MATHEMATICS LESSON PLAN

Prepared by: T.SHIVAKUMAR MMDRS, HARAPANAHALLI TOWN VIJAYANAGARA DIST Mob.9916142961

qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb

ghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmrty vbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdf ghjklzxcvbnmqwertyuiopasdf ghjklzxcvbnmqwertyuiopasdfghjklzxc

Unit: 01 Methodology: Demonstration cum lecture method

Unit name: Number systems

Date: From to

Objectives:

1. Finding many rational numbers between two given rational numbers

2. Locate irrational numbers on number line

3. Decimal expansion of real numbers

4. Operations on real numbers

5. To rationalizing the denominator

6. Laws of exponents for real number

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions of number system like natural numbers, whole numbers, odd numbers & even numbers, ect.	Chart of numbers, board.	Discussion & group discussion.	Will try to answers	
Explore	Start the session by asking some question related to numbers. Number System Woode Number Worden Numbers Vereitonal Numbers	Chart Calendar projector	Questionnaire	Answering for supplementary questions.	

	Introduce the chapter, explain all type of numbers.	Board	Discussion &		
	Then explain about different types of decimals like	Smart board	group activities		
			group activities		
	terminating and non-terminating and also explain	Laptop			
	rational and irrational numbers.	projector			
	Number line: explain how to write the irrational				
	numbers on number line.				
Explain	Laws of exponents: explain the concept of				
	exponents and radicals by taking some examples. Now students will able to write rational and	Exercise	Activity	Discussion	
	irrational numbers on number line, they also able	problems	Activity	with students	
Elaborate	to solve the problems on laws of exponents.	In textbook		with students	
Eluborate	to solve the problems on laws of exponents.	III textbook			
Evaluate	Now teacher will assign some word problems	Textbook	Evaluation	Try to do all	
	based on our daily life situations and help the			problems in	
	students in the implementation of the above			textbook.	
	formulas in this problems.				

Subject teacher

Unit: 02 Methodology: inductive and deductive

Unit name: Introduction to Euclid's Geometry.

Date: From to

Objectives:

1. To know about undefined terms.

2. To know about Euclid's postulates and axioms

3. Understand the axioms and postulates

4. Know about two equivalent versions of Euclid's fifth postulate.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Basic knowledge of terminology used in geometry such as circle, point, lines, regions etc	Chart of numbers, board.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will start the class by defining a rectangle. So, to define one thing, you need to define many other things, and you may get a long chain of definitions without an end, for example, you might get the term 'point' in one of the definitions which is very difficult to simplify/define further.	Calendar projector	Questionnaire	Answering for supplementary questions.	

	Introduction: Give examples of theorems, postulates and axioms in order to differentiate between them with examples	Board Smart board ppt	Discussion & group activities		
Explain	Euclid's Definitions, Axioms and Postulates: Reproduce Euclid's axioms in your own words in order to give examples for each List Euclid's 5 postulates in order to visualize and illustrate them through a diagram Analyze given statements/postulates in order to determine if they are extensions of Euclid's postulates Apply Euclid's postulates in order to prove basic geometrical concepts about lines, points, planes, shapes, etc				
Elaborate	Applies axiomatic approach and derives proofs of mathematical statements particularly geometric	Exercise problems In textbook	Activity	Discussion with students	
Evaluate	Now the teacher will discuss the above axioms by taking varied examples and introducing Postulates in the same way. Solve the problems given in textbook.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher Head master or mistress/Principal

Unit: 03 Methodology: Demonstration cum lecture method

Unit name: Lines and angles.

Date: From to

Objectives:

1. To know about linear pair axiom.

2. To know about how vertically opposite angles are equal.

3. To understand what happened if two transversal lines parallel

4. To understand the angle sum property.

5. To understand about exterior and interior angles.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, asking questions related to Parallel lines, intersecting lines, transversal, corresponding angles, alternate interior angles, etc.	Chart of numbers, board.	Discussion & group discussion.	Will try to answers	
Explore	The teacher will ask the following questions: What is a transversal? What are exterior angles? What are interior angles? By getting answers, introduce the chapter.	Chart Calendar projector	Questionnaire	Answering for supplementary questions.	

