

Sl.No	Name	Phone Number	School Code	School Address
1	Venktachala N	9538904081	KRCRS-391	KRCRS, Honnayakanahalli, Channapatna Tq. & Dt.Ramanagar
2	Raghavendra	8861740720	KRCRS-485	KRCRS VADDANAKATTI TQ:SANDUR BALLERY
3	Chetana S H M	9741707654	MDRS-328	MDRS MODALAGHATTHA TQ:HADAGALI DT: BALLARY
4	Akshata K	9741360212	BC-142	MDRS Machina Belathangady Dakshina Kannada
5	Ravi.M	9008680654	SC74	MDRS, Mallanayakanahalli Tq. Kunigal Dt. Tumukur
6	Jaganath J	9901507095	GM-105	MDRS Mullegudda Nanjangudu Mysuru
7	Aparna Kukunur	9480263272	SC-183	MDRS, Tumbakere Mandya
8	Shahanawaz Maniyar	9538012268	SC-794	DBRS,Chabbi, Tq.Hubli,Dt.Dharwad
9	Praveenkumar Vastrad	8748069613	SC-498	KRCS,Hosalli Koppal
10	Chetankumar T P	7975664316	ST-27	IGRS SIDDAPUR TQ:HOSADURGA DT:CHITRDURGA
11	Aparana Bhatta	9008854159	SC-171	MDRS Kalathur TQ.Kaup Dt. Udupi

INDEX

Sl. No	Topic	Page Number	Possibility of marks
1.	Theorems on Triangle	4&5	4-5+1(Statement)
2.	Theorems on Circle	5	3
3.	Construction	6to8	9
4.	Ogive curve	9to10	3
5.	Elimination and graphical method	10to12	7
6.	Mean, median and mode	12to13	3
7.	Quadratic equation (Formula and nature of roots)	14	4
8.	Co-ordinate geometry	15	7
9.	Arithmetic Progression	15 to 16	6
10	Formula	16	3
		Total	50
11	(Weakly Two exam) Target 45 question Paper-1,2,3,4	17 to19	
12	Target 45 Question Paper-5,6,7,8,9	18 to21	

THEOREM(7 to 8 marks)

Theorem 1: Thales Theorem OR Basic Proportionality Theorem

"A line drawn parallel to one side of a triangle divides the other two sides in the same ratio".

Data : In ∆ ABC, DE || BC.

To Prove : $\frac{AD}{DB} = \frac{AE}{EC}$

Construction: Draw DM \perp AC and EN \perp AB.

Proof:
$$\frac{Area\ of\ \Delta\ ADE}{Area\ of\ \Delta\ BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB} \longrightarrow (1)$$
$$\frac{Area\ of\ \Delta\ ADE}{Area\ of\ \Delta\ DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC} \longrightarrow (2)$$

 Δ BDE and Δ DEC stand on the same base DE and between the same parallel lines DE and BC∴.Area of Δ *BDE* = Area of Δ *DEC*

So from equations (1) and (2), we have $\frac{AD}{DB} = \frac{AE}{EC}$. Hence proved.

Theorem 2 (A A Criterion):

"If the corresponding angles of two triangles are equal, then their corresponding sides are in the same ratio"

Data : In \triangle ABC and \triangle DEF, \angle A = \angle D, \angle B = \angle E and \angle C = \angle F

To Prove :
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

Construction: Mark the points X and Y on AB and AC such that AX =DE and AY =DF.

Proof: In \triangle AXY and \triangle DEF,

∠A = ∠D [By data]

AX = DE [By Construction]

AY = DF [By construction] $\Rightarrow :: \Delta AXY \cong \Delta DEF$ [SAS congruence]

 $\therefore \angle X = \angle E \text{ [CPCT]} \Rightarrow \angle B = \angle E. \therefore \angle X = \angle B \Rightarrow XY \parallel BC$

$$\frac{AB}{AX} = \frac{AC}{DF} = \frac{BC}{XY}$$
 [Corollary of B.P.T]

$$\frac{\overrightarrow{AB}}{DE} = \frac{\overrightarrow{AC}}{DF} = \frac{\overrightarrow{BC}}{EF}$$
 [By Substitution]. Hence proved.

Theorem 3(Areas of Similar Triangles)

"The areas of two similar triangles are proportional to the squares of their corresponding sides". A

Data: $\triangle ABC \sim \triangle .DEF$

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

To Prove: $\frac{Area\ of\ \Delta\ ABC}{Area\ of\ \Delta\ DEF} = \frac{BC^2}{EF^2}$

Construction: Draw AL \perp BC and DM \perp EF.

Proof:
$$\frac{Area\ of\ \Delta\ ABC}{Area\ of\ \Delta\ DEF} = \frac{\frac{1}{2} \times BC \times AL}{\frac{1}{2} \times EF \times DM} = \frac{BC}{EF} \times \frac{AL}{DM} ---- > (1)$$

In \triangle ABL and \triangle DEM, \angle B = \angle E By data \angle L = \angle M [Right angles] $\therefore \triangle ABL \sim \triangle DEM$ [AA Criterion]

$$\frac{AB}{DE} = \frac{BL}{EM} = \frac{AL}{DM}$$
; But $\frac{AB}{DE} = \frac{BC}{EF}$; $\frac{AB}{DE} = \frac{BC}{EF} - \cdots - > (2)$

Substitute (2) in (1) $\frac{Area\ of\ \Delta\ ABC}{Area\ of\ \Delta\ DEF} = \frac{BC^2}{EF^2}$ Hence proved.

Theorem 4(Pythagoras Theorem):

I "In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides"

Data: ABC is a right angled triangle, $\angle B = 90^{\circ}$

To Prove: $AC^2 = AB^2 + BC^2$

Construction: Draw BD \perp AC.

Proof: In \triangle ABC and \triangle ADB, \angle A = \angle A [Common angles] \angle B = \angle D [Right angles]

 $∴\Delta ABC \sim \Delta ADB$ [AA Criterion]

$$\frac{AB}{AD} = \frac{BC}{DB} = \frac{AC}{AB} \quad AB^2 = AC \times AD -----(1)$$

Similarly, In \triangle ABC and \triangle BDC, \angle C = \angle C

[Common angles] $\angle B = \angle D$ [Right angles]

 $BC^2 = AC \times DC$ ----- (2)Adding equations (1)and (2),

 $\mathsf{AB^2} + \mathsf{BC^2} = \ \mathsf{AC} \times \mathsf{AD} + \mathsf{AC} \times \mathsf{DC}. = \mathsf{AC}(\mathsf{AD} + \ \mathsf{DC}) = \mathsf{AC} \times \mathsf{AC}$

 $AB^2 + BC^2 = AC^2$ Hence proved.

Theorem 5 (Converse of Pythagoras Theorem):

In a triangle, if square of one side is equal to the sum of the "The two tangents drawn from an external point to a circle squares of the other two sides, then the angle opposite the are equal". first side is a right angle.

Data: In a triangle ABC in which

 $AC^2 = AB^2 + BC^2$ **To Prove** : $\angle B = 90^{\circ}$.

Construction: To start with, we construct a l Δ PQR right angled at Q such that PQ=AB | To Prove : AP =BP and QR = BC.

Proof: Now, from $\triangle PQR$, we have : $PR^2 = PQ^2 + QR^2$ (Pythagoras Theorem, as $\angle Q = 90^{\circ}$) or,

 $PR^2 = AB^2 + BC^2$ (By construction)----- (1)

But $AC^2 = AB^2 + BC^2$ (Given)----- (2)

So. AC = PR ----(3)

[From (1) and (2)]

Now, in \triangle ABC and \triangle PQR,

AB = PQ (By construction)

BC = QR (By construction)

AC = PR [Proved in (3) above]

So, \triangle ABC \cong \triangle PQR (SSS congruence)

Therefore, \angle B = \angle Q (CPCT)

But $\angle Q = 90^{\circ}$ (By construction) \Rightarrow So, $\angle B = 90^{\circ}$

Circle theorem 1

"The tangent at any point of a circle is perpendicular to the radius drawn at the point of contact".

