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PÀæ.¸ÀA PÀ°PÁA±ÀUÀ¼ÀÄ CAPÀUÀ¼ÀÄ 
ಪ�ಠ 

ಸಂ�ೆ� 

1 Graphs ( 7 Marks)  7  

 
1. Solving pair of linear equation by graphical 

method. 
2. Ogive Curve   

4 
 
 
3 

4 
 
 
5 

2 Constructions ( 9 marks )  6-8 

 

1. Construction of Tangents to a Circle. 
2. Division of a line segment. 

3. Construction of a similar triangle  

 

2/3 

2 

 

3/4 

6 
 
7 
 
8 

3 Theorems  (8 marks ) 8 9-13 

 

Theorems  ( Triangles ) 
1) Basic proportionality theorem or Thales 

theorem. 
2)  AAA criterion theorem  
3) Areas of Similar Triangles theorem  

4) Pythagoras Theorem 

Theorem ( circles ) 
1. Prove that, “The lengths of tangents drawn 

from an external point to a circle are equal 
2. Prove that, “The tangent at any point of a 

circle is Perpendicular to the radius through 
the point of contact”. 

 
 
 
 
 
 
5 
 
 
 
 
 
 
3 
 
 
 

 
9 
 
10 
 
11 
 
12 
 
 
13 
 
 
 
 
13 

4 Important Questions  ( 21 marks  )   

 1. To calculate  , Mean  /  Mode  /  3 14-15 
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Median. 

 
2. Quadratic Equations – Formula 

Method,  Nature of roots 
4 16-18 

 3. Pair of Linear Equations in two variables – 
Elimination Method 

4 19-20 

 4. Some Examples on A.P 4 21 

 

Coordinate geometry 
• Examples on distance formula 
• Examples on section formula 
• Examples on area of triangles. 

6 22-30 

 MlÄÖ 45  

 

 

 

ಸೂಚ�ೆ:ಇ�� �ೕಡ�ಾದ ಪ��ೆ�ಗಳ� ಮತು� ಅವ�ಗಳ ಉತ�ರಗಳ� �ಾದ� 

ಪ��ೆ��ತ�ರಗ�ಾ�ದು� ��ಾ���ಗಳ� ಇ�ೇ �ೕ�ಯ ಇತ�ೆ ಪ��ೆ�ಗ��ೆ ಉತ��ಸಲು 

ಕ�ಮವ�ಸುವ�ದು. 
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Graph ( 7 Marks)  

Ogive Curve  ( 3 Marks) 
1. Convert the distribution to a less than type cumulative frequency 

distribution and draw its Ogive. 
Daily 

Income 
Number of 

workers  

Daily Income No. of 
Workers 

Cumulative 
frequency (cf) 

 100-120 12  Less than 120 12 12 
120-140 14  Less than 140 14 26 
140-160 8  Less than 160 8 34 
160-180 6  Less than 180 6 40 
180-200 10  Less than 200 10 50 

 

 
2.  Convert the distribution to a more than type distribution and draw its Ogive: 

Production in 
Yield (in 
Kg/ha) 

Number 
of 

farms  

Production in 
Yield (Kg/ha) 

No. of 
farms 

Cumulative 
frequency (cf) 

50-55 2  More than 50 2 100 
55-60 8  More than 55 8 98 
60-65 12  More than 60 12 90 
65-70 24  More than 65 24 78 
70-75 38  More than 70 38 54 
75-80 16  More than 75 16 16 
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Solving a pair of linear equations by Graphical Method….   4 marks ) 

3. Solve the equations graphically 
X + Y = 5,          2X- Y = 4.    

Y =5 -X  Y = 2X-4 
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Constructions ( 9 marks ) 
 Division of a line segment  

4. Draw a line segment of length 7.6 cm and divide it in the ratio 5 : 8 

 
 

Construction of Tangents to a Circle. 
5. Draw a circle of radius 6 cm. From a point 10 cm away from its centre. 

Construct the pair of tangents to the circle. 
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6.  Draw a pair of tangents to a circle of radius 5 cm which are inclined to 
each other at an angle of 60° 

 
 

7. Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of 
radius 4 cm and taking B as centre, draw another circle of radius 3 cm. 
Construct tangents to each circle from the centre of the other circle.  