		_	1	1
	Basic Terms and Definitions : Define segment,	Board	Discussion &	
	ray, collinear points, non-collinear points, acute	Smart board	group activities	
	angle, right angle, obtuse angle, straight angle,	Ppt		
	reflex angle, complementary angles.	Geometry		
	Pairs of Angles: Label angles created by 2	kit		
	intersecting lines in order to identify vertically			
	opposite pairs, adjacent angles, linear pairs,			
Explain	complementary/supplementary pairs of angles.			
	Parallel Lines and a Transversal:			
	Label angles created by a transversal intersecting			
	two parallel lines in order to identify			
	corresponding angles, alternate angles, interior			
	angles and define relationship between these			
	angles.			
	Angle Sum Property of a Triangle: Define			
	relationship between angles formed when a			
	triangle is placed between two parallel lines in			
	order to prove that exterior angle of a triangle is			
	the sum of the two opposite interior angles.			
	Applies axiomatic approach and derives proofs of	Exercise	Activity	Discussion
	mathematical statements particularly geometric	problems		with students
Elaborate	shapes in order to solve the problems on them.	In textbook		
Evaluate	Now the teacher will discuss the above concepts	Textbook	Evaluation	Try to do all
	by taking varied examples. Solve the problems			problems in
	given in textbook.			textbook.
				-

Subject teacher

Unit: 04 Methodology: Demonstration cum lecture method

Unit name: Polynomials.

Date: From to

Objectives:

1. To understand the degree of the polynomials

2. To check the zeros of the polynomials

3. Factorizing the polynomials

4. Remainder theorem

5. Algebraic identities

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, asking questions monomials, binomials and trinomials, etc.	Chart of algebraic terms, board.	Discussion & group discussion.	Will try to answers	
Explore	Addition, subtraction, multiplication and division of algebraic terms, Evaluation of an algebraic expression for the given values of variable. Now introduce the chapter polynomials.	Chart Different colors of chalks projector	Questionnaire	Answering for supplementary questions.	

Explain	Introduction to Polynomials: Recognize variables and their degree in a given algebraic expression in order to differentiate whether given expression is a polynomial in one variable or not. Polynomials in one variable: Substitute the value of 'a' in a given expression p(x) in order to find the value of polynomial at 'a' i.e. p(a). Zeroes of a Polynomial: Use given values for the variable 'x' in a polynomial p(x) in order to identify if the given value is a zero of the polynomials. Remainder Theorem: Using Remainder Theorem, calculate division of p(x) by a linear polynomial 'x – a' in order to find that the remainder is p(a) and verify using long division method. Algebraic Identities: Point out to an algebraic identity that can be used in order to factorize a given expression.	Chart Different colors of chalks projector	Discussion & group activities		
Elaborate	Identifies/Classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factorize them.	Exercise problems In textbook	Activity	Discussion with students	
Evaluate	Now the teacher will discuss the above concepts by taking varied examples. Solve the problems given in textbook.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher

Unit: 05 Methodology: Demonstration & lecture method

Unit name: Triangles.

Date: From to

Objectives:

1. To understand the congruent figures.

2. To know about congruent triangles.

3. To understand the rule of the congruent.

4. To know about sides related to the triangles.

5. Understand the sum of any two sides of a triangle is greater than the third side.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Students know that Construction of triangles, ASA, SSS, SAS, RHS Congruence. On the basis of this knowledge teacher will ask some questions.	Chart, board.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask the class about different types of triangles and about simple properties. After getting different answers from the class now teacher introduce the chapter.	Chart Paper ppt	Questionnaire	Answering for supplementary questions.	