Data: O is the centre of the circle .XY is the tangent to the circle at the point P.OP is the radius drawn at the point of contact P.

To Prove : OP \perp XY.

Construction: Take a point Q on XY .Join OQ.

Proof: $OQ = OR + RQ \Rightarrow OQ = OP + RQ (OP = OR)$

 \Rightarrow 00>0P \Rightarrow :00 is longer than OP.

So, OP is the smallest distance of the point O from the line XY.

 \therefore OP \perp XY.

Hence proved.

Circle theorem 2

Data: O is the centre of the circle .P is an external point . AP and BP are tangents to the circle.

Proof: In \triangle AOP and \triangle BOP,

∠OAP =∠OBP [Right angles]

[Radii of the same circle] OA = OB

[Common side] OP=OP

∴ΔAOP ≅ΔBOP [RHS Theorem]

∴ AP=BP [C.P.C.T]

Hence proved.

CONSTRUCTIONS (TARGET 9marks)

TO DIVIDE THE LINE SEGMENT IN THE GIVEN RATIO

1) Draw a line segment of length 7 cm and divide it in the ratio of 2:1

STEPS:

- 1.Draw a line AB with the measure 7 cm
- 2.Draw a line AX such that it makes an acute angle.
- 3.Make 2+1= 3 equal parts on AX.
- 4. Join last part A₃ to B.
- 5.Draw a parallel line A₂C to A₃B

AC: CB = 2:1

I CAN DO IT

- 2) Draw a line segment AB of length 8 cm and divide it in the ratio of 3:2.
- 3) Draw a line segment of length 7.6 cm and divide it in the ratio of 4:2. Measure the two parts.
- 4) Draw a line segment of length 12 cm and divide it in the ratio of 5:2
- 5) Draw a line segment of length 9 cm and divide it in the ratio of 3:4

CONSTRUCTION OF TANGENTS TO A CIRCLE

Type 1: Angle between the radii is given.

1) Draw a pair of tangents to a circle of radius 3 cm, such that the radii are inclined at an angle 140.

STEPS:

- 1) Draw a circle of radius 3 cm.
- 2) Make an angle of 1400 between the radii OP and OQ.
- 3) Draw perpendicular line at P and Q and produce to intersect at R.
- 4) RP and RQ are the tangents.

I CAN DO IT

- 1) Draw a pair of tangents to a circle of radius 5 cm, such that the radii are inclined at an angle 60°
- 2) Draw a pair of tangents to a circle of radius 5 cm, such that the radius is inclined at an angle 1250
- 3) Draw a pair of tangents to a circle of radius 3.5 cm, such that the radii are inclined at an angle 80°
- 4) Draw a pair of tangents to a circle of radius 4 cm, such that the radii are inclined at an angle 75° . and write the measure of its length.
- 5) Draw a pair of tangents to a circle of radius 3 cm, such that the radii are inclined at an angle 70°.

Type 2: Angle between the tangents is given.

1) Draw a pair of tangents to a circle of radius 5 cm, which are inclined at an angle of 60° . Measure the length of the tangents.

Angle between the radii $= 180^{\circ}-60^{\circ} = 120^{\circ}$

STEPS:

- 1) Draw a circle of radius 5 cm
- 2) Make 120° between radii OA and OB.
- 3) Draw perpendicular line at A and B and produce to intersect at P.
- 4) PA and PB are the tangents

PA and PB are the tangents

I CAN DO IT

- 2) Draw a pair of tangents to a circle of radius 3.5cm, such that the angle between the tangents is 90°
- 3) Draw a pair of tangents to a circle of radius 4cm, which are inclined at an angle of 120°
- 4) Draw a pair of tangents to a circle of radius 3cm, which are inclined at an angle of 60°
- 5) Draw a pair of tangents to a circle of radius 3cm, which are inclined at an angle of 70°

- 6) Draw a pair of tangents to a circle of radius 3.5 cm, which are inclined at an angle of 80°
- 7) Draw a pair of tangents to a circle of diameter 6 cm, which are inclined at an angle of 550
- 8) Draw a pair of tangents to a circle of radius 3.5 cm, which are inclined at an angle of 80°
- 9) Draw a pair of tangents to a circle of radius 4 cm, which are inclined at an angle of 100°
- 10) Draw a pair of tangents to a circle of radius 5 cm, which are inclined at an angle of 600. Measure the length of the tangents.

Type 3 : Construction of tangents on the circumference of the circle

1) Draw a circle of radius 2.5 cm and Construct a chord of length 3 cm. and Draw the tangents at the end points of the chord.

STEPS:

- 1) Draw a circle of radius 2.5 cm
- 2) Draw a chord AB of length 3 cm
- Draw perpendicular line at A and B. Produce them to meet at P.
- 4) PA and PB are the tangents.

PA and PB are the tangents.

I CAN DO IT

- 2) Draw a circle of radius 5 cm and Construct a chord of length 7 cm. and Draw the tangents at the end points of the chord.
- 3) Construct a tangent to a circle of radius 4 cm at any point P on its circumference.
- 4) Draw a circle of radius 3 cm and draw a diameter AB. Construct the tangents at A and B.
- 5) Draw a circle of radius 3 cm and Construct a chord AB of length 5 cm. and Draw the tangent at point B.
- 6) Draw a circle of radius 4.5 cm and Construct a chord PQ of length 7 cm. and Draw the tangent at the point P.

Type 2: Construction of tangents from an external point.

1. Draw a circle of radius 3.5 cm from a point 8 cm away from the center; construct the pair of tangents to the circle. Measure the tangents and write.

Tangents PA= PB= 7.2 cm

STEPS:

- 1) Draw a circle of radius 3.5 cm.
- 2) Draw a line segment OP of length 8 cm.
- 3) Draw perpendicular bisector of OP
- 4) With the midpoint of OP as centre draw a circle points O and P on it.
- 5) Join the intersection points A and B to P.
- 6) PA and PB are the tangents.

CAN DO IT

- Draw a circle of radius 5cm. from a point 5cm away from the circle, construct the pair of tangents to the circle.
- 2. Draw a circle of radius 4cm. from a point 8cm away from the center, construct the pair of tangents to the circle.
- I3. Draw a circle of diameter 6 cm. from a point 8cm away from the center, construct the pair of tangents to the circle.
- 4. Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameters each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.
- 5. 6)Draw two concentric circles of radii 3 *cm* and 5 *cm*. Taking a point on the outer circle, construct the pair of tangents to the inner circle.
- 6. Draw two concentric circles of radii 3 *cm* and 5 *cm*. Construct a tangent to smaller circle from a point on the larger circle. Also measure its length.

Construction of Similar Triangles

Type 1: When proper fraction (ratio) given:

1) Construct a triangle of sides 4 cm, 6 cm and 4.5 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

ΔABC ~Δ AB'C'

STEPS:

- 1) Draw a triangle ABC with sides 4 cm, 6 cm and 4.5 cm.
- 2) Draw AX such that which makes an acute angle.
- 3) Make equal 3 parts on AX.
- 4) Join 3^{rd} point ie A_3 to B.
- 5) Make same measure of angle A3 at 2nd point ie at A₂ Join A₂B'
- 6) Make same measure of angle B at point B'. Produce C'

I CAN DO IT

- 1) Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{5}$ of the corresponding sides of the first triangle.
- 2) Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{5}{7}$ of the corresponding sides of the first triangle.
- 3) Construct a triangle of sides 5 cm, 6 cm and 7 cm and then a triangle similar to it whose sides are $\frac{3}{5}$ of the corresponding sides of the first triangle.
- 4) Draw a triangle ABC with sides AB = 5 cm, BC =6 cm and LABC=600. Then construct a triangle whose sides are 2:3 of the corresponding sides of triangle ABC.

Type 2: When improper fraction (ratio) given:

11) Draw a triangle ABC with sides AB = 5cm, BC = 4 cm and \triangle ABC=60 Then construct a triangle whose sides are $\frac{7}{5}$ of the corresponding sides of triangle ABC.