 
 
 
 
 



8 
 

Construction of a similar triangle  
8.  Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another 

triangle whose sides are  
𝟕𝟕
𝟓𝟓

  of the corresponding sides of the first triangle 

 
 

9. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and ∠ABC = 60°.  Then 

construct a triangle whose sides are 
𝟑𝟑
𝟒𝟒

 of the corresponding sides of the ABC 
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THEOREMS ( 8 MARKS ) 
Theorems  ( Triangles ) 

10.  Basic proportionality theorem or Thales theorem. 
If a line is drawn parallel to one side of a triangle to intersect the other two sides in 
distinct points, the other two sides are divided in the same ratio. 

 
 

Data :  In ABC, DE//BC  
To Prove :  AD

BD
=

AE
CE

 

Construction  :  Join DC and EB. Draw EL ⊥ AB, DM ⊥ AC. 

Proof : ar (ADE)
ar (BDE)

 = 

 

    
ar (ADE)
ar (CDE)

   = 

 

 

                                               

 

 

1/2xADxLE
1/2xBDxLE

 = 
AD
BD

 ---→ (1)             area of= 1/2xbxh 

 

 
1/2xAExDM
1/2xCExDM

 = 
AE
CE
 --→ (2)           area of= 1/2xbxh 

 

ar(BDE)=ar(CDE) ----→ (3)                   By theorem 

From (1),(2) and(3)   

 
AD
BD

=  𝐴𝐴𝐴𝐴
𝐶𝐶𝐶𝐶
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11. AAA criterion theorem  
If in two triangles, corresponding angles are equal then their corresponding sides 
are in the same ratio and hence the two triangles are similar.  

 
 

Data : In ABC and DEF 

∠A = ∠D, ∠B = ∠E, ∠C = ∠F 

To Prove : AB
DE

 = 
BC
EF

 = 
AC
DF

 

Construction : Cut AG = DE and AH = DF and join GH 

 

Proof :                     InAGH and DEF   

                                  ∠A = ∠D                                                      Data 

                                   AG = DE                                                     Construction 

                                   AH = DF                                                     Construction 

                      ∴ AGH  ≅   DEF                                     SAS Congruence  

                           ∴   GH = EF  

                                 ∠G = ∠E   

                              ∠G = ∠E  = ∠B  

                              ∴  GH ║  EF  

                     ∴      
AB
AG

 = 
BC
GH

 = 
AC
AH

                                 By Thales theorem  

                         ∴  AB
DE

 = 
BC
EF

 = 
AC
DF
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12. Areas of Similar Triangles theorem  

The ratio of the areas of two similar triangles is equal to the square of the ratio of 
their corresponding sides. 

 
Data :  ABC ~ DEF, 

AB
DE

 = 
BC
EF

 = 
AC
DF

 
To Prove : ar (ABC)

ar (DEF)
 = 

BC2

EF2 

Construction : Draw AL ⊥ BC and DM ⊥ EF 
Proof : 

ar (ABC)
ar (DEF) = 

1
2x BC x AL

1
2 x EF x DM

 = 
BC X AL
EF X DM

 →( 1) 

In ∆ ABL and  DEM  

∠ B = ∠ E    →  Data 

∠ L  = ∠ M = 90°  → Construction 

∴  ABL ~  DEM  →  AA Similarity criterion  

∴  AB
DE = 

AL
DM

 = 
BC
EF

 

 
BC
EF

 = 
AL
DM

  →( 2) 

ar (ABC)
ar (DEF)

 = 
BC2

EF2   Substitute (2) in (1) 
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13. Pythagoras Theorem 
In a right triangle, the square of the hypotenuse is equal to the sum of the squares 
of the other two sides 

 
 Data : In  ABC, ∠A = 90°  
To Prove : AB2  + AC2 = BC2 

Construction : Draw AD ⊥  BC 
Proof : In  DAB and  BAC 

∠ D = ∠ A = 90°                                    Data and Construction 

∠ B = ∠ B                                            ( Common ) 

∴  DAB ~  BAC                                       ( AA Similarity criterion ) 

⇒  DB
BA

  =  AB
BC

 

AB2 = DB.  BC →  ( 1 ) 

In  DAC and  CAB  

∠ D = ∠ A = 90°                                    Data and Construction 

∠ C = ∠ C                                            ( Common ) 

∴  DAC ~  CAB                                        ( AA Similarity criterion ) 

∴ ⇒ DC
CA

  =  AC
CB

 

AC2 = DC.  CB →  ( 2 ) 

( 1 ) + ( 2 ) 

AB2  + AC2 = BC2 
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Theorem ( circles ) 
14. Prove that, “The tangent at any point of a circle is Perpendicular to the 

radius through the point of contact”. 