Explain	Congruence: Now teacher will explain the congruence of things, figures & finally triangles. SSS is not sufficient for congruency. It may make two different triangles. Theorems: teacher will provide the proof of ASA, SSS, SAS, RHS theorems.	Geometry kit Chart paper Markers Smart board projector Ect.	Discussion & group activities		
Elaborate	Students will understand the different types of triangles, congruence conditions, triangular in equalities and theorems.	Exercise problems In textbook	Activity	Discussion with students	
Evaluate	Now the teacher will discuss the above concepts by taking varied examples. Solve the problems given in textbook.	Textbook	Evaluation	Try to do all problems in textbook.	

Subject teacher

Unit: 06 Methodology: Demonstration & learning with doing

Unit name: Constructions.

Date: From to

Objectives:

1. To understand how to construct bisect to a given angle.

2. To draw the perpendicular to bisector of a given line segment.

3. To construct a triangle given its base, a base angle and the sum of the other two sides.

4. To construct a triangle given its base, a base angle and the difference of the other two sides.

5. To construct a triangle given its perimeter and its two base angles.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection
Engage	Students know that meaning of angle of bisector and how to calculate half of a given angle.	Chart, Different colors of chalks.	Discussion & group discussion.	Will try to answers
Explore	Teacher will ask the class varies properties of triangles. Then he will give dividing the line segment to different part among the students. Now introduce the chapter.	Chart Paper ppt	Questionnaire	Answering for supplementary questions.

Ī,			_	,
	Basic Constructions: List and execute steps of	Geometry	Discussion &	
	construction in order to bisect a given angle. List	kit	group activities	
	and execute steps of construction in order to draw	Chart paper		
	the perpendicular bisector of a given line segment.	Markers		
	List and execute steps of construction in order to	Smart board		
	construct an angle of any given measurement.	projector		
Explain	8.2 c b C X	Ect.		
	Some Constructions of Triangles: List and			
	execute steps of construction in order to construct			
	a triangle given its base, a base angle and the sum			
	of the other two sides. List and execute steps of			
	construction in order to construct a triangle given			
	its base, a base angle and the difference of the			
	other two sides.			
	Constructs different geometrical shapes like	Exercise	Activity	Discussion
	bisectors of line segments, angles, and triangles	problems		with students
Elaborate		In textbook		
	reasons for the processes of such constructions.		_	
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all
	For practice students should do problems in			problems in
<u> </u>	textbook.			textbook.

Subject teacher

Unit: 07 Methodology: Demonstration & lecture method

Unit name: Quadrilaterals.

Date: From to

Objectives:

1. To understand the sum of the angles of the quadrilateral is 360°

2. To know about a diagonal of a parallelogram divides it in to two congruent triangles

3. To know about how quadrilaterals is a parallelogram

4. To understand diagonals of a rectangle bisect each other and are equal.

5. To understand a line through the mid-point of a side of a triangles parallel to another side bisects the third side.

6. To know about how the quadrilateral formed by joining the mid-points of the sides of a quadrilateral, in order, is a parallelogram.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection
Engage	Start the session by checking the previous knowledge, by asking the questions related to properties of triangles, quadrilaterals and types of quadrilaterals, ect.	Chart, Different colors of chalks.	Discussion & group discussion.	Will try to answers
Explore	Teacher will ask the class about different types of polygons and then different types of quadrilaterals. After getting different answers from the class, introduce the chapter.	Chart Paper ppt	Questionnaire	Answering for supplementary questions.

Explain	Quadrilaterals: explain about quadrilaterals and its properties. Also explain types of quadrilaterals. Teacher should explain all the theorems mentioned in the objective and guide the students to prepare only those theorems for examination. In order to increase the concept of clarity in the minds of the student teacher should divide the content in parts and prepare worksheet for all types of students.	Geometry kit Chart paper Markers Smart board projector Ect.	Discussion & group activities	
Elaborate	Students will be able to understand the concept of quadrilaterals, types and properties.	Exercise problems In textbook	Activity	Discussion with students
Evaluate	Teacher will assign some problems to do work. For practice students should do problems in textbook.	Textbook	Evaluation	Try to do all problems in textbook.

