

ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಿಲ್ಲಾ ಪಂಚಾಯತ್

ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ

ಉಪನಿರ್ದೇಶಕರ ಕಛೇರಿ (ಆಡಳಿತ). ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಿಲ್ಲೆ



ಎಸ್ ಎಸ್ ಎಲ್ ಸಿ 2020-21

ವಿದ್ಯಾರ್ಥಿಗಳ ಉತ್ತೀರ್ಣತೆಗೊಂದು ಕೈಗನ್ನಡಿ

ಗಣಿತ

# ಆಂಗ್ಲ ಮಾಧ್ಯಮ





|        |                                                                                                                                                    |        | ಪುಠ           |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| ಕ್ರ.ಸಂ | ಕಲಿಕಾಂಶಗಳು                                                                                                                                         | ಅಂಕಗಳು | ಪುಠ<br>ಸಂಖ್ಯೆ |
| 1      | Graphs ( 7 Marks)                                                                                                                                  | 7      |               |
|        | 1. Solving pair of linear equation by graphical method.                                                                                            | 4      | 4             |
|        | 2. Ogive Curve                                                                                                                                     | 3      | 5             |
| 2      | Constructions (9 marks)                                                                                                                            |        | 6-8           |
|        | <ol> <li>Construction of Tangents to a Circle.</li> <li>Division of a line segment.</li> </ol>                                                     | 2/3    | 6             |
|        | 3. Construction of a similar triangle                                                                                                              | 2      | 7             |
|        |                                                                                                                                                    | 3/4    | 8             |
| 3      | Theorems (8 marks)                                                                                                                                 | 8      | 9–13          |
|        | Theorems (Triangles) 1) Basic proportionality theorem or Thales                                                                                    |        | 9             |
|        | theorem.                                                                                                                                           |        | 10            |
|        | <ol> <li>AAA criterion theorem</li> <li>Areas of Similar Triangles theorem</li> </ol>                                                              | 5      | 11            |
|        | 4) Pythagoras Theorem                                                                                                                              |        | 12            |
|        | <ul> <li><u>Theorem ( circles )</u></li> <li>1. Prove that, "The lengths of tangents drawn from an external point to a circle are equal</li> </ul> |        | 13            |
|        | 2. Prove that, "The tangent at any point of a circle is Perpendicular to the radius through the point of contact".                                 | 3      | 13            |
| 4      | Important Questions (21 marks)                                                                                                                     |        |               |
|        | 1. To calculate , Mean / Mode /                                                                                                                    | 3      | 14–15         |

| Median.                                                                                                                                                    |    |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
| 2. Quadratic Equations – Formula<br>Method, Nature of roots                                                                                                | 4  | 16-18 |
| 3. Pair of Linear Equations in two variables –<br>Elimination Method                                                                                       | 4  | 19–20 |
| 4. Some Examples on A.P                                                                                                                                    | 4  | 21    |
| <ul> <li>Coordinate geometry</li> <li>Examples on distance formula</li> <li>Examples on section formula</li> <li>Examples on area of triangles.</li> </ul> | 6  | 22-30 |
| ఒట్న                                                                                                                                                       | 45 |       |

<u>ಸೂಚನೆ</u>:ಇಲ್ಲಿ ನೀಡಲಾದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಅವುಗಳ ಉತ್ತರಗಳು ಮಾದರಿ ಪ್ರಶ್ನೊತ್ತರಗಳಾಗಿದ್ದು ವಿದ್ಯಾರ್ಥಿಗಳು ಇದೇ ರೀತಿಯ ಇತರೆ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಲು ಕ್ರಮವಹಿಸುವುದು.

# Graph (7 Marks)

## Ogive Curve (3 Marks)

## 1. Convert the distribution to a less than type cumulative frequency

## distribution and draw its Ogive.

| Daily   | Number of |
|---------|-----------|
| Income  | workers   |
| 100-120 | 12        |
| 120-140 | 14        |
| 140-160 | 8         |
| 160-180 | 6         |
| 180-200 | 10        |

| Daily Income  | No. of<br>Workers | Cumulative<br>frequency (cf) |
|---------------|-------------------|------------------------------|
| Less than 120 | 12                | 12                           |
| Less than 140 | 14                | 26                           |
| Less than 160 | 8                 | 34                           |
| Less than 180 | 6                 | 40                           |
| Less than 200 | 10                | 50                           |



2. Convert the distribution to a more than type distribution and draw its Ogive:

No. of

farms

2

| Production in<br>Yield (in<br>Kg/ha) | Number<br>of<br>farms | Production in<br>Yield (Kg/ha) |
|--------------------------------------|-----------------------|--------------------------------|
| 50-55                                | 2                     | More than 50                   |
| 55-60                                | 8                     | More than 55                   |
| 60-65                                | 12                    | More than 60                   |
| 65-70                                | 24                    | More than 65                   |
| 70-75                                | 38                    | More than 70                   |
| 75-80                                | 16                    | More than 75                   |

| 98 |  |
|----|--|
| 90 |  |
| 78 |  |
| 54 |  |
| 16 |  |
|    |  |

Cumulative

frequency (cf)

100



Solving a pair of linear equations by Graphical Method.... 4 marks )

3. Solve the equations graphically

$$X + Y = 5$$
,  $2X - Y = 4$ .