 

Data : Circle with center O, XY is the 
tangent, OP is radius 
 
To Prove : OP ⊥ XY 
 

Construction : Take a point Q on XY other than P and Join OQ 
Proof 
:  
 
 
 

OP  =  OR  (Radii of the same Circle ) 

OQ = OR  +  RQ 

OQ >  OR 

OQ  >  OP   ( OP = OR ) 

OP is the shortest of all the distances of the point O to the points of XY  

∴ OP  ⊥  XY 
 

15.  Prove that, “The lengths of tangents drawn from an external 
point to a circle are equal 

 

Data : Circle with center ‘A’, BP 
and BQ are tangents 
 
To Prove : BP = BQ 
 

Proof :  
 
 
 

In  APB and  AQB 

∠ P = ∠ Q = 90°          

AB  =  AB                              ( Common ) 

AP  =  AQ                               ( Radii of the same circle ) 

∴  APB ≅  AQB             (  RHS ) 

∴ BP  =  BQ 
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Important Questions  ( 16 marks  ) 
To calculate  , Mean  /  Mode  /  Median. 

16.  Find the mean for the given frequency distribution 
C- I 5-15 15-25 25-35 35-45 45-55 

F 2 3 6 5 4 
  
Answer: Direct method  

C- I Frequency ( fi ) Mid Point ( xi ) fixi 
5-15 2 10 20 
15-25 3 20 60 
25-35 6 30 180 
35-45 5 40 200 
45-55 4 50 200 

                               ∑fi = 20                           ∑fixi  =  660 
Mean ,  X̅  = ∑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∑𝑓𝑓𝑓𝑓
 

 
X̅ = 660

20
 

 
Mean = X̅  =  33 

 
17. Calculate the mode for the following frequency distribution table . 

C- I 10-20 20-30 30-40 40-50 50-60 
frequency  5 6 10 4 3 

 

L =30 

f0= 6 

f1=10  

f3=4  

h=10 

 

Mode = L + [ f1−f0

2f1−f0−f2
] X h 

Mode = 30+[ 10−6
2x10−6−4] x 10 

Mode  =  30 +[ 4
20−10 ] X 10 

Mode = 30 + 40
10

  =  30 + 4 

Mode  = 34 



15 
 

18. Calculate the median for the given frequency distribution table   
 

Class 
Interval 

30-40 40-50 50-60 60-70 70-80 

frequency 5 9 12 8 6 
   

CI f cf 

30 – 40 5 5 
40 – 50 9 14 
50 - 60 12 26 
60 – 70 8 34 
70 - 80 6 40 

 N = 50  
N
2
 = 40

2
  =  20 

L  = 50 ,  Cf  =  14 

f  = 12 

h  = 10 

Median = L + [ 
N
2  −cf 

f  ] X h 

Median = 50 + [ 20 −14
12  ]  X 10 

Median =  50 + [ 6
12

] 10 

Median = 50 + 5 

Median = 55 
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II Quadratic Equations – Formula Method,  Nature of roots  
19.  Find the roots of the quadratic equation 3x2  - 5x  +2 = 0 by applying quadratic 

formula. 
Solution :              ax2 + bx + c  = 0 

a = 3,  b = -5,  c = 2. 

𝒙𝒙 = −𝒃𝒃±�𝒃𝒃𝟐𝟐−𝟒𝟒𝒂𝒂𝒂𝒂
𝟐𝟐𝒂𝒂

 , 

 

𝒙𝒙 =  
−(−𝟓𝟓) ± �(−𝟓𝟓)𝟐𝟐 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

𝟐𝟐𝟐𝟐𝟐𝟐
 

 

𝒙𝒙 =  
𝟓𝟓 ± √𝟐𝟐𝟐𝟐 − 𝟐𝟐𝟐𝟐

𝟔𝟔
 

 

𝒙𝒙 =  
𝟓𝟓 ± √ 𝟏𝟏

𝟔𝟔
 

 

𝒙𝒙 =  
𝟓𝟓 ± 𝟏𝟏

𝟔𝟔
 

 

𝒙𝒙 =  𝟓𝟓+𝟏𝟏
𝟔𝟔

                         𝒙𝒙 =  𝟓𝟓−𝟏𝟏
𝟔𝟔

 