Subject teacher

Unit: 08 Methodology: Demonstration & inductive

Unit name: Heron's formula.

Date: From to

Objectives:

1. To understand the areas of different types of geometrical figures

2. To know about how to find the area of triangle

3. To understand the finding of area of triangle when 3 sides given.

4. To calculate the area of a quadrilateral whose sides and diagonal are given by using Heron's formula

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions related to different types of triangles, perimeter, & area ect.	Chart, Projector chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask the class about meaning of lines and angles, and different types of angles. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

		T	1		
	Introduction : Calculate area of a given triangle to	Markers	Discussion &		
	state the limitation of the Standard formula (Area	Smart board	group activities		
	of Triangle = $1/2 \times b \times h$).	projector			
		Ect.			
	$Area = \sqrt{S(S-a)(S-b)(S-c)} = 24$				
Explain	b = 6				
Expluin	Semi Perimeter $S = \frac{a+b+c}{2} = 12$ C $a = 11$				
	Common by No. Common				
	Area of a Triangle by Heron's formula: Apply				
	Heron's formula in order to calculate the area of a				
	Triangle.				
	Application of Heron's Formula in finding				
	Areas of Quadrilateral:				
	Breakdown a given polygon into triangles in order				
	to find the area of a given polygon as a sum of				
	areas of those triangles.				
	Students will be able to understand the concept of	Exercise	Activity	Discussion	
	Heron's formula, will do problems individually.	problems		with students	
Elaborate	Additional problems will solve with the help of	In textbook			
	teacher.				
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all	
	For practice students should do problems in			problems in	
	textbook.			textbook.	

Subject teacher

Unit: 09 Methodology: synthetic and analytic method

Unit name: Coordinate geometry.

Date: From to

Objectives:

1. Cartesian plane axis & quadrants.

2. Coordinates of a point, name and terms associated with the coordinate plane.

3. Plotting points in the plane.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions algebraic and geometric terms ect.	Chart, Projector chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher ask the class about the meaning of word "geometry". After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

		T	1	
	Introduction: to locate the point in the plane we	Graph	Discussion &	
	use a system of two lines which are perpendicular	Smart board	group activities	
	to each other. This system was first developed by	Projector		
	French mathematician Rene Descartes.	Geometry		
	Cartesian coordinate system:	kit		
Explain	1 Horizontal line 1 2 3 4 -3 -2 -1 1 2 3 4 -1 -2 -2	Ect.		
	Deep explanation about Cartesian system.			
	Representation of coordinates in Cartesian			
	plane:			
	B 3 G A A A A A A A A A A A A A A A A A A			
	Make a student group and give them to locate the	Exercise	Activity	Discussion
Elaborate	points on Cartesian plane. By using different examples they make perfect.	problems In textbook		with students
Evaluate	Teacher will assign some problems to do work. For practice students should do problems in textbook.	Textbook	Evaluation	Try to do all problems in textbook.

Subject teacher

Unit: 10 Methodology: Demonstration & lecture method

Unit name: Areas of parallelograms and triangles.

Date: From to

Objectives:

1. To understand two congruent figures have equal areas but the converse need not be true

2. To know about areas of figures

3. To understand how parallelogram (on the same base) are equal in area.

4. To understand how the area of the triangle is half the area of the parallelogram

5. To know about a median of a divides it into two triangles of equal areas.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	
Engage	Start the session by checking the previous knowledge, by asking the questions related to different types of quadrilaterals and their properties ect.	Chart, Projector chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask the class concept of two figures on same base and between the same parallels. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