ΔABC ~Δ AB'C'

STEPS:

- 1) Draw a triangle ABC with AB= 5 cm, BC= 4 cm and \triangle ABC=60°
- 2) Draw AX such that which makes an acute angle.
- 3) Make equal 7 parts on AX.
- 4) Join 5th point ie A_5 to B.
- 5) Make same measure of angle as $A_{5 in}$ 7th point ie at A_7 . Join A_7B'
- 6) Make same measure of angle B at point B' and Produce to C'

I CAN DO IT

- 5) Construct a triangle of sides 5 cm, 6 cm and 7 cm and then a triangle similar to it whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.
- 6) Draw a triangle ABC with sides AB = 6cm, BC =5cm and \perp ABC=80 $^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ of the corresponding sides of triangle ABC.

Page

- 7) Construct a triangle ABC with sides AB= 6cm and \bot BAC=50° and \bot ABC=60°. Then construct a triangle whose sides are 1 $\frac{1}{2}$ of the corresponding sides triangle ABC.
- 8) Construct a triangle ABC with sides BC= 4.5cm and AB= 5.5 cm and \blacksquare \blacksquare A=55°. Then construct a triangle whose sides are $\frac{5}{2}$ the corresponding \blacksquare sides of triangle ABC.
- 9) Draw a right triangle in which the sides (other than hypotenuse) are of lengths 8 cm and 6 cm, then construct another triangle whose sides are $\frac{5}{3}$ of times the corresponding sides of the given triangle.
- 10) Draw a triangle ABC with side base BC= 8 cm and altitude 4 cm, and I then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the isosceles triangle ABC.
- 11) Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm, then construct another triangle whose sides are $\frac{5}{3}$ of times the corresponding sides of the given triangle.
- 12) Construct a triangle of sides 4 cm , 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

Ogive Curve: (Target-3marks)

1. Draw more than ogive curve for following data.

CI	0-50	50-100	100-150	150-200	200-250	250-300			
f	12	18	27	20	17	6			

It should be converted like this.

outa be converted into this.							
CI	F	CI	f	(x , y)			
0-50	12	More than 0	100	(0,100)			
50-100	18	More than 50	88	(50,88)			
100-150	27	More than 100	70	(100,70)			
150-200	20	More than 150	43	(150,43)			
200-250	17	More than 200	23	(200,23)			
250-300	6	More than 250	6	(250,6)			

Dear students this question can also be asked like this.

ı	CI	More than	More	More than	ı				
		0	50	100	150	200	than 250	300	ì
	CF	100	88	70	43	23	6	0	ı

If they given question like this then you can plot graph directly.

Page

2. Same question for less than type draw more than ogive curve for following data.

CI	0-50	50-100	100-150	150-200	200-250	250-300
F	12	18	27	20	17	6

It should be converted like this.

CI	F	CI	f	(x , y)
0-50	12	less than 50	12	(50,12)
50-100	18	less than 100	30	(100,30)
100-150	27	less than 150	57	(150,57)
150-200	20	less than 200	77	(200,77)
200-250	17	less than 250	94	(250,94)
250-300	6	less than 300	100	(300,100)

Dear students this question can also be asked like this.

CI	Less than 0	less than 50	less than 100		less than 200		less than 300
CF	0	12	30	57	77	94	100

Pair of Linear Equation in two variables

Step: 1 To get 1 mark study this table: (a1x+b1y=c1:a2x+b2y=c2)

ŧ.	oreh. I	IO get III	<u>iain stuuy tiiis t</u>	abic.(aiv.piy-ci	<u>.a2x · b2y -c2j</u>
•	Sl.No	Compare the	Graphical	Algebraic	Consistency
I		ratio	Representation	Interpretation	
 	1.	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Lines intersecting	Only one solution i.e(unique solution)	Consistent
 	2.	$\frac{a_1}{a_2} = \frac{b_1}{b_2}$ $= \frac{c_1}{c_2}$	Lines are coincident	Many solution i.e(infinite solution)	Dependent and consistent.
 	3.	$\frac{a_1}{a_2} = \frac{b_1}{b_2}$ $\neq \frac{c_1}{c_2}$	Lines are parallel	No solution (Zero solution)	Inconsistent

I Step: 2 To get 2mark

| (Solve these linear equation by elimination method):

Type 1.Solve x+3y=6 and 2x-3y=6.

Solution:
$$x+3y=6----(1)$$
 2x -3y=6----(2)

Adding these we get

$$x + 3y = 6$$

$$2x - 3y = 6$$

$$3x+(0)y=12$$
 $3x=12 \Rightarrow x=\frac{12}{3}$; $x=4 => consider (1) x+3y=6 =>4+3y=6$

$$\Rightarrow$$
 3y=6-4=2 \Rightarrow y= $\frac{2}{3}$; So x=4 and y= $\frac{2}{3}$ are the solution.

| Type 2. Solve 2x+y-6=0 and 6x+2y-4=0.

Solution:
$$2x + y - 6 = 0 \Rightarrow 2x + y = 6 - - - (1)$$

 $6x+2y-4=0 \Rightarrow 6x+2y=4-----(2)$ Here we eliminate y-coordinate. To eliminate y we need to multiply (1) by 2 and subtract.

$$4x + 2y = 12 - - - (1)$$

$$6x + 2y = 4$$
----(2)

an
$$\left[\begin{array}{ccc} & & & & \\ & & & \\ \hline & & & \\ \end{array} \right]$$

$$-2x=8 = x=\frac{8}{-2}$$
 - 4 x= - 4; substitute in (1) 2x+y=6

$$| | | = 2(-4) + y = 6 = -8 + y = 6 = y = 6 + 8 = y = 14$$
 So x=-4; y=14 are the solution.

10 | Page

Type 3: Solve 3x+4y=2 and 2x-3y=7.

Solution: 3x+4y=2 -----(1) 2x-3y=7 -----(2)

Here both x and y have different coefficients in equations (1) and (2). So make the coefficient of any of the variable (either x or y) to be same in both equations. Multiply equation (1) by 2(co efficient of x in (2)) and equation (2) by 3(co efficient of x in (1)).

$$\Rightarrow 6x+8y=4$$

$$6x-9y=21$$

$$17y = -17$$

$$\Rightarrow y = -1$$

On subtraction

Now substitute y=-1 in equation (1), we get

$$3x+4(-1)=2 \implies 3x-4=2 \implies 3x=2+4$$

3x = 6 \therefore x = 2 \therefore The solutions are x = 2 and y = -1.

Solve the following for X and Y:

I CAN DO IT

Step3: Graphical solution of pair of linear equation by getting perfect you will get 4marks in your exam:

1. Solve the following pair of linear equations in two variables by graphical method: x + y = 7 and 3x - y = 1

Solu	Solution:x+y=7									
X	0	1	2	3						
V	7	6	5	4						

			JX-y	=1	
X	0	1	2	3	4
У	-1	2	5	8	11

Here lines intersect at (2,5) so solution is x=2 and y=5.

2.Solve the following pair of linear equations in two variables by graphical method :y =2x-2 and y =4x-4

Solution: y=2x-2

X	-1	1	2	3
У	-4	0	2	4

y -	- 7 A-7				
X	0	1	2	3	4
у	-4	0	4	8	12

Here lines intersect at (1,0) so solution is x=1 and y=0

For practice: Solve these questions by elimination method and also solve by graphical method.*

1.3	x+2y=1;5x-3y=2	2.5x-3y=2;4x-y=1	3.2x+3y=2;3x-1=4y	4.5x+y=1;x-y=8
5.3	x+2=y; y-3=4x	6.5x+y=7;x-3y=5	7.y-x=2; 2x-y=-2	8.3x+y=7; 4x-y=2
9.3	x+2y=5;5x-3y=1	10.3x-y=7;x+3y=5	11.4x-y=3; 3x-2y=1	12.2x-y=7; x-3=4y
13.	3x+5y=4;x-5y=8	14.y-x+2=0;x-2y-4=0	15.2x+y=3;x+3y=-10	16.y=2x-2; y=4x-4
17.	x-y=4; x+y=10	18.2x-y-2=0; x+y=6	19.x+y=10;x-y=2	20.2x+y=8;x+2y=7

* Solve daily one problem from above on elimination method and graphical method to get 6m.

iMean, Median and Mode: (Target-3marks)

Mean: Mean is the ratio of sum of all observations to the total number of lobservations.