𝒙𝒙 =  𝟔𝟔
𝟔𝟔
                                               𝒙𝒙 =  𝟒𝟒

𝟔𝟔
    

𝒙𝒙 =  𝟏𝟏                                                    𝒙𝒙 =  𝟐𝟐
𝟑𝟑
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20. Solve the quadratic equation x2  - 5x  -10 = 0by Factorization method. 
Soln :  x2  - 5x  -10 = 0 

x2  -5x + 2x -10 =0  

  x(x - 5) + 2(x -5) =0      

   (x - 5) (x +2) =0  

             (x -5 ) = 0    or     ( x + 2) =0        
        X  =  5    or        x  = - 2 
21. Solve the quadratic equation 3x2 -x -10 = 0 by Factorization method. 

Soln :  3x2 -x -10 = 0 

3x2 -6x  + 5x -10  = 0 

3x2 -6x  + 5x -10  = 0 

3x(x – 2) + 5(x-2) = 0 

(x-2)(3x+5) = 0 

x-2 = 0   or   3x + 5 = 0 

x = +2   or   3x = -5        x =  −5
 3

 

22. Find the value of the discriminant of 2x2 - 5x + 3 = 0  

Solution :                          ax2  + bx + c = 0        

a=2,         b=-5,      c=3 

Discriminant ,  ∆  =   b2 – 4ac 

=  (– 5)2- 4(2)(3) 

=  25 - 24   =  1 
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23. Determine the nature of the roots :  2x2 – 4x  +  3 = 0 
 
     Solution :        2x2 – 4x  +  3 = 0 

                        ax2 + bx  +  c  = 0    

                     here a = 2, b = -4,  c = 3 

                        Discriminant  =  = b2 – 4ac 

                       = (-4)2 – 4 X 2 X 3 

                        = 16 - 24 

                        = -8 < 0 

              So, the given equation has no real roots. 

24.   Determine the nature of the roots :  x2 - 6x + 9 = 0  
Solution:  x2 - 6x + 9 = 0  

                ax2  + bx + c = 0        

 a=1,      b=-6,     c=9 

Discriminant  , ∆  =   b2 – 4ac  

  =  (– 6)2- 4(1)(9)  

  =  36 - 36  

  =   0  

 Roots are real and equal. 

25.      Find the value of ‘K’ for the quadratic equation 4x2 -   kx  + 1 =  0, if it has 
equal roots. 

Solution :              4x2 -   kx  + 1 =  0  
 ax2  +  bx   +  c   = 0                  

 a = 4,   b = -k ,  c = 1 

                   Roots are real and equal 
 ∴     𝒃𝒃𝟐𝟐 − 𝟒𝟒 𝒂𝒂 𝒄𝒄 = 0 

     (–k)2  -  4 (4) (1)   = 0 
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         k2   -   16 = 0  

            k2   =   16 

         k   =  ±√𝟏𝟏𝟏𝟏 

         k   =  ±𝟒𝟒 

Pair of Linear Equations in two variables – Elimination Method 
 

26. . Solve the pair of linear equations :  x-y = 5, 2x – 3y = 5 
Solution : Elimination method  

x - y = 5 → ( 1 ) and 2x – 3y = 5 → ( 2 ) 
multiply equation ( 1 ) by 3 

3x + 3y = 15 → ( 3 ) 
Sum of ( 2 ) + ( 3 ) 

3x + 3y = 15 
2x − 3y = 5               

                          5x = 20               

     x = 20
5

 , x = 4 

Substitute x = 4 in equation ( 1 ) 
4 + y = 5 
y = 5 - 4 

                  y = 1                 
           ∴ x = 4 and y = 1 

 

27.  Solve the pair of linear equations : x + y = 6, x – y = 2 
Solution :  

x + y = 6 → ( 1 ) 
x - y = 2 → ( 2 ) 

---------------------- 
2x = 8                  

                                                                x = 8
2
 ,      

    x = 4 
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Substitute x = 4 in equation ( 1 ) 
4 + y = 6 
y = 6 – 4 

y = 2 
x = 4 and y = 2 

 
 

28. For what value of ‘K” , the pair of linear equation Kx – 4y = 3 , 
6x – 12y = 9 has infinitely many solutions: 

 

