

## SRSI PU COLLEGE, BELLUR

## Presenting

## II-PU PASSING PACKAGE EASY CAPSULES.

(As per Reduced syllabus 2020-21)<br>SOLVED MODEL QUESTION PAPER<br>FORTHESUBJECT:

## "MATHEMATICS"



Prepared By: Mrs. Shwetha M P
Lecturer, Dept. Of Mathematics
SRSI PU College, Bellur.

## SRSI PU COLLEGE, BELLUR <br> MATHEMATICS (35) <br> II PUC Model Question Paper (1) with answers - 2021 Max Marks: 100

i. The question paper has five parts namely A, B, C, D and E. Answer all the parts.
ii. ii. Use the graph sheet for the question on linear programming in PART - E.

## PART - A

I. Answer ALL the questions:
$10 \times 1=10$

1. Define an empty relation.

Sol: A relation R in a set A is called as empty relation, if no element of A is related to any element of A. $R=\phi$ $\subset R \times R$.
2. Write the domain of the function $\boldsymbol{y}=\sec -1 \boldsymbol{x}$.

Sol: $R-(-1,1)$
3. If a matrix has 5 elements, what are the possible orders it can have?

Sol: $5 \times 1,1 \times 5$
4. Find the values of $x$ for which $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$

Sol:

$$
\begin{aligned}
& \left|\begin{array}{cc}
x & 2 \\
18 & x
\end{array}\right|=\left|\begin{array}{cc}
6 & 2 \\
18 & 6
\end{array}\right| \\
& \Rightarrow x^{2}-36=36-36 \\
& \Rightarrow x^{2}-36=0 \\
& \Rightarrow x^{2}=36 \\
& \Rightarrow x= \pm 6
\end{aligned}
$$

5. If $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \sqrt{\boldsymbol{x}}$, find $\boldsymbol{d} \boldsymbol{y} / \boldsymbol{d} \boldsymbol{x}$.

Sol: $d y / d x=\sec 2 \sqrt{ } x \cdot \frac{1}{2 \sqrt{x}}$
6. Find $\int\left(2 x^{2}+e^{x}\right) \boldsymbol{d} \boldsymbol{x}$.

Sol: $\int\left(2 x^{2}+e^{x}\right) d x=2 \frac{x^{3}}{3}+e^{x}+c$
7. Define a negative vector

Sol: A vector whose magnitude is same as the given vector but has the opposite direction is called the negative vector
8. If a line makes $90^{\circ}, 135^{\circ}$ and $45^{\circ}$ with the $x, y$ and $z$ - axis respectively, find its direction cosines.

Sol: Let direction cosines be $\mathrm{I}, \mathrm{m}$ and $\mathrm{n} . l=\cos 90^{\circ}=0, m=\cos 135^{\circ}=-1 \mathrm{~V} 2, n=\cos 45^{\circ}=1 \mathrm{~V} 2 \therefore$ Direction cosines are, 0, $-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
9. Define Optimal solution in a linear programming problem.

Sol: Any point in the feasible region that gives the optimal value (maximum or minimum) of the objective function is called an optimal solution.
10. If $(\boldsymbol{A})=\frac{7}{13^{\prime}},(\boldsymbol{B})=\frac{9}{13}$ and $\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})=\frac{4}{13}$, evaluate $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$

Sol: $(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{4}{9}$

## PART - B

## II. Answer any TEN questions:

11. Let $*$ be a binary operation on $Q$ defined by $\boldsymbol{a} * \boldsymbol{b}=\frac{a b}{2}, \forall \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{Q}$. Show that $*$ is associative.

Sol: Condition for associativity : $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$ For all $a, b, c \in Q$,
LHS $=(a * b) * c$ RHS $=a *(b * c)$
$=\left(\frac{a b}{2}\right) * \mathrm{c}=\mathrm{a} *\left(\frac{b c}{2}\right)$
$=\left(\frac{a b}{2}\right) \frac{c}{2}=\frac{a}{2}\left(\frac{b c}{2}\right)$
LHS $=\frac{a b c}{4}$ RHS $=\frac{a b c}{4} \therefore$ From LHS and RHS, $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$
12. Find the principal value of $\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$.

Sol: Let $\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=y$
$\cot y=\frac{-1}{\sqrt{3}}=-\cot \left(\frac{\pi}{3}\right)=\cot \left(\pi-\frac{\pi}{3}\right) \cot y=\cot \left(\frac{2 \pi}{3}\right) y=\frac{2 \pi}{3} \in(0, \pi)$
13. Find the area of the triangle whose vertices are $(-2,-3),(3,2)$ and $(-1,-\mathbf{8})$ using determinants

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{rrr}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)] \\
& =\frac{1}{2}[-2(10)+3(4)+1(-22)] \\
& =\frac{1}{2}[-20+12-22] \\
& =-\frac{30}{2}=-15
\end{aligned}
$$

$\therefore$ Area of triangle $=15$ sq. units
14. Find $\frac{d y}{d x}$, if $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }}\left(\log \boldsymbol{x}+e^{x}\right), \boldsymbol{x}>\boldsymbol{0}$

Sol: $y=\cos \left(\log x+e^{x}\right)$
$\frac{d y}{d x}=\sin \left(\log x+e^{x}\right)\left(\frac{1}{x}+e^{x}\right)$
15. Find $\frac{d y}{d x}$, if $\sin ^{2} x+\cos ^{2} x=1$