Median: The middle most observation in an orderly arranged data distribution is called Median.

Mode: The most repeated observation in a data distribution is called Mode.

IFormulae to find mean, median and mode:

1) **Mean** =
$$\frac{\sum fx}{\sum f}$$
 where 'f' is frequency and 'x' is class mark of class

interval

12) Median =
$$l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$$
 where

1 – Lower limit of median class n- Number of observations h – Class size cf – Cumulative frequency of class preceding the median class f- Frequency of median class.

Mode =
$$l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$$
 where,

1 - Lower limit of the modal class <math>h - Class size

 f_1 - Frequency of modal class f_0 - Frequency of class preceding modal class

 f_2 – Frequency of class succeeding modal class.

Example 1): Calculate mean, median and mode for the following data distribution.

C-I	0-10	10-20	20-30	30-40	40-50
F	6	8	7	3	1

|Solution: To find mean

C-I	f	X	fx
0-10	6	5	30
10-20	8	15	120
20-30	7	25	175
30-40	3	35	105
40-50	1	45	45

$$\therefore \mathbf{Mean} \ \frac{1}{x} = \frac{\sum fx}{\sum f}$$

$$= \frac{475}{25}$$

$$= 19.$$

$$\sum f = 25 \quad \sum fx = 475$$

12 | Page

To find median,

_	o mu n	icui	an,
	C-I	f	Cf
	0-10	6	6
	10-20	8	14
	20-30	7	21
	30-40	3	24
	40-50	1	25

Here 'n' is odd so consider $(\frac{n+1}{2})^{th}$ observation.

$$\frac{n+1}{2} = \left(\frac{25+1}{2}\right) = \left(\frac{26}{2}\right) = 13^{th} \text{ observation exists in}$$

the class interval (10-20). (By observing cf column, we can find it).

 \therefore (10-20) is median class.

Here, Lower limit of median l=10

Number of observations n = 25

Cf of class preceding median class $\mathbf{cf} = \mathbf{6}$

Frequency of median class f = 8 and Class size h = 10.

$$\therefore \mathbf{Median} = \frac{1}{1 + \left[\frac{\frac{n}{2} - cf}{f} \right] \times h} = \frac{10}{10 + \left[\frac{25}{8} - 6 \right] \times 10} = 10 + \left[\frac{12.5 - 6}{8} \right] \times 10$$

=
$$10 + \left\lceil \frac{6.5}{8} \right\rceil \times 10$$
 = $10 + 8.125$: Median = 18.125

To find Mode,

	,
C-I	F
0-10	6
10-20	8
20-30	7
30-40	3
40-50	1

Here the class (10-20) has the highest frequency '8' so it is called modal class.

 \therefore Lower limit of modal class l = 10

Size of class interval **h= 10**

Frequency of modal class $f_1 = 8$

Frequency of class preceding modal class $f_0 = 6$

Frequency of class succeeding modal class $f_2 = 7$

$$\therefore \mathbf{Mode} = l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$$

$$= 10 + \left[\frac{8 - 6}{2(8) - 6 - 7} \right] \times 10 = 10 + \left[\frac{2}{16 - 13} \right] \times 10 = 10 + \left[\frac{2}{3} \right] \times 10 = \frac{1}{1}$$

10 +6.66 =**16.66**

Note: 1) If two class intervals have highest frequencies then we have to find mode for both class intervals.

- 2) If the first class interval has highest frequency then $f_0 = 0$
- 3) If the last class interval has highest frequency then $f_2=0$

If they given question like this then you can plot graph directly.

I CAN DO IT

For practice: Find mean, median, mode and draw less than and more than ogive curve for the following data. (To achieve 3m for mean,median and mode) and 3m for ogive. *

C-I	0-10	10-20	20-30	30-40	40-50
F	4	3	5	2	1

C –I	0-5	5-10	10-15	15-20	20-25	25-30
F	5	7	6	5	3	4

C-I	0-5	5-10	10-15	15-20	20-25
F	4	3	5	6	2

C-I	1-3	3-5	5-7	7-9	9-11
F	7	8	2	2	1

(C-I	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55
]	F	3	8	9	10	3	0	0	2

C-I	500-520	520-540	540-560	560-580	580-600
F	12	14	8	6	10

C-I	11-13	13-15	15-17	17-19	19-21	21-23	23-25
F	7	6	9	13	20	5	4

C-I	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
F	5	3	4	3	3	4	7	9	7	8
\Box	_I 0	-5	5_10		10_15	15_	20	20-25		

C-I	0-5	5-10	10-15	15-20	20-25	
F	4	6	3	2	5	

C-I	0-100	100-200	200-300	300-400	400-500
F	15	10	17	12	6

Answers:

- 1) Mean = 20.33 Median = 21
 - $Median = 21 \qquad Mode = 24$
- 2) Mean = 13.5 Median = 12.5 Mode = 8.33
- 3) Mean = 12.25 Median = 13 Mode = 16
- 4) Mean = 4.2 Median = 3.75 Mode = 3.28

5) Mean = 33.71 Median = 28.61 Mode = 30.27

6) Mean = 545.2 Median = 538.33 Mode = 525

7) Mean = 18 Median = 18.53 Mode = 19.63

8) Mean = 59.15 Median = 66.42 Mode = 75

9) Mean = 12 Median = 10 Mode = 7

10) Mean = 223.33 Median = 229.41 Mode = 258.33

*Practice all above you will get definitely 6marks.

QUADRATIC EQUATIONS

1) Solving quadratic equations by formula method:

Ex:1)
$$x^2+10x+25=0$$

Solution: Given $x^2+10x+24=0$

Here a=1, b=10 and c=24

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-10 \pm \sqrt{(10)^2 - 4(1)(24)}}{2(1)} = \frac{-10 \pm \sqrt{100 - 96}}{2}$$

$$= \frac{-10 \pm \sqrt{4}}{2} = \frac{-10 \pm 2}{2}$$

$$= \frac{-10 + 2}{2} \text{ or } = \frac{-10 - 2}{2}$$

$$= \frac{-8}{2} \text{ or } = \frac{-12}{2}$$

1. For practice:

2. $x^2-7x+12=0$ 11. $x^2+5x-3=0$

3. $x^2-8x+9=0$ 12. $x^2-6x+8=0$

4. $x^2-4x+5=0$ 13. $x^2+4x-5=0$

5. $x^2-10x+13=0$ 14. $y^2-8y+10=0$

6. $m^2-8m+10=0$ 15. $x^2-5a+6=0$

7. $4x^2-5+2x=0$ 16. $7x^2+3x-5=0$

8. $3x^2-5x+2=0$ 17. $5x^2-7x+12=0$

9. $2x^2-3x-8=0$ 18. $X^2=8x-5$

10. $x^2+3x=1$ 19. $4x^2-1=8$

 $11.4x^2-5=6x 20.3x^2+1=8x$

2. Find the nature of the roots of the following equations:

1. $x^2-7x+12=0$ 11. $x^2+5x-3=0$

2. $x^2-8x+9=0$ 12. $x^2-6x+8=0$

3. $x^2-4x+5=0$ 13. $x^2+4x-5=0$

4. $x^2-10x+13=0$ 14. $y^2-8y+10=0$

5. $m^2-8m+10=0$ 15. $x^2-5a+6=0$

6. $4x^2-5+2x=0$ 16. $7x^2+3x-5=0$

7. $3x^2-5x+2=0$ 17. $5x^2-7x+12=0$

8. $2x^2-3x-8=0$ 18. $x^2=8x-5$

9. $x^2+3x=1$ 19. $4x^2-1=8$

10. $4x^2-5=6x$ 20. $3x^2+1=8x$

3. If the roots of the following quadratic equations are equal, then find the value of 'k'.

1) $x^2+kx+4=0$ 11) $x^2+6x+k=0$

2) $x^2+8x-k=0$ 12) $x^2-12x+k=0$

3) $4x^2+kx+25=0$ 13) $25X^2-kx+9=0$

4) $Kx^2+10x+25=0$ 14) $kx^2-14x+49=0$

5) $2x^2+kx+5=0$ 15) $x^2-5x+k=0$

6) $X^2-kx+64=0$ 16) $x^2+kx+81=0$

7) $X^2+10x+k=0$ 17) $x^2-10x+k=0$

8) $Kx^2-12x+4=0$ 18) $kx^2-36x+4=0$

9) $X^2+kx+10=0$ 18) $kx^2-36x+4=0$ 19) $x^2-kx+20=0$

10) $X^2+5x+k=0$ 20) $x^2-kx+100=0$

CO-ORDINATE GEOMETRY:

1) Find the distance of a point (4, -3) from the origin.(1m)

Solution: We know that formula for distance from origin is

$$d = \sqrt{x^2 + y^2} = \sqrt{(4)^2 + (-3)^2}$$

$$d = \sqrt{16 + 9} \quad d = \sqrt{25} \quad d = 5 \text{ units}$$

I CAN DO IT

- 1. Find the distance of a point (2, -3) from the origin.
- 2. Find the distance of a point (-6, -8) from the origin.
- 3. Find the distance of a point (-5, 12) from the origin.
- 4. Find the distance of a point (7, -24) from the origin.
- 5. Find the length of diameter of a circle whose centre is (-4, 3) which passes through the origin.

2) Find the distance between the points (2, 4) and (5, 8).(2m)

Solution: We know that formula for distance from origin is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 5)^2 + (4 - 8)^2}$$

$$d = \sqrt{(-3)^2 + (-4)^2} \quad d = \sqrt{9 + 16}$$

$$d = \sqrt{25} \quad = > d = 5 \text{ units}$$

I CAN DO IT

- 1. Find the distance between the points (-3, 5) and (3, -3).
- 2. Find the distance between the points (-7, 5) and (6, 3)
- 3. Find the distance between the points (-12, 5) and (13, 5)
- 4. Find the distance between the points (-1, 5) and (6, 5)
- 5. Find the distance between the points (-6, 5) and (8, 5)
- 3) Find the perimeter of triangle whose vertices are (5, 2), (-3, 4) and (2, -5). (3m)

Solution:

Solution:

$$x_1=5, x_2=-3, x_3=2, y_1=2, y_2=4, y_3=-5$$

Area of triangle= $\frac{1}{2}$ [$x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)$]
 $=\frac{1}{2}$ [$5(4-(-5))+(-3)((-5)-2)+2(2-4)$]
 $=\frac{1}{2}$ [$5(4+5)-3(-5-2)+2(2-4)$]
 $=\frac{1}{2}$ [$5x9+3x7+2x(-2)$]
 $=\frac{1}{2}$ [$45+21-4$]
 $=\frac{1}{2}$ [62]
 $=31$ square units

4) Find the type of triangle whose vertices are,

```
i)(1, 0), (-4, -2) and (4, -2)
iii)(4, 9), (4, 3) and (8, 6)
v)(-5, 6), (-10, 3) and (-6, 3)
iii)(2, 6),(-2, 3) and (6, 3)
iv)(4, -5), (-3, -7) and (4, -7)
```

5) Find the areas of triangles whose vertices are given below.

```
1.(2, -1), (3, 2) and (5, -3)
2.(-3, 1), (-4, -3) and (2, 1)
3.(-2, 1), (4, 5) and (-1, -4)
4.(5, 6), (3, -7) and (-3, -5)
5.(3, 2), (5, -1) and (4, 0)
6) (3, 0), (-2, -3) and (5, -2)
7) (5, -3), (2, -5) and (-3, 4)
8) (-1, -4), (-5, -6) and (3, 2)
9) (-6, -3), (-8, -1) and (1, 0)
10) (0, 8), (-8, 0) and (0, 0)
```

6) Find the perimeters of triangles whose vertices are given below.

i)(1, 0), (-4, -2) and (4, -2)	ii)(2, 6),(-2, 3) and (6, 3)
iii)(4, 9), (4, 3) and (8, 6)	iv)(4, -5), (-3, -7) and (4, -7)
v)(-5, 6), (-10, 3) and (-6, 3)	

7) Find the value of 'k' if the given points are collinear.

1) $(4, k) (3, -2)$ and $(2, 1)$	6) (3, k), (-2, -3) and (5, -2
2) (-1, 2), (-3, 4)and (k, 1)	7) $(5, -3)$, $(4, k)$ and $(7, -2)$
3) (3, 1), (5 -2) and (2, -k)	8) (k, -3), (6, 5) and (4, 8)
4) (k, 2), (3, -1) and (5, 2)	9) (-3, -5), (-4, 5) and (0, k)
5) (-1, -3), (k, -3) and (1, 2)	10) (6, k), (k, 2) and (-2, -3)

Arithmetic progressions

15 | Page

Find a_n for the following.

1) In an A.P.If a=5, d=3, then find 10th term. Solution: Given a=5, d=3

W.K.T.
$$a_n = a + (n-1)d$$

$$\therefore a_{10} = 5 + (10-1)(3)$$

$$\therefore a_{10} = 5 + (9)(3)$$

$$\therefore a_{10} = 5 + 27 = 32$$

\therefore The 10th term of the A.P. is 32.

For practice:

ıma	number	of terms	for the following	g.
	*		· ·	,
2	a=4, d=3	2 02	4. a=-1, d=-3	2 02
1.	a=3, d=3	2, a ₁₅ =?	3. $a = -2$, $d = 5$, a ₁₀ =?

1.	2, 5, 8,98	5. 8, 4, 0,	48
2.	1, 4, 7,100	6. 12, 7, 5,	138
3.	10, 4, 7,47	7. 1, 5, 9,	57
4.	-3, -8, -13,98	8. 3, 5, 7,	99

Find the A.P. for the following.

- 1. $a_{12}=35$, $a_{18}=53$ find a_{20} .
- 5. $a_{32}=65$, $a_{40}=81$ find a_{26} .
- 2. $a_{13}=37$, $a_{17}=49$ find a_{15} .
- 6. $a_8 = -15$, $a_{15} = -29$ find a_{12} .
- 3. $a_5=-23$, $a_{15}=-73$ find a_{25} . 7. $a_7=15$, $a_{16}=42$ find a_{20} .
- 4. $a_{22} = -76$, $a_{30} = -108$ find a_{50} . 8. $a_{5} = -28$, $a_{10} = -58$ find a_{30} .

Find S_n for the following.

Ex:1) Find the sum of A.P. 1+5+9+ upto 20 terms. Solution: Given A.P. is 1+5+9+..... upto 20 terms

∴
$$a=1$$
, $d=4$, $n=20$, $S_n=?$

W.K.T.
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\therefore S_{20} = \frac{20}{2} [2(1) + (20-1)(4)]$$

$$\therefore S_{20} = 10[2 + (19)(4)] \qquad \therefore S_{20} = 10(2 + 76) = 10(78) = 780.$$

... The sum of first 20 terms is 780.

For practice:

- 2.1+4+7+.....upto 30 terms. 7. 3+8+13+.....+63.
- 3.6+4+2+......upto 25 terms. 8. 7+12+17+.....+87.
- 4.-3-1+1+3+......upto 15 terms. 9. 4+9+14+.....+104.
- 5.10+6+2+.....upto 12 terms.
- 10.5+3+1+....+(-33).
- 6. Find the sum of first 20 natural numbers.
- 7. Find the sum of first 30 natural numbers.
- 8. Find the sum of first 15 odd numbers.
- 9. Find the sum of first 25 odd numbers.
- 10. Find the sum of first 12 even numbers.
- 11. Find the sum of first 18 even numbers.