	Explaining about how figures on the same base	Markers	Discussion &		
	and between the same parallels solving exercise	Smart board	group activities		
	problems with learners.	projector			
	Explaining how parallelogram on the same base	Ect.			
	and between the same parallels				
	*activity done with learners				
	Explaining theorem 9.1 with examples				
Explain	*solving problems of exercise 9.2 with learners				
	S X R				
	Explaining triangles how triangles on the same				
	base and between the same parallels.				
	Students will be able to find the figures on the	Exercise	Activity	Discussion	
	same base and between the parallels. Students	problems	-	with students	
Elaborate	should be able to use results of important	In textbook			
	theorems in different problems.				
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all	
	For practice students should do problems in			problems in	
	textbook.			textbook.	

Subject teacher

Unit: 11 Methodology: Demonstration & project method

Unit name: linear equations in two variables.

Date: From to

Objectives:

1. To know about equations, linear equations in two variables

2. To understand a linear equations in two variables has many solutions.

3. To understand the graph of every linear equation in two variables is a straight line

4. To find the many solutions in linear equations in two variables

5. To know about a linear equations is parallel to x axis and y axis

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions related to linear equations in one variable, Cartesian coordinate system and representing points ect.	Chart, Projector chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask the class about linear equations in one variable. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

	Linear equations in one variable:	Markers	Discussion &		
į	ax+b=0, $3x+4=0 & -3y+5=0$	Smart board	group activities		
	Linear equations in two variable:	Projector	group activities		
	3x+2y=4 & 4z-3y+5=0	Graph			
	Solutions of linear pair of linear equations:	Geometry			
	Let us take an example 3x+4y=12,	kit			
	If y=0, then x=4	Ect.			
Explain	If y=3, then x=8				
<u>j</u> '	If $y=-3$, then $x=0$				
	If y=-6, then x=-4				
	x 0 3 -3 -6				
	Graph of linear equations in two variables:				
1	Let us take an example 3x+4y=12,				
	9				
	B (0.3)				
•	2 1 Λ(4,0)				
	5 4 3 2 1 0 1 2 3 3 5 0 7 0 9 0				
	C (6,-3)				
	Make a student group and give them to solve the	Exercise	Activity	Discussion	
	problems by taking different examples of linear	problems		with students	
Elaborate	equations. help them to plot the graph.	In textbook			
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all	
	For practice students should do problems in			problems in	
	textbook.			textbook.	

Subject teacher

Unit: 12 Methodology: Demonstration & lecture method

Unit name: Circles.

Date: From to

Objectives:

1. To understand the definition of circles, related to terms of circles.

2. To know about equal chords of the circle subtend equal angles at the centre

3. To understand perpendicular from the centre of a circle to a chord bisects the chord.

4. To know there is one and only one circle passing through three non-collinear points.

5. To understand the angles in the same segment of a circle are equal.

6. To understand the angle in a semi-circle is a right angle.

7. To know about if sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	IIME
Engage	Start the session by checking the previous knowledge, by asking the questions related to parts of circles ect.	Chart, ppt color chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask the class about parts of circles. After getting the different answers from the class, introduce the chapter.	Chart projector ppt	Questionnaire	Answering for supplementary questions.	

		T •	1		
	Circles and its Related Terms: A Review	Markers	Discussion &		
	Define radius, chord, diameter, segment (major	Smart board	group activities		
	and minor), arc (major and minor), interior or	Projector			
	exterior of a circle in order to illustrate and label	Geometry			
	them on a given circle.	kit			
	Angle Subtended by a Chord at a Point: Apply	Paper cut			
	theorems regarding angle subtended by a chord in	out of circles			
Explain	a circle in order to find the measure of an angle in	Ect.			
	the given figure.				
	Circle through Three Points: Construct circle				
	passing through 1, 2 & 3 non-collinear points in				
	order to comment on how many circles can be				
	constructed passing through them.				
	Angle subtended by arc of the circle: Interpret				
	and apply theorems on the angles subtended by				
	arcs of a circle in order to solve for unknown				
	values in given examples.				
	Cyclic Quadrilaterals: Apply the relation				
	between angles of a cyclic quadrilateral in order to				
	solve for the value of a given angle.				
	Make a student group and give them to solve the	Exercise	Activity	Discussion	
	problems by taking different examples circles,	problems		with students	
Elaborate	help them to prove themselves.	In textbook			
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all	
	For practice students should do problems in			problems in	
	textbook.			textbook.	
Cubic	act to a show		Head measter as	n mistross /Dringins	.1