Sol: $\sin ^{2} x+\cos ^{2} x=1$
$2 \sin x \cos \mathrm{x}+2 \cos \mathrm{y}(-\sin \mathrm{y}) \frac{d y}{d x}=0$
$2 \cos y \sin y \frac{d y}{d x}=-2 \sin x \cos x$

## By shwetha mp

Srsi pu college, bellur, narasapura

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 \sin x \cos x}{2 \sin y \cos y} \\
& \frac{d y}{d x}=\frac{\sin 2 x}{\sin 2 y}
\end{aligned}
$$

16. If $\boldsymbol{y}=x^{3}+\tan \boldsymbol{x}$, then find $\frac{d y^{2}}{d x^{2}}$.

Sol : $\boldsymbol{y}=x^{3}+\tan \boldsymbol{x}$

$$
\begin{gathered}
\frac{d y}{d x}=3 x^{2}+\sec ^{2} x \\
\frac{d y^{2}}{d x^{2}}=6 \mathrm{x}+2 \sec \mathrm{x}(\sec \mathrm{tan} \mathrm{x}) \\
\frac{d y^{2}}{d x^{2}}=6 \mathrm{x}+2 \sec ^{2} x \tan \mathrm{x}
\end{gathered}
$$

17. Find the slope of the tangent to the curve $\boldsymbol{y}=x^{3}-\boldsymbol{x}$ at $\boldsymbol{x}=\mathbf{2}$.

Sol : $\boldsymbol{y}=x^{3}-\boldsymbol{x}$
$\left.\frac{d y}{d x}\right|_{\mathrm{x}=2} \begin{aligned} & \frac{d y}{d x}=3 x^{2}-1 \\ & =3(4)-1\end{aligned}$

$$
\frac{d y}{d x} \mathrm{x}=2=11
$$

18. Find $\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right)$

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) \mathrm{dx} \\
& \\
& =\int_{0}^{\pi}(-\cos x) d x \\
& =-\sin x]_{0}^{\pi} \\
& =-[\sin \pi-\sin 0] \\
& \\
& =-[0-0] \\
&
\end{aligned}
$$

19. find $\int x \sec ^{2} x d x$

Sol : $\mathrm{I}=\int x \sec ^{2} x d x$

$$
\begin{aligned}
I & =x \int \sec ^{2} x d x-\int\left\{\left\{\frac{d}{d x} x\right\} \int \sec ^{2} x d x\right\} d x \\
& =x \tan x-\int 1 \cdot \tan x d x \\
& =x \tan x+\log |\cos x|+\mathrm{C}
\end{aligned}
$$

20. Find the order and degree of the differential equation, $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.

Sol: Order: 3; Degree:
21. Find the projection of the vector $\vec{a}=\hat{\imath}+3 \hat{\jmath}+7 \hat{k}$ on the vector $\vec{b}=7 \hat{\imath}-\hat{\jmath}+8 \hat{k}$.

Sol: projection on $a$ and $b$

$$
\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{1.7+3(-1)+7.8}{\sqrt{49+1+64}}
$$

$$
=\frac{7-3+56}{\sqrt{114}}
$$

$=\frac{60}{\sqrt{114}}$
22. Find the area of parallelogram whose adjacent sides are determined by vectors $\vec{a}=\hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=2 \hat{\imath}-7 \hat{\jmath}+\hat{k}$ Sol : Area of parallelogram $=|\vec{a} \times \vec{b}|$
$\vec{a} \times \vec{b}=\left\lvert\, \begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1\end{array}\right.$.
$=\hat{\imath}(-1+21)-j(1-6)+k(-7+2)$
$\vec{a} \times \vec{b}=20 \hat{\imath}+5 \hat{\jmath}-5 k$
$=|\vec{a} \times \vec{b}|=\sqrt{20^{2}+5^{2}+5^{2}}$
$=\sqrt{450}=\sqrt{225 \times 2}$
$=15 \sqrt{2}$ units
23. Find the equation of the plane with_intercept 2,3 and 4 on $x, y$ and $z$ axes respectively.

Sol : let the equation of the plane be

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

Given that $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=4 \quad \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$

$$
6 x+4 y+3 z=12
$$

24. Assume that each child born in a family is equally likely to be a boy or girl. If a family has two children, what is the conditional probability that both are girls, given that the youngest is a girl.
Sol: Let b and g represent the boy and girl child respectively. $S=\{(b, b),(b, g),(g, b),(g, g)\}$ Let, $A=$ Event that both children are girls. $\therefore A=\{(g, g)\}$ Let $B=$ Event that the youngest is a girl. $\therefore$ To find: $(A \mid B)=$ ? $\quad A \cap B=\{(g, g)\}$
$\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}, \mathrm{P}(\mathrm{A} \cap B)=\frac{1}{4}$

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap B)}{P(B)} \quad=\frac{1 / 4}{1 / 2}=\frac{1}{2}
$$

## PART-C

## III. Answer any ten questions

25. Show that the relation R defined in the set A of all triangle as $\mathrm{R}=\left\{\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)\right.$ : $\boldsymbol{T}_{\boldsymbol{1}}$ is similar to $\left.\boldsymbol{T}_{2}\right\}$ is equivalence relation.

$$
\mathrm{T} 1 \sim \mathrm{~T} 1 \Rightarrow\left(\mathrm{~T}_{1}, \mathrm{~T}_{1}\right) \in \mathrm{R}
$$

$\therefore \mathrm{R}$ is reflexive relation

Symmetric: For any $T_{1}, T_{2} \in A$
$\Rightarrow T_{1} \sim T_{2} \Rightarrow T_{2} \sim T_{1}$
$\Rightarrow\left(T_{2}, T_{1}\right) \in R \quad \therefore R$ is symmetric relation.