COMPLEMENTARY RATIOS

1. Evaluate the following.

- $1. = \sin 23^{\circ}$ $\cos 67^{\circ}$
- $2. \cos ec 42^{\circ}$
- 3. $\frac{\tan 36^{\circ}}{\cot 54^{\circ}}$
- $4.\sin 54^{\circ}-\cos 36^{\circ}$

- 5.tan620-cot280
- 6. cosec150-sec750
- $7. \sin 26^{0} + \csc 42^{0} \sec 48^{0} \cos 64^{0}$
- 8. $\frac{2\cos ec 64 + \sec 26}{2\sec 26 + \cos ec 64}$

- $3 \tan 44 2 \cot 46$ 9 $5\cot 46 + 2\tan 44$
- $\frac{10}{5\cos 50 4\sin 40} + \frac{2\cos 40 \sin 50}{2\cos 40 \sin 50}$
- $\frac{3\sin 50 2\cos 40}{+} + \frac{3\cos 50 4\sin 40}{-}$

18. $4\cos^2 60^0 - 3\tan^2 30^0$ $5\sec^2 60^0 + 2\tan 45^0$

TRIGONOMETRY

1. One mark questions

- 1. If $\sin \theta = \frac{3}{2}$ find all trigonometric ratios.
- 2. If $\cot \theta = 12$ find all trigonometric ratios.
- 3. If $\sec \theta = \frac{7}{2}$ find all trigonometric ratios.
- 4. If $\cos \theta = \frac{5}{2}$ find all trigonometric ratios.
- 5. Express $\tan \theta$ in terms of all trigonometric ratios.

Express $\csc \theta$ in terms of all trigonometric ratios

2. Standard Angles: Evaluate the following.

Ex: 1) Evaluate $\frac{2 \tan 45 + 3 \sin 30}{2 \tan 45 + 3 \sin 30}$ $2\csc 30 - \sec 60$

Solution: $\frac{2\tan 45 + 3\sin 30}{2\cos ec 30 - \sec 60} = \frac{2(1) + 3(\frac{1}{2})}{2(2) - 2} = \frac{2 + \frac{3}{2}}{4 - 2} = \frac{\frac{7}{2}}{2} = \frac{7}{4}$

3. For practice:

- $1. \frac{\sin 60^{0} + \cos 30^{0} 2 \cot 45^{0}}{2}$ $\sin 45^{\circ} + \sec 60^{\circ}$
- $3 \cos 45^{\circ} 2\sec 30^{\circ}$ $\frac{2\cos ec45^{\circ} - 3\cot 30^{\circ}}{\cos ec45^{\circ} - 3\cot 30^{\circ}}$
- 5. $2 \tan^2 45^0 + \cos^2 30^0 \sin^2 60^0$
- 7. $\frac{\sin 30^{\circ} + \cos ec 30^{\circ}}{\cot 45^{\circ}}$
- 9. $\frac{\sec 30^0 + 2\cos 60^0 \cot 45^0}{3\tan 45^0 2\cos ec 60^0}$
- 11. $\frac{3\sec 30^{\circ} + 2\cos ec 30^{\circ}}{3\cos 45^{\circ}}$
- 13. $\frac{4\tan 45^{\circ} 3\cot 30^{\circ}}{3\cos ec 45^{\circ} \sec 45^{\circ}}$
- 15. $\frac{4\sec^2 45^0}{-3\cos^2 30^0}$ $\frac{2\sin 30^{\circ} + 3\cos ec^{2} 60^{\circ}}{\cos ^{\circ} \cos ^$
- $19^{4} \sin^2 60^0 3 \tan^2 30^0$ $4\cos^2 30^0 - \sec^2 45^0$
- 17. $\frac{2\tan^2 45^0 3\sec^2 60^0}{2\cos ec^2 30^0 + 2\cot^2 30^0}$

16. $\frac{3\cos^2 45^0 - 2\sec^2 30^0}{\cot^2 30^0 - 2\cos ec^2 30^0}$

2. $\frac{\tan 30^{\circ} + \cot 45^{\circ} - \cos ec 30^{\circ}}{\sec 30^{\circ} + \cos ec 60^{\circ}}$

 $8 \sin 30^{\circ} + \tan 45^{\circ} - \cos ec 60^{\circ}$

 $\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}$

 $5\cos^2 60^0 + 4\sec^2 30^0 - \tan^2 45^0$

 $\sin^2 30^0 + \cos^2 30^0$

16 | Page

6. $\frac{\sec 30^{\circ} + \cos ec 30^{\circ}}{\cos 45^{\circ}}$

 $12 \sin 60^{\circ} + 2\cos ec 30^{\circ}$ $\tan 45^{\circ} - 2 \cot 45^{\circ}$

 $14. \ \frac{34\cos 30^{\circ} - \cos 60^{\circ}}{2\sin 45^{\circ} - 3\tan 45^{\circ}}$

 $4.\sin 60^{\circ}.\cos 30^{\circ}+\sin 30^{\circ}.\cos 60^{\circ}$

20. Sin60⁰.cos30⁰-cos60⁰.sin30⁰

Name of the Solid	Curved Surface Area	Total Surface Area	Volume
Cuboid	2h(l+b)	2(lb+bh+hl)	lbh
Cube	$4a^2$	$6a^2$	a³
Right Circular Cylinder	2πrh	$2\pi r(r+h)$	$\pi r^2 h$
Right Circular Cone	πrl	$2\pi r(r+l)$	$\frac{1}{3}\pi r^2 h$
Sphere	-	$4\pi r^2$	$\frac{4}{3}\pi r^2$
Hemisphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^2$
Frustum of a Cone	$\pi(r_1 + r_2)l$ where $l = \sqrt{h^2 + (r_1 - r_2)^2}$	$\pi (r_1 + r_2)l + \pi r_1^2 + \pi r_2^2$	$\frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1 r_2\right)$

	TE TOP APPA AND	DEDITATEED	<u> </u>						
	TABLE FOR AREA AND PERIMETER								
Figures	Area	Perimeter	4						
Circle	$\pi r^2 \ or \ \frac{\pi d^2}{4}$	2πr or πd	r: radius $d: diameter$ $\pi = \frac{22}{7} \text{ or } 3.14$						
Semicircle	$\frac{\pi r^2}{2}$	πr + 2r							
Quadrant	$\frac{\pi r^2}{4}$	$\frac{\pi r}{2} + 2r$							
Ring	$\pi(R+r) (R-r)$	$2\pi R$ (Outer circumference) $2\pi r$ (Inner circumference)	R : Radius of bigger circle r : Radius of smaller circle						
Sector , B	(i) $\frac{\theta}{360} \times \pi r^2$	$\frac{\theta}{360} \times 2\pi r + 2r$	r : Radius of circle						
	(ii) $\frac{1}{2}lr$		l : length of arc						
Segment Or B	$\frac{\theta}{360} \pi r^2 - \frac{1}{2} r^2 \sin \theta$	$\frac{\pi r \theta}{180} + 2r \sin \frac{\theta}{2}$	θ : angle subtended by arc at centre						

Practice Question Paper-1 Target-45

I. Answer the following.

7X1=7

- 1. Find the distance of a point (2, -3) from the origin.
- 2. Find the 3rd term of AP an= 2n+3.
- 3. Write the formula to find Volume of cone.
- 4. Write condition of pair of intersection of pair of linear equation.
- 5. Write midpoint formula of two co-ordinates.
- 6. Find $\csc\theta$ if $\sin\theta = \frac{4}{5}$.
- 7. State Thales Theorem.

II. Answer the following.

5X2=10

- 8. Find the sum of A P 1+5+9+upto 20 terms.
- 9.Draw a line segment AB of length 8 cm and divide it in the ratio of 3:2 10.Solve x+3y=6 and 2x-3y=6.
- 11. Find the distance between the points (-3, 5) and (3, -3).
- 12. Solve using quadratic formula $x^2+10x+25=0$.

