of $A P a_{n}=3 n+1$.
I 3.Write the formula to find Volume of frustum of a cone.
I 4.Write algebraic condition of pair of linear equation for parallel lines.
5.Write the formula to find area of a triangle when coordinates of its vertices are given.
6. Evaluate, $\tan 48^{\circ} x \tan 42^{\circ}$
II. Answer the following.

I 8. Find the sum of A P1+4+7+ upto 30 terms.
I 9.Solve $.2 \mathrm{x}+\mathrm{y}=3 ; \mathrm{x}+3 \mathrm{y}=18$.
I 10. Find the midpoint of line joining the points $(3,4)$ and $(5,6)$.
I 11. Solve using quadratic formula $2 \mathrm{x}^{2}-3 \mathrm{x}=5$.
12. Draw a line segment $P Q$ of length 8 cm and divide it in the ratio of $2: 3$
13. Find the discriminant of equation $2 x^{2}-3 x-8=0$ and also write nature of roots.
14. If $a_{12}=35, a_{18}=53$ find a_{20}
III. Answer the following.

3X4=12
12. "The tangent at any point of a circle is perpendicular to the radius drawn at I the point of contact".
I 13. Draw less than ogive curve for following data.

CI	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
F	5	7	3	2	3

14. Calculate mean and median for the following data distribution.

C-I	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
	F	6	8	7	3

I 15 Draw a circle of radius 2.5 cm and construct a chord of length 3 cm . and
I Draw the tangents at the end points of the chord.

IV. Answer the following.

4X2=8
I 16. Solve the following pair of linear equations in two variables by graphical
I method : $\mathbf{y}=\mathbf{2 x}-2$ and $\mathbf{y}=\mathbf{4 x}-4$.
I 17. Construct a triangle ABC with sides $\mathrm{AB}=6 \mathrm{~cm}$ and $\angle \mathrm{BAC}=50^{\circ}$ and I $L A B C=60^{\circ}$. Then construct a triangle whose sides are $1 \frac{1}{2}$ of the corresponding I sides triangle ABC .
I V. Answer the following. 5X1=5
I 18.State and Prove, Converse of "Pythagoras theorem".
I Probable date to conduct Date:09/03/2022