Transitive:For any $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \in \mathrm{~A}$

$$
\begin{aligned}
& \text { If }\left(T_{1}, T_{2}\right) \in R \&\left(T_{2}, T_{3}\right) \in R \\
& \Rightarrow T_{1} \sim T_{2} \& T_{2} \sim T_{3} \\
& \quad \Rightarrow T_{1} \sim T_{3} \\
& \therefore\left(T_{1}, T_{3}\right) \in R
\end{aligned}
$$

$\therefore \mathrm{R}$ is transitive relation
$\therefore \mathrm{R}$ is equivalence relation.
26. For the matrix $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$
$\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$ is a symmetric matrix
$\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$ is a skew matrix
Sol : $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right] \quad A^{\prime}=\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]$

TO SHOW THAT : (A + A') IS SYMMETIC MATRIX

$$
\text { Let } P=A+A^{\prime}
$$

$$
=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right]+\left[\begin{array}{ll}
1 & 6 \\
5 & 7
\end{array}\right]
$$

$P=\left[\begin{array}{cc}2 & 11 \\ 11 & 14\end{array}\right]$
$P^{\prime}=\left[\begin{array}{cc}2 & 11 \\ 11 & 14\end{array}\right]$
$P=P^{\prime}$
27. If $\mathrm{x}=2 \mathrm{a} t^{2}$ and $\mathrm{y}=\mathrm{a} t^{4}$, find $\frac{d y}{d x}$

$$
\begin{array}{ll}
\text { Sol : x=2 } \mathrm{a} t^{2} & \mathrm{y}=\mathrm{a} t^{4} \\
\frac{d x}{d t}=4 \mathrm{at} & \frac{d y}{d t}=4 \mathrm{a} t^{3} \\
\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}=\frac{4 \mathrm{a} t^{3}}{4 a t} & \\
\frac{d y}{d x}=t^{2} &
\end{array}
$$

28. find $\frac{d y}{d x}$, if $x^{y}=y^{x}$ sol: $\quad x^{y}=y^{x}$

$$
\text { sol: } \quad x^{y}=y^{x}
$$

TO SHOW THAT : $\mathrm{Q}=\left(\mathrm{A}-\mathrm{A}^{\prime}\right)$

$$
\text { Let } Q=\left(A-A^{\prime}\right)
$$

$=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]-\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]$
$Q=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$Q^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
$Q=-Q^{\prime}$

Apply $\log$ both sideslog $x^{y}=\log y^{x}$
$y \log x=x \log y$
$\mathrm{y} \frac{1}{x}+\log \mathrm{x} \frac{d y}{d x}=\mathrm{x} \frac{1}{y}+\log \mathrm{y} .1$
$\log \mathrm{x} \frac{d y}{d x}=\frac{x}{y}+$ logy $-\frac{y}{x}$
$\frac{d y}{d x}=\frac{\frac{x}{y}+\log y-\frac{y}{x}}{\log x}$
29. Find the intervals in which the function $f$ given by $f(x)=x^{2}-4 x+6$ is
$\begin{array}{ll}\text { strictly increasing } & \text { (b) strictly decreasing. }\end{array}$
Sol. $\quad f(x)=x^{2}-4 x+6 f^{\prime}(x)=2 x-4$
Let $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 2 x-4=0$
$2 x=4$
$x=2$

$x=2$ divides the real line into two disjoint intervals, $(-\infty, 2) \&(2, \infty)$.If $x \in(-\infty, 2), f^{\prime}(x)=2 x-4<0$
If $x \in(2, \infty), f^{\prime}(x)=2 x-4>0$
$\therefore \mathrm{f}$ is strictly decreasing in $(-\infty, 2)$ and strictly increasing in $(2, \infty)$
30. evaluate : $\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x$

Sol: $\mathrm{I}=\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x$

$$
=\int \frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x
$$

$=\int \tan x \cdot \sec x d x+\int \cot x \cdot \operatorname{cosec} x d x$
$I=\sec x-\operatorname{cosec} x+c$
31.find $=\int \frac{(x-3)}{(x-1)^{3}} e^{x} d x$
$\mathrm{I}=\int \frac{(x-1-2)}{(x-1)^{3}} e^{x} d x$
$=\int\left[\frac{(x-1)}{(x-1)^{3}}+\frac{-2}{(x-1)^{3}}\right] e^{x} d x$

$$
=\int\left[\frac{1}{(x-1)^{2}}+\frac{-2}{(x-1)^{3}}\right] e^{x} d x
$$

$f(x)=\frac{1}{(x-1)^{2}}=(x-1)^{-2}$
$f^{\prime}(x)=-2(x-1)^{-3}$
$f^{\prime}(x)=\frac{-2}{(x-1)^{3}}$
We have, $\int\left[f(x)+f^{\prime}(x)\right] e^{x} d x=e^{x}|(x)+c|$

$$
\mathrm{I}=\frac{1}{(x-1)^{2}} e^{x}+\mathrm{C}
$$

32. Evaluate : $\int \frac{1}{(x+1)(x+2)} d x$

$$
\begin{aligned}
& \text { Sol : consider } \frac{1}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)} \\
& \quad \text { Multiply by }(\mathrm{x}+1)(\mathrm{x}+2) \\
& \begin{aligned}
1=\mathrm{A}(\mathrm{x}+2)+\mathrm{B}(\mathrm{x}+2)
\end{aligned} \\
& \begin{aligned}
\text { If } \mathrm{x}=-2 \Rightarrow 1=\mathrm{B}(-1) \quad \mathrm{If} \mathrm{x}=-1 \Rightarrow 1=\mathrm{A}(1) \quad \mathrm{B}=-1 \quad \mathrm{~A}=1
\end{aligned} \\
& \begin{aligned}
\int \frac{1}{(x+1)(x+2)} d x & =\int \frac{1}{(x+1)} d x+\int \frac{-1}{(x+2)} d x \\
& =\log |\mathrm{x}+1|+\log |\mathrm{x}+2|+\mathrm{C} \\
& =\log \left|\frac{x+1}{x+2}\right|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

33. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the $y-a x i s$ in the firstquadrant.