Solution:           Kx – 4y = 3 and 6x – 12y = 9 

Kx – 4y – 3 = 0 and 6x – 12y – 9 = 0 

Here, a1 = K, 

 b1 = -4,  

c1 = -3 

a2 = 6, 

  b2 = -12,  

c2 = -9 

Condition for infinitely many solutions 
a1
a2 = b1

b2 = c1
c2 

a1
a2 = k

6
 , 

 b1
b2 = −4

−12
 = 1

3
 

∴ a1
a2 = b1

b2  

⇒ k
6
 = 1

3
 

⇒3k=6 

∴k = 6
3
 = 2 
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Arithmetic progression 

• nth  term of A.P is an = a+ (n - 1)d   

• Sum of first n terms of A.P is     S= n
2
 [2a + (n - 1)d]   or    S = n

2
 [a + l] 

29. Find the 13th term of an A.P 3, 8, 13, . . . . . . .    

Solution: 
   a =  3,     d = a2 – a1 = 8 - 3 = 5       n = 13     a13 = ? 

an = a + (n-1)d 

a13 = 3 + (13-1)5 

a13 = 3 +  (12)5 

a13 = 3 + 60 

 ∴ a13 = 63 

 

30. Find the sum of first 20 terms of the series  2+6+10+……. 

 Solution: a =  2     d = a2 – a1 = 6 - 2 = 4       n = 20     S20 = ? 

Sn = 𝑛𝑛
2
 [2a+(n-1)d] 

S20 = 20
2

 [2 x 2 +(20-1)4] 

S20 = 20
2

 [4 +(19)4] 

S20 = 20
2

 [4 + 76] 

S20 = 10 [80] 

∴S20 = 800 
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Coordinate geometry 

• Examples on distance formula 
• Examples on section formula 
• Examples on area of triangles 

31. Find the distance between the origion and a point (8,-6). 
Solution: 

                  ( 8 , -6) = ( x , y )        

                  d = �𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐            
                     d = �𝟖𝟖𝟐𝟐 + (−𝟔𝟔 )𝟐𝟐           
                      d = √𝟏𝟏𝟏𝟏𝟏𝟏                   
                     d  =  10 Units 

32. Find the distance between (-5 , 7 ) & (-1, 3)   

Soliution:       d    =   �( 𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟏𝟏)𝟐𝟐 + (𝒚𝒚𝟐𝟐 − 𝒚𝒚𝟏𝟏)𝟐𝟐 

PQ  = �( −𝟏𝟏 − (−𝟓𝟓))𝟐𝟐 + (𝟑𝟑 − 𝟕𝟕) )𝟐𝟐      
        =   �( −𝟏𝟏 + 𝟓𝟓)𝟐𝟐 + (−𝟒𝟒 )𝟐𝟐   
         =  √𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏 

PQ    =   √𝟑𝟑𝟑𝟑   Units. 
33. Find the point on Y-axis which is equidistant from A (6, 5) & B (-4, 3)   

Solution: The point on Y-axis be (0,y). 
According to given        PA = PB      

                     (6 − 0)2  +  (5 −y)2      =    (−4 −0)2 + (3 −y )2 

                    36 + 25 + y2−10y        =    16+ 9+y2−6y 

                     Y2 − y2−10y + 6y    =  25−61   

                    −4y = −36,           y= −𝟑𝟑𝟑𝟑
−𝟒𝟒

              y = 9  

Point on Y-axis is    (0 , 9)   
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34. The distance between P (2, -3) & Q (10, y)  is 10units.Find Y. 

Solution:       (x1,y1)=(2,−3) ,      (x2  ,y2)=(10,y),     d=10  

    d =  �( 𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟏𝟏)𝟐𝟐 + (𝒚𝒚𝟐𝟐 − 𝒚𝒚𝟏𝟏)𝟐𝟐 

            10  =  �( 𝟏𝟏𝟏𝟏 − 𝟐𝟐)𝟐𝟐 + (𝒚𝒚 − (−𝟑𝟑) )𝟐𝟐 

           10   =  �𝟔𝟔𝟔𝟔 + (𝒚𝒚 + 𝟑𝟑 )𝟐𝟐 

         (10) 2  =   64  + (y+3)2       

         100  -  64  =  (y+3)2 

       (y+3)2    =   36,       

        Y + 3     = ± 6,             

        y  =  6 - 3              y = −6 – 3 
        y   =  3 ,       or     y =  −9 
35. Find the mid point of line segment joining the points  (4, 1) & (2, 7)  