III. Answer the following.

3X5=15

13. Prove that, "The two tangents drawn from an external point to a circle are equal".

14. Draw more than ogive curve for following data.

CI	0-50	50-100	100-150	150-200	200-250	250-300
f	12	18	27	20	17	6

15. Calculate mean, and mode for the following data distribution.

C-I	0-10	10-20	20-30	30-40	40-50
F	6	8	7	3	1

- 16. Draw a circle of radius 3.5 cm from a point 8 cm away from the center; construct the pair of tangents to the circle. Measure the tangents and write.
- 17. Find the areas of triangles whose vertices are given below(2, -1), (3, 2) and (5, -3)

IV. Answer the following.

4X2=8

- 18. Solve the following pair of linear equations in two variables by graphical method :x + y = 7 and 3x y = 1.
- 19. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{5}$ of the corresponding sides of the first triangle.

V. Answer the following.

5X1=5

20.State and Prove, "Pythagoras theorem".

Probable date to conduct Date:02/03/2022

Practice Question Paper-2 Target-45

I. Answer the following.

7X1=7

- 1. Find the distance of a point (3, 4) from the origin.
- 2. Find the 3rd term of AP $a_n = 3n+1$.
- 3. Write the formula to find Volume of Hemisphere.
- 4. Write algebraic condition of pair of linear equation for coincident lines.
- 5. Write section formula to find the coordinates of a point which divides the lime segment joining points internally in the given ratio.
- 6. Find tan θ if $\cot \theta = \frac{12}{5}$.
- 7.State Pythagoras s Theorem.

II. Answer the following.

5X2=10

- 8. Find the sum of A P1+4+7+.....upto 30 terms.
- 9. Solve .2x+y=3; x+3y=18.
- 10. Find the distance between the points (2, 4)and (5, 8).
- 11. Solve using quadratic formula $3x^2-5x+2=0$.
- 12. Draw a line segment AB of length 10 cm and divide it in the ratio of 2:3

III. Answer the following.

3X5=15

- 13. "The tangent at any point of a circle is perpendicular to the radius drawn at the point of contact".
- 14. Draw less than ogive curve for following data.

	2			\mathcal{E}		
CI	0-100	100-200	200-300	300-400	400-500	
F	15	10	17	12	6	

15. Calculate median and mode for the following data distribution.

C-I	0-10	10-20	20-30	30-40	40-50
F	6	8	7	3	1

- $\overline{16}$. Draw a pair of tangents to a circle of radius 4cm, which are inclined at an angle of 120° .
- 17. Find the perimeter of triangle whose vertices are (5, 2), (-3, 4) and (2, -5).

IV. Answer the following.

4X2=8

- 18. Solve the following pair of linear equations in two variables by graphical method: .2x-y-2=0; x+y=6.
- 19. Draw a \triangle ABC with sides AB = 5cm, BC = 4 cm and \triangle ABC=60⁰ Then construct a triangle whose sides are $\frac{7}{5}$ of the corresponding sides of triangle ABC.

V. Answer the following.

5X1=5

20. State and Prove, "Thale's theorem".

Probable date to conduct Date:05/03/2022

Practice Question Paper-3 Target-45

I. Answer the following.

6X1=6

- 1. Find the distance of a point (3, 0) from the origin.
- 2. Find the 3rd term of AP $a_n = 3n+1$.
- 3. Write the formula to find Volume of frustum of a cone.
- 4. Write algebraic condition of pair of linear equation for parallel lines.
- 5. Write the formula to find area of a triangle when coordinates of its vertices are given.
- 6. Evaluate, tan 48° x tan 42°

II. Answer the following.

7X2=14

- 8. Find the sum of A P1+4+7+.....upto 30 terms.
- 9. Solve .2x+y=3; x+3y=18.
- 10. Find the midpoint of line joining the points (3, 4) and (5, 6).
- 11. Solve using quadratic formula $2x^2 3x = 5$.
- 12. Draw a line segment PQ of length 8 cm and divide it in the ratio of 2:3
- 13. Find the discriminant of equation $2x^2-3x-8=0$ and also write nature of roots.
- 14. If $a_{12}=35$, $a_{18}=53$ find a_{20}

III. Answer the following.

3X4=12

- 12. "The tangent at any point of a circle is perpendicular to the radius drawn at the point of contact".
- 13. Draw less than ogive curve for following data.

CI	0-10	10-20	20-30	30-40	40-50
F	5	7	3	2	3

14. Calculate mean and median for the following data distribution.

C-I	0-5	5-10	10-15	15-20	20-25
F	6	8	7	3	1

15 Draw a circle of radius 2.5 cm and construct a chord of length 3 cm. and Draw the tangents at the end points of the chord.

IV. Answer the following.

4X2=8

- 16. Solve the following pair of linear equations in two variables by graphical method: y = 2x-2 and y = 4x-4.
- I 17. Construct a triangle ABC with sides AB= 6cm and \bot BAC=50⁰ and \bot ABC=60⁰. Then construct a triangle whose sides are $1\frac{1}{2}$ of the corresponding sides triangle ABC.

V. Answer the following.

5X1=5

18. State and Prove, Converse of "Pythagoras theorem".

Probable date to conduct Date:09/03/2022

Practice Question Paper-4 Target-45

I. Answer the following.

7X1=7

1.s first natural number.

II. Answer the following.

6X2=12

8. Find the sum of first 12 even natural numbers.

9. Solve 2x+y-6=0 and 6x+2y-4=0.

10. Draw a line segment of length 7cm and divide it in the ratio of 2:1

11. Solve using quadratic formula m²-8m+10=0.

13. If in an AP is 2,5,8... then find 20th term?

14.If $2x^2+3+5=0$ then find discriminant and write nature of roots

III. Answer the following.

3X4=12

12. "The tangent at any point of a circle is perpendicular to the radius drawn at the point of contact".

13. Draw ogive curve for following data.

CI	>0	>10	>20	>30	>40
F	20	15	8	5	3

14. Calculate mean and median for the following data distribution.

C-I	0-5	5-10	10-15	15-20	20-25
F	6	8	7	3	1

15 Construct a pair of tangents to a circle of radius 3 cm from a point 6cm away from the circle.

IV. Answer the following.

4X2=8

16. Solve the following pair of linear equations in two variables by graphical method: x + y = 10; x - y = 2

17. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

V. Answer the following.

5X1=5

18. Prove that "The areas of two similar triangles are proportional to the squares of their corresponding side".

Probable date to conduct Date:12/03/202

Practice Question Paper-5

Target-45

I.Answer the following.

7X1 = 7

1. What distance of a point P(5, -3) from the X-axis.

1 2. Find the 10^{th} term of AP in which $a_n = 6n+3$.

■ 3. Write the formula to find Volume of frustum of a cone.

■ 4. Write condition for pair of lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ to be coincide.

5. Write the formula to find length of arc of sector of an angle θ of circle with radius 'r'

6. Find $\tan\theta$ if $\sin\theta = \frac{4}{5}$.

7.State S.S.S. criterion for similarity of triangles.

II. Answer the following.

5X2 = 10

8. Divide the line segment AB=5.5cm in the ratio 4:3.

9. Find the sum of A.P. 7+5+3+ upto 30 terms.

10. Solve 3x+y=7 and 2x-y=5.

11. Find the area of the triangle whose vertices are (4, 2) (-3, 5) and (3, -3).

12. Solve using quadratic formula $2x^2+5x+10=0$.

II. Answer the following.

3X4=12

13. Prove that, "The two tangents drawn from an external point to a circle are equal".

14. Draw ogive curve for following data.

CI	Less	Less	Less than	Less than	Less than	Less than
	than 50	than 100	150	200	250	300
F	12	30	57	77	94	100

15. Calculate mean, median and mode for the following data distribution.

C-I	0-20	20-40	40-60	60-80	80-100
F	8	10	6	7	4

16. Draw a circle of radius 4 cm from a point 8 cm away from the center; constructthe pair of tangents to the circle. Measure the tangents and write.

III. Answer the following.

4X2=8

17. Solve the following pair of linear equations in two variables by graphical method: 2x + y = 8 and 3x - y = 7.

18. Construct a triangle ABC in which AB=4cm AC=5cm and $\angle B = 60^{\circ}$ and then a triangle similar to it whose sides are $\frac{2}{5}$ of the corresponding sides of the first triangle.