Sol. $\quad x^{2}=4 y$

$$
x= \pm \sqrt{4 y}
$$

$x=+2 \sqrt{y}$ [l quad]
Area $=\int_{2}^{4} \sqrt{4 y} d y$
$\left.=2 \int_{2}^{4} y^{1 / 2} d y=2 \frac{y^{3 / 2}}{3 / 2}\right]_{2}^{4}$

$$
\begin{aligned}
& =\frac{4}{3}\left[4^{\frac{3}{2}}-2^{\frac{3}{2}}\right] \\
& =\frac{4}{3}[8-2 \sqrt{2}] \\
& \text { Area }=\frac{8}{3}(4-\sqrt{2}) \mathrm{sq} \text { units }
\end{aligned}
$$

34. Solve $: \frac{d y}{d x}=e^{x+y}$

Sol : $\frac{d y}{d x}=e^{x} . e^{y}$
$\frac{d y}{e^{y}}=e^{x} \mathrm{dx}$

$$
e^{-y} d y=e^{x} d x
$$

Integrate on both sides
$\int e^{-y} d y=\int e^{x} d x$
$-\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}+\mathrm{c} \quad e^{x}+\mathrm{e}^{-\mathrm{y}}+\mathrm{c}=0$
$e^{x}+\frac{1}{e^{y}}+\mathrm{c}=0$
35. Let $\vec{~}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be three vectors such that $|\overrightarrow{\mathbf{a}}|=3,|\overrightarrow{\mathbf{b}}|=4,|\overrightarrow{\mathbf{c}}|=\mathbf{5}$ and each one of them beingperpendicular to the sum of the other two, find $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$.
Given: $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$
$\vec{a} \perp(\vec{b}+\vec{c})$
$\Rightarrow \vec{a} \cdot(\vec{b}+\vec{c})=0$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0$
$\vec{b} \perp(\vec{c}+\vec{a})$
$\Rightarrow \vec{b} \cdot(\vec{c}+\vec{a})=0$
$\Rightarrow \vec{b} \cdot \vec{c}+\vec{b} \cdot \vec{a}=0$
$\vec{c} \perp(\vec{a}+\vec{b})$
$\Rightarrow \vec{c} \cdot(\vec{a}+\vec{b})=0 \quad \Rightarrow \vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}=0$ To find $:|\vec{a}+\vec{b}+\vec{c}|=?$
Consider $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}$ $=3^{2}+4^{2}+5^{2}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{a}$

$$
\begin{aligned}
& =9+16+25+(\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{a})+(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c})+(\vec{c} \cdot \vec{a}+\vec{b} \cdot \vec{c}) \\
& =50+0+0+0[\text { given }]
\end{aligned}
$$

$|\vec{a}+\vec{b}+\vec{c}|^{2}=50 \quad|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}$

## By shwetha mp

Department of mathematics, SRSI pu college, bellur, narasapura
36. Show that the points $(-\mathbf{2 i}+\mathbf{3} \mathbf{j}+\hat{\mathbf{5}} \mathbf{k}, \mathbf{B}(\mathbf{i}+\mathbf{2} \mathbf{j}+\hat{\mathbf{3}} \mathbf{k})$ and $\mathbf{C}(\mathbf{7 i} \mathbf{i} \mathbf{-} \mathbf{k})$ are collinear

Sol. $\quad \overrightarrow{A B}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}+2 \hat{\imath}-3 \hat{\jmath}-5 \hat{k}$

$$
\overrightarrow{A B}=3 \hat{\imath}-\hat{\jmath}-2 \hat{k}
$$

$$
\begin{aligned}
& \overrightarrow{B C}=7 \hat{\imath}-\hat{k}-\hat{\imath}-2 \hat{\jmath}-3 \hat{k} \\
& \overrightarrow{B C}=6 \hat{\imath}-2 \hat{\jmath}-4 \hat{k}
\end{aligned}
$$

$$
\overrightarrow{B C}=2 \overrightarrow{A B}
$$

## $A, B, C$ are collinear

 point (2, 2, 1).
Sol. Equation of any plane through intersection of planes $3 x-y+2 z-4=0$ is

$$
(3 x-y+2 z-4)+\lambda(x+y+z-2)=0 \rightarrow(1) \text { where } \lambda \in R
$$

(1)passes through(2, 2, 1), $(6-2+2-4)+\lambda(2+2+1-1)=02+\lambda(3)=0$

$$
\lambda=\frac{-2}{3}
$$

Substitute value of $\lambda$ in (1), $(3 x-y+2 z-4) \frac{-2}{3}(x+y+z-2)=0$

$$
\Rightarrow 9 x-3 y+6 z-12-2 x-2 y-2 z+4=0
$$

$$
7 x-5 y+4 z-8=0
$$

38. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.
Sol. Let E: Man reports that six occurs in throwing a die.