Solution:       (x1 , y1) = (4 , 1),         (x2 , y2)  = (2 , 7),        m :  m = 1 : 1 

               P ( x , y)   =  �𝒙𝒙𝟏𝟏+𝒙𝒙𝟐𝟐
𝟐𝟐

 , 𝒚𝒚𝟏𝟏+𝒚𝒚𝟐𝟐
𝟐𝟐

�    

                               =   �𝟒𝟒+𝟐𝟐
𝟐𝟐

, 𝟏𝟏+𝟕𝟕
𝟐𝟐

�          

                                =   (  3 ,  4) 

36. Find the coordinates of a point which divides the line segment 

joining the points (4, -3) & (8, 5)  internally in the ratio 3:1. 

Solution:    (x1,y1) = (4,−3),   (x2,y2) = (8,5),            m : m = 3 : 1 

X  =   �𝒎𝒎𝟏𝟏𝒙𝒙𝟐𝟐+𝒎𝒎𝟐𝟐𝒙𝒙𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

� 
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X  =   �𝟑𝟑(𝟖𝟖)+𝟏𝟏(𝟒𝟒)
𝟑𝟑+𝟏𝟏

�    =    �𝟐𝟐𝟐𝟐+𝟒𝟒
𝟒𝟒

�    =    𝟐𝟐𝟐𝟐
𝟒𝟒

 

X  =      7 

y  =   �𝒎𝒎𝟏𝟏𝒚𝒚𝟐𝟐+𝒎𝒎𝟐𝟐𝒚𝒚𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

� 

y  =    �𝟑𝟑(𝟓𝟓)+𝟏𝟏(−𝟑𝟑)
𝟑𝟑+𝟏𝟏

� 

=   �𝟏𝟏𝟏𝟏−𝟑𝟑
𝟒𝟒

�      =   𝟏𝟏𝟏𝟏
𝟒𝟒

 

y   =     3 

The point is (7,3) 

37. In what ratio does the point (2,5) divides the line segment joining 

the pointsA(-6,2) and B(3,-5). 

Solution:      (x  , y) = (2 , 5),   

                (x1  , y1) = (-6 , 2),   (x2  , y2)  =  (3 , -5),     m 1 : m2  =  ? 

                     𝒎𝒎𝟏𝟏
𝒎𝒎𝟐𝟐

  =   
𝒙𝒙𝟏𝟏−𝒙𝒙
𝒙𝒙−𝒙𝒙𝟐𝟐

   

             =  
−𝟔𝟔−𝟐𝟐
   𝟐𝟐−𝟑𝟑

  

             =  
−𝟖𝟖
−𝟏𝟏
    =  

𝟖𝟖
𝟏𝟏
    

           m 1 : m2   =   8  :  1 
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38. In what ratio does Y-axis divides the line segment joining the points  

(5,-6) and B(-1,-4). Also find the coordinates of the point of 

intersection. 

Solution:  Let the ratio be K:1 and the point on Y-axis be(0,y). 

(0,  y) = �𝒎𝒎𝟏𝟏𝒙𝒙𝟐𝟐+𝒎𝒎𝟐𝟐𝒙𝒙𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

 , 𝒎𝒎𝟏𝟏𝒚𝒚𝟐𝟐+𝒎𝒎𝟐𝟐𝒚𝒚𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

� 

  (0,  y) = �−𝐤𝐤 + 𝟓𝟓 
𝐤𝐤 + 𝟏𝟏

, −𝟒𝟒𝟒𝟒 − 𝟔𝟔 
𝐤𝐤 + 𝟏𝟏

�  

−𝐤𝐤 + 𝟓𝟓 
𝐤𝐤 + 𝟏𝟏

   =  0 

  −𝐤𝐤 +  𝟓𝟓   = 0                  

k = 5 

 The ratio is 5:1 

Substitute k value we get 

Consider ,    (0,  y) = �−𝐤𝐤 + 𝟓𝟓 
𝐤𝐤 + 𝟏𝟏

, −𝟒𝟒𝟒𝟒 − 𝟔𝟔 
𝐤𝐤 + 𝟏𝟏

� 

=�−𝐤𝐤 + 𝟓𝟓 
𝐤𝐤 + 𝟏𝟏

, −𝟒𝟒𝟒𝟒 − 𝟔𝟔 
𝐤𝐤 + 𝟏𝟏

� 

                        =   �𝟎𝟎, −𝟒𝟒𝟒𝟒𝟒𝟒  − 𝟔𝟔 
𝟓𝟓 + 𝟏𝟏

�    

                        = �𝟎𝟎, − 𝟏𝟏𝟏𝟏 
   𝟑𝟑

� 
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39. Find the coordinates of  points which trisects the line segment 

joining the points A (2, -2) & B (-7, 4) 

Solution:                 A           P           Q            B 

Let the points on AB be P and Q 

P divides AB in the ratio 1:2. 