Subject teacher

Unit: 13 Methodology: Demonstration, problem solving & lecture method

Unit name: Surface area and volumes.

Date: From to

Objectives:

1. To calculate surface area of a cuboid

- 2. To calculate the surface area of a cube
- 3. To calculate the surface area of a cylinder
- 4. To calculate the total surface area of cylinder
- 5. To calculate the curved surface area of cone
- 6. To calculate the total surface area of a right circular cone
- 7. To calculate the surface area of sphere
- 8. To calculate the volume of cube
- 9. To calculate the volume of cylinder
- 10. To calculate the volume of cone

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions related constructions of cubes ect.	Chart, ppt color chalks.	Discussion & group discussion.	Will try to answers	

<u> </u>	Teacher will ask the class about solid shaped	Chart	Questionnaire	Answering for
Explore	regarding to the geometry. After getting the	projector	Questionnane	supplementary
	different answers from the class, introduce the	scissor,		questions.
!	chapter.	paper cut		440000000
j		ppt		
	Surface Area of a Cuboid and a Cube: Calculate	Chart	Discussion &	
	the surface area (lateral and total) of the cube or	projector	group activities	
	cuboid in order to determine the cost of	scissor,		
	painting/covering the given surface.	paper cut		
	Surface Area of a Right Circular Cylinder:	ppt		
	Calculate the surface area (curved and total) of a	modals		
]	cylinder to determine the cost of			
Explain	painting/covering the given surface.			
	Surface Area of a Right Circular Cone: Calculate			
	the surface area (curved and total) of a cone to			
	determine the cost of painting/covering the given			
i	surface.			
	Surface Area of a Sphere: Calculate the surface			
<u> </u>	area of a sphere/hemisphere to determine the			
	cost of painting/covering the given surface of a			
	sphere/hemisphere.			
	Volume of a Cube: Calculate the volume of a			
	given cube in order to infer the quantity of any			
	substance it can hold.			
	Volume of a Cuboid: Calculate the volume of a			
i	given cuboid in order to infer the quantity of any substance it can hold.			
<u> </u>	Substance it can noid.			

	Volume of a Cylinder : Calculate the volume of a given cylinder in order to infer the quantity of any				
	substance it can hold				
	Volume of a Cone : Calculate the volume of a				
	given cone in order to infer the quantity of any				
	substance it can hold				
	Volume of a sphere : Calculate the volume of a				
	given sphere in order to infer the quantity of any				
	substance it can hold.				
	Volume of a hemisphere: Calculate the volume				
	of a given hemisphere in order to infer the				
	quantity of any substance it can hold.				
	Name of Figure Volume Laterial/Curved Total the Surface Surface solid Area Area				
	Cubold				
	Cube 4a² + 2a² or 6a² 6a²				
	Right circular cylindur h				
	Right circular cone $\frac{1}{3}\pi r \ln \pi r \ln \frac{\pi r l + \pi r'}{\sigma r}$				
	Sphere $\frac{4}{3}\pi r^3$ $4\pi r^2$ $4\pi r^2$				
	Hemisphere $\frac{2}{3}\pi r^{\prime}$ $2\pi r^{\prime}$ $\frac{2\pi r^{\prime}}{\alpha r}$				
		Exercise	A ativity	Discussion	
	Make a student group and give them to solve the problems by taking different examples in surface	problems	Activity	with students	
Elaborate	area and volumes, help them to prove themselves.	In textbook		with students	
	•				
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all	
	For practice students should do problems in			problems in	
	textbook.			textbook.	
Subie	ect teacher		Head master	r or mistress/Principal	

Subject teacher

Unit: 14 Methodology: Demonstration & lecture method

Unit name: Statistics.