## S1:Six occurs

S2:Six doesnot occurs

$$
P(S 1)=\frac{1}{6} \quad P(S 2)=\frac{5}{6}
$$

$P(E / S 1)=$ Probability that man reports that six occurs when six has actually occurred on die = Probability that the man speaks the truth

$$
\begin{aligned}
& \mathrm{P}(\mathrm{E} / \mathrm{S} 1)=\frac{3}{4} \\
& \mathrm{P}(\mathrm{E} / \mathrm{S} 2)=\text { Probability that the man does not speak truth }=1-\frac{3}{4} \\
& \mathrm{P}(\mathrm{E} / \mathrm{S} 2)=\frac{1}{4} \\
& \mathrm{P}(\mathrm{~S} 1 / \mathrm{E})=\frac{P(S 1) P\left(\frac{E}{S 1}\right)}{P(S 1) P\left(\frac{E}{S 1}\right)+P(S 2) P\left(\frac{E}{S 2}\right)} \\
& =\frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4}+\frac{5}{6} \times \frac{1}{4}} \\
& \frac{1}{8} \times \frac{24}{8}
\end{aligned}
$$

$P(S 1 / E)=\frac{3}{8}$
$\therefore$ Probability that the report of the man that six has occurred is actually a six is $\frac{3}{8}$

## IV. Answer any SIX questions:

39. Check the injectivity and surjectivity of the function $f: R \rightarrow R$ defined by $\mathbf{f}(\mathbf{x})=\mathbf{3 - 4 x}$. Is it a bijective function. Sol. Injectivity [One-One]: $\forall \mathrm{x} 1, \mathrm{x} 2 \in \mathrm{R}$ If $\mathrm{f}(\mathrm{x} 1)=\mathrm{f}(\mathrm{x} 2)$
$3-4 \times 1=3-4 \times 2$
$-4 \times 1=-4 \times 2$
$\Rightarrow \mathrm{x} 1=\mathrm{x} 2 \therefore \mathrm{f}$ is injective function
Surjectivity [Onto]: For $y \in R$ [Co - domain], $\exists x \in R$ such that $f(x)=y$
Consider, $f(x)=y$

$$
\begin{aligned}
& 3-4 x=y \\
& -4 x=y-3 \\
& 4 x=3-y \\
& x=\frac{3-y}{4} \in R \text { [Domain] } \\
& \text { Verification: } f(x)=3-4 x \\
& f\left(\frac{3-y}{4}\right)=3-4 \frac{3-y}{4} \\
& \quad=3-3+y \\
& f(3-y 4)=y
\end{aligned}
$$

$\therefore \mathrm{f}$ is surjective function.
$\therefore \mathrm{f}$ is bijective function.
40. if $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$ then compute $A+B$ and $B-C$. Also verify that $A+(B-C)=$ $(A+B)-C$

$$
\begin{aligned}
A+B= & {\left[\begin{array}{ccc}
1 & 2 & -3 \\
5 & 0 & 2 \\
1 & -1 & 1
\end{array}\right]+\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 2 & 5 \\
2 & 0 & 3
\end{array}\right]=\left[\begin{array}{ccc}
4 & 1 & -1 \\
9 & 2 & 7 \\
3 & -1 & 4
\end{array}\right] } \\
& B-C=\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 2 & 5 \\
2 & 0 & 3
\end{array}\right]-\left[\begin{array}{ccc}
4 & 1 & 2 \\
0 & 3 & 2 \\
1 & -2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -2 & 0 \\
4 & -1 & 3 \\
1 & 2 & 0
\end{array}\right]
\end{aligned}
$$

LHS $=A+(B-C)$
$=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{2} & -\mathbf{3} \\ \mathbf{5} & \mathbf{0} & \mathbf{2} \\ \mathbf{1} & \mathbf{- 1} & \mathbf{1}\end{array}\right]+\left[\begin{array}{ccc}-1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & \mathbf{0}\end{array}\right]$
LHS $=\left[\begin{array}{ccc}0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1\end{array}\right]$
RHS = (A+B)-C

$$
\left[\begin{array}{ccc}
4 & 1 & -1 \\
9 & 2 & 7 \\
3 & -1 & 4
\end{array}\right]-\left[\begin{array}{ccc}
4 & \mathbf{1} & 2 \\
0 & 3 & 2 \\
1 & -2 & 3
\end{array}\right]
$$

$$
R H S=\left[\begin{array}{ccc}
0 & 0 & -3 \\
9 & -1 & 5 \\
2 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{LHS}=\mathrm{RHS} \\
& \qquad A+(B-C)=(A+B)-C
\end{aligned}
$$

## By shwetha mp

Department of mathematics, SRSI pu college, bellur, narasapura
41. Solve the system of equations by matrix method: $2 x+3 y+3 z=5, x-2 y+z=-4,3 x-y-2 z=3$.