The coordinates of P = �𝒎𝒎𝟏𝟏𝒙𝒙𝟐𝟐+𝒎𝒎𝟐𝟐𝒙𝒙𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

 , 𝒎𝒎𝟏𝟏𝒚𝒚𝟐𝟐+𝒎𝒎𝟐𝟐𝒚𝒚𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

�  

= �𝟏𝟏(−𝟕𝟕) + 𝟐𝟐(𝟐𝟐) 
𝟏𝟏 + 𝟐𝟐

, 𝟏𝟏(𝟒𝟒) + 𝟐𝟐(−𝟐𝟐)  
𝟏𝟏 + 𝟐𝟐

�  

      = �−𝟕𝟕+𝟒𝟒
𝟑𝟑

, 𝟒𝟒−𝟒𝟒  
𝟑𝟑

�  

      = �−𝟑𝟑
𝟑𝟑

, 𝟎𝟎  
𝟑𝟑

� 

The coordinates of P = (-1, 0 )   

   ∴   Q divides AB in the ratio 2:1. 

The coordinates of Q   =    �𝒎𝒎𝟏𝟏𝒙𝒙𝟐𝟐+𝒎𝒎𝟐𝟐𝒙𝒙𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

 , 𝒎𝒎𝟏𝟏𝒚𝒚𝟐𝟐+𝒎𝒎𝟐𝟐𝒚𝒚𝟏𝟏
𝒎𝒎𝟏𝟏+𝒎𝒎𝟐𝟐

� 

= �𝟐𝟐(−𝟕𝟕) + 𝟏𝟏(𝟐𝟐) 
𝟐𝟐 + 𝟏𝟏

, 𝟐𝟐(𝟒𝟒) + 𝟏𝟏(−𝟐𝟐) 
𝟐𝟐 + 𝟏𝟏

� 

= �−𝟏𝟏𝟏𝟏+𝟐𝟐
𝟑𝟑

, 𝟖𝟖−𝟐𝟐 
𝟑𝟑

� 

The coordinates of Q   = (-4, 2) 
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40. Find the area of a triangle with vertices  of Q (1, -1), (-4, 6) & (-3, -5)    

 Solution: (X1  , Y1) = (1 , -1),     ( X2  ,   Y2) = (-4  , 6)       ( X3  ,  Y3) = (-3 , -5) 

Area of triangle   = 𝟏𝟏
𝟐𝟐
 {x1 (y2 - y3)+ x2 (y3 - y1)+ x3 (y1 - y2)} 

= 
𝟏𝟏
𝟐𝟐
  [1 (6 + 5) + (-4) (-5 + 1) + (-3) (-1-6)] 

= 
𝟏𝟏
𝟐𝟐
  (11 + 16 + 21)   

                       = 
𝟏𝟏
𝟐𝟐
 X48     =   24 sq. units.    

41. Find the value of k when the points A (2 ,6), B (4, k) & C (6, -2) are 

collinear. 

Solution: Given the points are collinear , area of triangle=0 

 (X1  , Y1) =(2 ,  6),     ( X2  , Y2)= ( 4  ,  k )        ( X3  ,  Y3) =( 6  ,  -2) 
 

∴ Area of triangle =  0 

{x1 (y2 - y3)+ x2 (y3 - y1)+ x3 (y1 - y2)}=0 

∴    [2 (k + 2) +4 (-2 -6) +6 (6 - k)] = 0 

[2 (k + 2) + 4 (-8 )  + 6  (6 - k)] = 0 

2k  + 4 – 32  + 36 – 6k  =  0 

-4k  + 8  = 0            

   ∴ K  =  2 
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42. Find the area of a quadrilateral whose vertices taken in order are A (-5, 7) 

, B (-4, -5) C (-1, -6) & D (4, 5) 

Solution :                                         A                        B 

 