Date: From to

Objectives:

1. To understand facts or figures, collected with a definite purpose, are called data.

2. To understand bar graph, pie chart.

3. Statistics is the area of study dealing with the presentation, analysis and interpretation of data.

4. How data can be presented graphically in the form of bar graphs, histograms and frequency polygons.

5. The three measures of central tendency for ungrouped data.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions related to tally marks, frequency ect.	Chart, ppt color chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will ask the class about frequency distribution table, class interval ect. After getting the different answers from the class, introduce the chapter.	Chart projector paper cut ppt	Questionnaire	Answering for supplementary questions.	

	Frequency Table: Record and label a given data	Pen	Discussion &		
	set in order to create a frequency table.	Paper	group activities		
	Bar Graph: Identify an appropriate scale and	Pencils			
	labels in order to represent given data through a	Scale			
	bar graph.	ect			
	Histogram: Read the given data in order to create				
	a histogram for continuous and discontinuous				
Explain	data sets.				
	Frequency Polygon: Read the given data in order				
	to create a frequency polygon for given data sets.				
	Mean, Median and Mode: Differentiate between				
	mean, median and mode with examples in order				
	to understand most effective measure of central				
	tendency in various cases.				
	Represents given data in different forms like,	Exercise	Activity	Discussion	
	tabular form (grouped or ungrouped), bar graph,	problems		with students	
Elaborate	histogram (with equal and varying width and	In textbook			
	length), and frequency polygon in order to analyze				
	given data.				
Evaluate	Teacher will assign some problems to do work.	Textbook	Evaluation	Try to do all	
	For practice students should do problems in			problems in	
	textbook.			textbook.	

Subject teacher

Unit: 15 Methodology: Demonstration & lecture method

Unit name: Probability.
Date: From to

Objectives:

1. To know about probability definition

2. To understand the concept of event, sure event, trials etc.

3. To understand how to calculate the probability of an event.

4. To understand the probability of an event lies between 0 and 1.

<u>Steps</u>	Activities To Favourable For Learning	TLM	Evaluation Tools & Techniques	Teachers Introspection	TIME
Engage	Start the session by checking the previous knowledge, by asking the questions about fractions, additions and multiplications ect.	Chart, ppt color chalks.	Discussion & group discussion.	Will try to answers	
Explore	Teacher will start the class by asking if students have heard the following sentences: It will probably rain today. I doubt that he will pass the test. Most probably, Kavita will stand first in the annual examination. Chances are high that the prices of diesel will go up.	Coins, Die Chords	Questionnaire	Answering for supplementary questions.	

Explain	Introduction: Teacher will then introduce the definition of Probability and explain its importance in our life. Calculation of Empirical Probability in various experiments: Recall the formula for Empirical probability to calculate the probability for a simple event. Create a flow chart of all the terms related to random experiments (coins, dice, cards) in order to calculate the total number of trials of a given experiment and calculate the Empirical Probability. Compute the total number of trials and trials for a given event E represent in various forms (table, histogram, piecharts, etc) to solve for the value of Empirical Probability P(E). Calculate the sum of probabilities of all events in order to Prove that the sum of the probability of all events in a single experiment is 1.	Coins, Die Chords Ppt Projector ect	Discussion & group activities	
Elaborate	Conducts experiments and analyses data in order to calculate empirical probability.	Exercise problems In textbook	Activity	Discussion with students
Evaluate	Teacher will assign some problems to do work. For practice students should do problems in textbook.	Textbook	Evaluation	Try to do all problems in textbook.

Subject teacher