Sol:

The given system of equations can be written in the form $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{l}
5 \\
-4 \\
3
\end{array}\right] .
$$

Now,

$$
A=2(4+1)-3(-2-3)+3(-1+6)=2(5)-3(-5)+3(5)=10+15+15=40 \neq 0
$$

Thus, $A$ is non-singular. Therefore, its inverse exists.

$$
\text { Now, } \begin{aligned}
A_{11} & =5, A_{12}=5, A_{13}=5 \\
A_{21} & =3, A_{22}=-13, A_{23}=11 \\
A_{31} & =9, A_{32}=1, A_{33}=-7
\end{aligned}
$$

$$
\therefore A^{-1}=\frac{1}{|A|}(\text { adjA })=\frac{1}{40}\left[\begin{array}{ccc}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]
$$

$$
\therefore X=A^{-1} B=\frac{1}{40}\left[\begin{array}{ccc}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]\left[\begin{array}{l}
5 \\
-4 \\
3
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{40}\left[\begin{array}{l}
25-12+27 \\
25+52+3 \\
25-44-21
\end{array}\right]
$$

$$
=\frac{1}{40}\left[\begin{array}{l}
40 \\
80 \\
-40
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Hence, $x=1, y=2$, and $z=-1$.
42. If $\boldsymbol{y}=\left(\tan ^{-1} x\right)^{2}$, show that $\left(1+x^{2}\right)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$.

Sol: $y=\left(\tan ^{-1} x\right)^{2}$

$$
\begin{aligned}
& y_{1}=2 \tan ^{-1} x \cdot \frac{1}{1+x^{2}} \\
& \left(1+x^{2}\right) y_{1}=2 \tan ^{-1} x \\
& \left(1+x^{2}\right) y_{2}+y 1(0+2 x)=2\left(\frac{1}{1+x^{2}}\right) \\
& \left(1+x^{2}\right) y_{2}+2 x y_{1}=2\left(\frac{1}{1+x^{2}}\right) \\
& \left(1+x^{2}\right)^{2} y_{2}+2 \mathrm{x}\left(1+x^{2}\right) y_{1}=2
\end{aligned}
$$

## Hence proved.

## By shwetha mp

Department of mathematics, SRSI pu college, bellur, narasapura
43. The length $\boldsymbol{x}$ of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width $\boldsymbol{y}$ is increasing at the rate of 2 $\mathrm{cm} /$ minute. When $\boldsymbol{x}=\mathbf{1 0} \mathbf{c m}$ and $\boldsymbol{y}=\mathbf{6} \mathbf{c m}$, find the rates of change of $(\mathrm{a})$ the perimeter (b) the area of the rectangle. Sol: Given: $\frac{d x}{d t}=-3 \mathrm{~cm} / \mathrm{min}$

$$
\frac{d y}{d t}=2 \mathrm{~cm} / \mathrm{min}
$$

(a) $\frac{d P}{d t}=$ ?
(b) $\frac{d A}{d t}=$ ? at $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$

$$
\begin{aligned}
& \text { (a) Perimeter of rectangle, } \boldsymbol{P}=2 \boldsymbol{x}+2 \boldsymbol{y} \\
& \qquad \begin{array}{c}
P=2 x+2 y \\
\frac{d P}{d t}=2 \frac{d x}{d t}+2 \frac{d y}{d t} \\
\\
=2(-3)+2(2) \\
\frac{d P}{d t}=-2 \mathrm{~cm} / \mathrm{min}
\end{array}
\end{aligned}
$$

(b) Area of rectangle, $\boldsymbol{A}=\boldsymbol{x} \boldsymbol{y}$

$$
A=x y
$$

$$
\frac{d A}{d t}=x \frac{d y}{d t}+y \frac{d x}{d t}
$$

$$
=10(2)+6(-3)
$$

$$
=20-18
$$

$$
\frac{d A}{d t}=2 \mathrm{~cm} 2 / \mathrm{min}
$$

$\therefore$ The perimeter of rectangle is decreasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$ (Negative sign shows the decrease) The area of rectangle is increasing at the rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$.
44. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to $x$ and hence evaluate $\frac{1}{\sqrt{9-25 x^{2}}}$

Sol : $\mathrm{I}=\frac{1}{\sqrt{a^{2}-x^{2}}}$
Let $\mathrm{x}=\operatorname{asin} \theta$, then $\mathrm{dx}=\operatorname{acos} \theta d \theta$
Therefore $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\int \frac{a \cos \theta d \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}$

$$
\begin{gathered}
=\int d \theta=\theta+C=\sin ^{-1} \frac{x}{a}+C \\
\int \frac{1}{\sqrt{9-25 x^{2}}}=\int \frac{1}{\sqrt{\frac{9}{25}-x^{2}}} \\
=\frac{1}{5} \int \frac{1}{\sqrt{\frac{9}{25}-x^{2}}}=\frac{1}{5} \sin ^{-1} \frac{x}{\frac{3}{5}}+\mathrm{C} \\
=\frac{1}{5} \sin ^{-1} \frac{5 x}{3}+C
\end{gathered}
$$

45. Using the method of integration, find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$

Sol: $x^{2}+y^{2}=a^{2}$

$$
\begin{aligned}
& y^{2}=a^{2}-x^{2} \\
& y= \pm \sqrt{a^{2}-x^{2}} \\
& \begin{aligned}
& \mathrm{y}=+\sqrt{a^{2}-x^{2}}[\text { I quadrant }] \\
& \text { Area }=4 \text { (Area of OABO) } \\
&=4 \int_{0}^{a}|y| d x \\
&=4 \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \\
&=4\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a} \\
&=4\left[\left(\frac{a}{2} \sqrt{a^{2}-a^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{a}{a}\right)-(0+0)\right] \\
&=4\left[\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)\right]
\end{aligned}
\end{aligned}
$$

Area $=\pi a^{2}$ sq units

## By shwetha mp

Department of mathematics, SRSI pu college, bellur, narasapura
46. Find the general solution of the differential equation $\frac{d y}{d x}+\mathbf{2 y}=x^{2}(\mathbf{x} \neq \mathbf{0})$