   D                     C 

Area of triangle ΔABD  

A(X1  , Y1) =(-5 ,   7),     B( X2  ,Y2)= (-4  ,-5) &  D ( X3  , Y3)= ( 4 ,   5) 

Area of triangle ΔABD =  𝟏𝟏
𝟐𝟐
{x1 (y2 - y3)+ x2 (y3 - y1)+ x3 (y1 - y2)} 

                        =  𝟏𝟏
𝟐𝟐
[-5 (-5 -5) +(-4) (5 - 7) +4 (7 + 5)] 

              =   𝟏𝟏
𝟐𝟐
 [50 + 8 + 48]     

     =    𝟏𝟏
𝟐𝟐
 X106  

= 53 sq. units     

Area of triangle ΔBCD  

Area of triangle ΔBCD =  𝟏𝟏
𝟐𝟐
{x1 (y2 - y3)+ x2 (y3 - y1)+ x3 (y1 - y2)} 

=  𝟏𝟏
𝟐𝟐
 [-4 (-6 -5) -1 (5 + 5) +4 (-5 + 6)] 

=  𝟏𝟏
𝟐𝟐
 [44 - 10 + 4]   

  =  𝟏𝟏
𝟐𝟐
 X 38        

 = 19 sq. units     

∴ Area of a quadrilateral ABCD = 53 + 19   = 72 sq. units  



29 
 

43. Find the area of a triangle formed by joining the midpoints of sides of a 

triangle whose vertices are  A (0, 1), B(2, 1) & C(0, 3)  

GvÀÛgÀ :             A 

                                                                          P                      R 

 

                                                                  B                 Q                 C 

Let P is the mid point of AB , Q is the mid point of BC ,R is the mid point of AC . 

 The coordinates of P  =   �𝒙𝒙𝟏𝟏+𝒙𝒙𝟐𝟐
𝟐𝟐

 , 𝒚𝒚𝟏𝟏+𝒚𝒚𝟐𝟐
𝟐𝟐

� 

 

= �𝟎𝟎+𝟐𝟐
𝟐𝟐

 , 𝟏𝟏+𝟏𝟏
𝟐𝟐

� =   �𝟐𝟐
𝟐𝟐

 , 𝟐𝟐
𝟐𝟐
� 

 
The coordinates of P  =  (  1 ,  1) 

 
The coordinates of   Q  =   �𝒙𝒙𝟏𝟏+𝒙𝒙𝟐𝟐

𝟐𝟐
 , 𝒚𝒚𝟏𝟏+𝒚𝒚𝟐𝟐

𝟐𝟐
� 

 

= �𝟐𝟐+𝟎𝟎
𝟐𝟐

 , 𝟏𝟏+𝟑𝟑
𝟐𝟐

� =   �𝟐𝟐
𝟐𝟐

 , 𝟒𝟒
𝟐𝟐
� 

 
The coordinates of Q  =  (  1 ,  2) 

 
The coordinates of R=  �𝒙𝒙𝟏𝟏+𝒙𝒙𝟐𝟐

𝟐𝟐
 , 𝒚𝒚𝟏𝟏+𝒚𝒚𝟐𝟐

𝟐𝟐
� 

 

= �𝟎𝟎+𝟎𝟎
𝟐𝟐

 , 𝟏𝟏+𝟑𝟑
𝟐𝟐

� =   �𝟎𝟎
𝟐𝟐

 , 𝟒𝟒
𝟐𝟐
� 

 
The coordinates of R  = (  0 ,  2) 

 
P   (1 , 1 ),    Q(1,   2)   &  R( 0 ,  2) 
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(X1  , Y1),      ( X2  ,Y2)    &          (X3  , Y3) 

Δ PQR =  𝟏𝟏
𝟐𝟐
{x1 (y2 - y3)+ x2 (y3 - y1)+ x3 (y1 - y2)} 

=   𝟏𝟏
𝟐𝟐
 [ 1( 2  - 2 ) + 1 ( 2 – 1) + 0 (1  -  2)] 

=   𝟏𝟏
𝟐𝟐
 [ 1X 0 + 1X1 + 0X(-1)]  

=   𝟏𝟏
𝟐𝟐
 [ 0 + 1 + 0]   =  𝟏𝟏

𝟐𝟐
 X1 

Δ PQR =  𝟏𝟏
𝟐𝟐
 sq. units .    
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