IV. Answer the following.

4X2=8

19. State and Prove, "A.A. criteria for similarity of triangles".

Probable date to conduct Date:16/03/2022

Practice Question Paper-6 Target-45

I.Answer the following.

7X1=7

- 1. Write the number of solutions that the pair of linear equations $a_1x+b_1y+c_1=0$ and $a_1x+b_1y+c_1=0$ have .
- 2. Write the formula to find the sum of first 'n' even natural numbers.
- 3.If $A=30^{\circ}$, then find the value of sin3A.
- 4. Write the coordinates of the point 'P' which divides the line segment joining the points (x_1, y_1) and (x_2, y_2) in the ratio m_1 : m_2 internally.
- 5. State Basic proportionality theorem.
- 6.If the diameter of the circle is 14cm then find the area of its quadrant.
- 7. Write the formula to find the T.S.A. of hemisphere.

II. Answer the following.

5X2 = 10

- 8. Divide the line segment MN=6.3cm in the ratio 5:3.
- 9. Find the sum of A.P. 10+6+2+....+(-98).
- 10. Solve 4x+3y=17 and 5x-4y=-2.
- 11. Find the area of triangle whose vertices are (6, 5) (3,2) and (-1, 5).
- 12. Solve using quadratic formula $4x^2+7x-20=0$.

II. Answer the following.

3X4 = 12

- 13. Prove that, "The radius drawn at the point of contact is perpendicular to the tangent"
- 14. Draw less than ogive curve for following data.

1 2 100 1	555 6116611 55	110 00110 10	1 10110 111115	erettett.		
CI	More	More	More	More	More	More
	than 0	than 10	than 20	than 30	than 40	than 50
F	50	37	32	25	14	8

15. Calculate mean, median and mode for the following data distribution.

_			/			
	C-I	0-15	15-30	30-45	45-60	60-75
ſ	F	8	4	6	9	3

16. Construct two tangents to a circle of radius 4 cm which are inclined at an angle of 75⁰.

III. Answer the following.

$$4X2 = 8$$

- 17. Solve the following pair of linear equations in two variables by graphical method: 3x + y = 2 and 4x y = 5.
- 18. Construct a triangle ABC in which AB=4cm $\angle A = 60^{\circ}$ and $\angle C = 70^{\circ}$ and then a triangle similar to it whose sides are $\frac{2}{5}$ of the corresponding sides of the first triangle

IV. Answer the following.

4X2 = 8

19. Prove that "The areas of two similar triangles are proportional to squares of their corresponding sides".

Probable date to conduct Date:19/03/2022

Practice Question Paper-7

Target-45

I.Answer the following.

7X1 = 7

- 1. Find the distance of a point (2, -3) from the origin.
- 1 2. Find the 3rd term of AP $a_n = 2n+3$.
- 3. Write the formula to find Volume of cone.
- 4. Write condition of pair of intersection of pair of linear equation.
- 5. Write midpoint formula of two co-ordinates.
- 6. Find $\csc\theta$ if $\sin\theta = \frac{4}{5}$.
- **▮** 7.State Thales Teorem.

II. Answer the following.

- 4X2 = 8
- 10. Find the sum of A.P. 1+5+9+ upto 20 terms.
- 11. Solve x+3y=6 and 2x-3y=6.
- 10. Find the distance between the points (-3, 5)and (3, -3).
- 11. Solve using quadratic formula $x^2+10x+25=0$.

II. Answer the following.

3X4 = 12

- 1 12. Prove that, "The two tangents drawn from an external point to a circle are equal".
- 13. Draw more than ogive curve for following data.

CI	0-50	50-100	100-150	150-200	200-250	250-300
f	12	18	27	20	17	6

14. Calculate mean, median and mode for the following data distribution.

C-I	0-10	10-20	20-30	30-40	40-50
F	6	8	7	3	1

15. Draw a circle of radius 3.5 cm from a point 8 cm away from the center; construct the pair of tangents to the circle. Measure the tangents and write.

I III. Answer the following.

4X2 = 8

- 16. Solve the following pair of linear equations in two variables by graphical method :x + y = 7 and 3x y = 1.
- 17. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{5}$ of the corresponding sides of the first triangle.

IV. Answer the following.

4X2 = 8

18. State and Prove, "Pythagoras theorem".

Probable date to conduct Date:22/03/2022

Practice Question Paper-8 Target-45

I.Answer the following.

7X1 = 7

- 1. Find the distance of a point (2, -3) from the origin.
- 2. Find the 3rd term of AP $a_n = 2n+3$.
- 3. Write the formula to find Volume of cone.
- 4. Write condition for pair of lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ to be intesect.
- 5. Write midpoint formula of two co-ordinates.
- 6. Find $\csc\theta$ if $\sin\theta = \frac{4}{5}$.
- 7.State Thales Teorem.

II. Answer the following.

5X2 = 10

- 8. Divide the line segment AB=8cm in the ratio 3:2.
- 9. Find the sum of A.P. 1+5+9+ upto 20 terms.
- 10. Solve x+3y=6 and 2x-3y=6.
- 11. Find the distance between the points (-3, 5) and (3, -3).
- 12. Solve using quadratic formula $x^2+10x+25=0$.

II. Answer the following.

3X4 = 12

- 13. Prove that, "The two tangents drawn from an external point to a circle are equal".
- 14. Draw more than ogive curve for following data.

CI	0-50	50-100	100-150	150-200	200-250	250-300
F	12	18	27	20	17	6

15. Calculate mean, median and mode for the following data distribution.

	,				
C-I	0-10	10-20	20-30	30-40	40-50
F	6	8	7	3	1

16. Draw a circle of radius 3.5 cm from a point 8 cm away from the center; construct the pair of tangents to the circle. Measure the tangents and write.

III. Answer the following.

4X2 = 8

- 17. Solve the following pair of linear equations in two variables by graphical method :x + y = 7 and 3x y = 1.
- 18. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{7}$ of the corresponding sides of the first triangle.

IV. Answer the following.

4X2=8

19. State and Prove, "Pythagoras theorem".

Probable date to conduct Date:25/03/2022

Practice Question Paper-9

Target-45

I.Answer the following.

7X1=7

- 1. Find the distance of a point (3, 2) from the origin.
- 2. Find the 5th term of AP in which $a_n = 5n-3$.
- 3. Write the formula to find the area of sector of an angle θ of circle with radius 'r'.
- **4**. Write condition for pair of lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ to be parallel.
- 5. State A.S.A. criteria for similarity of triangles.
- 6. Find $\cos\theta$ if $\sec\theta = \frac{6}{7}$.
- 7. Write the formula to find the T.S.A. of cylinder.

II. Answer the following.

5X2 = 10

- 8.Divide the line segment PQ=7cm in the ratio 1:2.
- 9. Find the sum of A.P. 1+4+7+....+100.
- 10. Solve 3x+2y=6 and 5x-3y=8.
- 11. Find the midpoint of the points (-3, 5) and (3, -3).
- 112. Solve using quadratic formula $x^2+6x-30=0$.

II. Answer the following.

3X4 = 12

- 13. Prove that, "The radius drawn at the point of contact is perpendicular to the tangent".
- 14. Draw less than ogive curve for following data.

CI	0-10	10-20	20-30	30-40	40-50	50-60
F	5	3	4	6	3	4

15. Calculate mean, median and mode for the following data distribution.

C-I	0-5	5-10	10-15	15-20	20-25
F	6	4	7	2	1

16. Construct two tangents to a circle of radius 4 cm which are inclined at an angle of 65⁰.

III. Answer the following.

4X2 = 8

- 17. Solve the following pair of linear equations in two variables by graphical method: 2x + y = 5 and 3x y = 5.
- 18. Construct a triangle of sides 3cm, 4 cm and 5 cm and then a triangle similar to it whose sides are $\frac{3}{2}$ of the corresponding sides of the first triangle.

IV. Answer the following.

4X2=8

19. State and Prove, "Thales theorem".

Probable date to conduct Date:02/04/2022