Sol. $\mathrm{x} \frac{d y}{d x}+\mathbf{2 y}=x^{2}$ (Divide by x )

$$
\frac{d y}{d x}+\frac{2 y}{x}=\mathrm{x}
$$

$=\mathrm{x} \frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$
I.F $=e^{\int P d x}$
$=e^{\int \frac{1}{x} d x} \quad=e^{\log x^{2}}$

$$
\text { I.F } x^{2}
$$

General solution,

$$
\begin{aligned}
& y(I . F)=\int Q(I . F) d x+c \\
& y\left(x^{2}\right)=\int x\left(x^{2}\right) d x+c \\
& x^{2} y=\int x^{3} d x+c \\
& x^{2} y=\frac{x^{4}}{4}+c \\
& \frac{x^{4}}{4}-x^{2} y+c=0
\end{aligned}
$$

47. Derive the equation of the line in space passing through a given point and parallel to a given vector both in vector and Cartesian form

Sol: Given:
$A$ - given point and $\overrightarrow{O A}=a$
$l$ - line which passes through $A$
$P$ - arbitrary point on $l$
$\vec{b}$ - parallel vector to $\overrightarrow{A P}$

## Vector form:

$r=$ Position vector of an arbitrary point on the line.
$a=$ Position vector of given point with respect to origin.
$\vec{b}=$ Vector parallel to the line which passes through given point.
$\lambda=$ Some real number.

Proof : $\overrightarrow{A P}=\vec{b}$

$$
\overrightarrow{A P}=\lambda \vec{b} \quad \overrightarrow{O P}-\overrightarrow{O A}=\lambda \vec{b} \quad \begin{aligned}
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\vec{r}=\vec{a}+\lambda \vec{b}
$$

## Cartesian form :

$$
\text { Given point } \mathrm{A}\left(x_{1}, y_{1}, z_{1}\right) \text {. Directional ratios of line I are a, b, c. } \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \text { be }
$$

arbitray point.

$$
\overrightarrow{\boldsymbol{a}}=x_{1} \hat{\boldsymbol{\imath}}+y_{1} \hat{\boldsymbol{\jmath}}+z_{1} \widehat{\boldsymbol{k}} \quad \overrightarrow{\boldsymbol{r}}=x \hat{\boldsymbol{\imath}}+\mathrm{y} \hat{\boldsymbol{\jmath}}+z \widehat{\boldsymbol{k}}
$$

$$
\overrightarrow{\boldsymbol{b}}=\mathrm{a} \hat{\boldsymbol{\imath}}+\mathrm{b} \hat{\boldsymbol{\jmath}}+\mathrm{c} \widehat{\boldsymbol{k}}
$$

Wkt, $\vec{r}=\vec{a}+\lambda \vec{b}$

$$
z=z_{1}+\lambda c
$$

$$
=\lambda b
$$

$$
\frac{\mathrm{z}-z_{1}}{c}=\lambda
$$

$$
\frac{\mathrm{x}-x_{1}}{a}=\frac{\mathrm{y}-y_{1}}{b}=\frac{\mathrm{z}-\mathrm{z}_{1}}{c}
$$

48. Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2} \& \frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that (i)the problem is solved ii) exactly one of them solves the

$$
\begin{aligned}
& P(A)=\frac{1}{2} \\
& P(B)=\text { Probability of solving problem by } B \\
& P(B)=\frac{1}{3}
\end{aligned}
$$

Given: A \& B solve the problem independently.

$$
\begin{aligned}
\therefore & P(A B)=P(A) P(B)=\frac{1}{2} \times \frac{1}{3} \\
& p(A B)=\frac{1}{6}
\end{aligned}
$$

$$
\begin{array}{rlrl}
P\left(A^{\prime}\right)=1-P(A) & P\left(B^{\prime}\right) & =1-P(B) \\
& =1-\frac{1}{2} & & =1-\frac{1}{3} \\
P\left(A^{\prime}\right)= & \frac{1}{2} & P\left(B^{\prime}\right) & =\frac{2}{3}
\end{array}
$$

Probability of that problem is solved,

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

$$
\begin{aligned}
& x \hat{\boldsymbol{\imath}}+\mathrm{y} \hat{\boldsymbol{\jmath}}+z \widehat{\boldsymbol{k}}=\left(x_{1} \hat{\boldsymbol{\imath}}+y_{1} \hat{\boldsymbol{\jmath}}+z_{1} \widehat{\boldsymbol{k}}\right)+\lambda(\mathrm{a} \hat{\boldsymbol{\imath}}+\mathrm{b} \hat{\boldsymbol{\jmath}}+\mathrm{c} \widehat{\boldsymbol{k}}) \\
& x \hat{\boldsymbol{\imath}}+\mathrm{y} \hat{\boldsymbol{\jmath}}+z \widehat{\boldsymbol{k}}=\left(x_{1}+\lambda \mathrm{a}\right) \hat{\imath}+\left(y_{1}+\lambda \mathrm{b}\right) \hat{\jmath}+\left(z_{1}+\lambda \mathrm{c}\right) \hat{k} \\
& \mathrm{x}=\left(x_{1}+\lambda \mathrm{a}\right) \quad \mathrm{y}=y_{1}+\lambda \mathrm{b} \\
& z-z_{1}=\lambda c \\
& \mathrm{x}-x_{1}=\lambda \mathrm{a} \quad \mathrm{y}-y_{1}
\end{aligned}
$$

$$
\begin{array}{ll}
=P(A)+P(B)-P(A B) \\
=\frac{5}{6}-\frac{1}{6} & =\frac{1}{2}+\frac{1}{3}-\frac{1}{6} \\
=\frac{4}{6} & P(A \cup B)=\frac{2}{3}
\end{array}
$$

i) Probability that exactly one of them
solves the problem, $P(A) . P\left(B^{\prime}\right)+P(B)$.

$$
\begin{aligned}
& \text { P (A') } \\
& =\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3} \\
& =\frac{2}{6}+\frac{1}{6} \\
& =\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

## PART - E

## V. Answer any ONE question:

## 10

49. Prove that $\int^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \mathbf{d} \mathbf{x}=\int^{\mathbf{a}} \mathbf{f}(\mathbf{a}-\mathbf{x})_{\mathrm{dx}}$ and hence evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} \mathrm{dx}$

Sol :
To prove that: $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x)$
Proof: Let $\mathrm{t}=\mathrm{a}-\mathrm{x}$
$d t=-d x$
$=\mathrm{dx} \quad$ When $\mathrm{x}=0 \Rightarrow$
$\mathrm{t}=\mathrm{a}$

$$
x=a \Rightarrow t=0
$$

$\therefore \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{0} \mathrm{f}(\mathrm{t})-$
dt

$$
\begin{align*}
&=-\int_{0}^{a} f(t) d t \quad\left[\because \int\right.\left.\mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int \mathrm{f}(\mathrm{x}) \mathrm{dx}\right] \\
& \therefore \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x}) \mathrm{dx}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \\
& {\left[\because \int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int \mathrm{f}(\mathrm{t}) \mathrm{dt}\right] }
\end{align*}
$$

To evaluate $: \mathrm{I}=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x \longrightarrow$

$$
\begin{align*}
& \int_{0}^{a} \overline{v \bar{x}} \\
& \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) \\
& \int_{0}^{a} \overline{\sqrt{\overline{a-x}+\sqrt{a-(a-x)}}} \\
& \int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} \tag{2}
\end{align*}
$$

adding equation (1) and (2)

$$
\begin{aligned}
& 2 \mathrm{I}=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x \\
& \left.=\int d x \quad=\mathrm{x}\right]_{0}^{a} \quad \quad 2 \mathrm{I}=\mathrm{a}-0
\end{aligned}
$$

$\mathrm{I}=\frac{a}{2}$
b) find the value of k if $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}k x+1, & x \leq \pi \\ \cos x, & x>\pi\end{array}\right.$ is continuous at $\mathrm{x}=\pi$

Sol: f is continuous at $\mathrm{x}=\pi$
LHL = RHL = Value

$$
\begin{aligned}
& \lim _{x \rightarrow \pi^{-}} f(x)= \lim _{x \rightarrow \pi^{+}} f(x)=\mathrm{f}(\pi) \\
& \lim _{x \rightarrow \pi^{-}} k x+1= \lim _{x \rightarrow \pi^{-}} \cos x \mathrm{kx}+1 \\
& \mathrm{k}(\pi)+1=\cos \pi
\end{aligned}
$$

$$
k \pi=0-1
$$

$$
k=\frac{-1}{\pi}
$$

50. a) Maximize $z=4 x+y$ subject to the constraint $x+y \leq 50,3 x+y \leq 90, x \geq 0, y \geq 0$ by graphical method

Sol: Convert inequalities to equalities.
$* x+y=50 \rightarrow(1)$

| $x$ | 0 | 50 |
| :---: | :---: | :---: |
| $y$ | 50 | 0 |

Put $(0,0)$ in $x+y \leq 10$

$$
\Rightarrow 0 \leq 10 \text { (True) }
$$

Shaded region towards origin.

| $* 3 x+y=90$ |  |  |
| :--- | :--- | :--- |
| $x$ | 0 | 30 |
| $y$ | 90 | 0 |$\quad(2)$

$$
\begin{aligned}
& \text { Put }(0,0) \text { in } 3 x+y \leq 90 \\
& \Rightarrow 0 \leq 90 \text { (True) }
\end{aligned}
$$

Shaded region towards origin.

$* x, y \geq 0 \Rightarrow$ Feasible region lies in first quadrant.

| Corner Point | Corresponding value <br> of $Z$ |
| :---: | :---: |
| $(0,0)$ | 0 |
| $(30,0)$ | $\mathbf{1 2 0} \longleftarrow$ |
| $(20,30)$ | 110 |
| $(0,50)$ | 50 |

The maximum value of $\quad z=120$ at $(30,0)$.
Sol:
b) if $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, satisfies the equation $A^{2}-5 \mathrm{~A}+7 \mathrm{I}=0$, then find the inverse of A using this equation where $I$ is the identity matrix of order 2 .

Sol:
$=6+1$
$|A|=7 \neq 0$
$\therefore \mathrm{A}$ is non-singular $\therefore \mathrm{A}^{-1}$ exists

$$
A^{2}-5 A+7 I=0
$$

A. $A-5 A=-7 I$

Post multiply by $\mathrm{A}^{-1}$

$$
\begin{gathered}
\text { A. }\left(A A^{-1}\right)-5 A A^{-1}=-7 I^{-1} \\
\text { AI-5I }=-7 A^{-1} \\
\frac{1}{-7}(A-5 I)=A^{-1} \\
A^{-1}=\frac{-1}{7}\left(\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]-5\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
A^{-1}=\frac{-1}{7}\left[\begin{array}{cc}
-2 & 1 \\
-1 & -3
\end{array}\right]
\end{gathered}
$$