Y =5 -X Y = 2X-4



### Constructions (9 marks)

### Division of a line segment

4. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8



## **Construction of Tangents to a Circle.**

5. Draw a circle of radius 6 cm. From a point 10 cm away from its centre. Construct the pair of tangents to the circle.



6. <u>Draw a pair of tangents to a circle of radius 5 cm which are inclined to</u> each other at an angle of 60°



7. Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.



#### Construction of a similar triangle

8. Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another

triangle whose sides are  $\frac{7}{5}$  of the corresponding sides of the first triangle



9. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and  $\angle ABC = 60^{\circ}$ . Then construct a triangle whose sides are  $\frac{3}{4}$  of the corresponding sides of the  $\triangle ABC$ 



## THEOREMS (8 MARKS)

Theorems (Triangles)

10. <u>Basic proportionality theorem or Thales theorem</u>.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.



| Data :                                                                                  | In ABC, DE//BC                                                                                  |                               |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|
| To Prove :                                                                              | $\frac{AD}{BD} = \frac{AE}{CE}$                                                                 |                               |
| Construction :                                                                          | Join DC and EB. Draw I                                                                          | EL $\perp$ AB, DM $\perp$ AC. |
| $Proof : \frac{ar (ADE)}{ar (BDE)} =$                                                   | $\frac{1/2 \text{xADxLE}}{1/2 \text{xBDxLE}} = \frac{\text{AD}}{\text{BD}} \dashrightarrow (1)$ | area of $	riangle = 1/2$ xbxh |
| $\frac{\operatorname{ar}(\operatorname{ADE})}{\operatorname{ar}(\operatorname{CDE})} =$ | $\frac{1/2 \text{xAExDM}}{1/2 \text{xCExDM}} = \frac{\text{AE}}{\text{CE}} \dashrightarrow (2)$ | area of∆= 1/2xbxh             |
|                                                                                         | ar(BDE)=ar(CDE) $\rightarrow$ (3)                                                               | By theorem                    |
|                                                                                         | From (1),(2) and(3)                                                                             |                               |
|                                                                                         | $\frac{AD}{BD} = \frac{AE}{CE}$                                                                 |                               |

## 11.AAA criterion theorem

If in two triangles, corresponding angles are equal then their corresponding sides are in the same ratio and hence the two triangles are similar.



| Data :                                                            | In $\triangle ABC$ and $\triangle DEF$                            |                   |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|--|
|                                                                   | $\angle A = \angle D, \angle B = \angle E, \angle$                | $C = \angle F$    |  |
| To Prove :                                                        | <b>To Prove :</b> $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ |                   |  |
| Construction :                                                    | Cut AG = DE and AH =                                              | DF and join GH    |  |
|                                                                   |                                                                   |                   |  |
| Proof :                                                           | In $	riangle$ AGH and $	riangle$ DEF                              |                   |  |
|                                                                   | $\angle A = \angle D$                                             | Data              |  |
|                                                                   | AG = DE                                                           | Construction      |  |
|                                                                   | AH = DF                                                           | Construction      |  |
| :. A                                                              | $\triangle AGH \cong \triangle DEF$                               | SAS Congruence    |  |
|                                                                   | . GH = EF                                                         |                   |  |
|                                                                   | $\angle G = \angle E$                                             |                   |  |
| $\angle G = \angle E = \angle B$                                  |                                                                   |                   |  |
|                                                                   | ∴ GH    EF                                                        |                   |  |
| $\therefore \qquad \frac{AB}{AG} = \frac{BC}{GH} = \frac{AC}{AH}$ |                                                                   | By Thales theorem |  |
|                                                                   | $\therefore  \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$       |                   |  |

#### 12. Areas of Similar Triangles theorem

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.



Proof:

$$\frac{\operatorname{ar}(\operatorname{ABC})}{\operatorname{ar}(\operatorname{DEF})} = \frac{\frac{1}{2} \operatorname{x} \operatorname{BC} \operatorname{x} \operatorname{AL}}{\frac{1}{2} \operatorname{x} \operatorname{EF} \operatorname{x} \operatorname{DM}} = \frac{\operatorname{BC} \operatorname{X} \operatorname{AL}}{\operatorname{EF} \operatorname{X} \operatorname{DM}} \to (1)$$

In 
$$\Delta$$
 ABL and  $\triangle$  DEM

$$\angle B = \angle E \rightarrow Data$$

$$\angle L = \angle M = 90^{\circ} \rightarrow Construction$$

 $\therefore \triangle ABL \sim \triangle DEM \rightarrow AA$  Similarity criterion

$$\therefore \ \frac{AB}{DE} = \frac{AL}{DM} = \frac{BC}{EF}$$

$$\frac{BC}{EF} = \frac{AL}{DM} \rightarrow (2)$$

$$\frac{\operatorname{ar}(\operatorname{ABC})}{\operatorname{ar}(\operatorname{DEF})} = \frac{\operatorname{BC}^2}{\operatorname{EF}^2}$$
 Substitute (2) in (1)

## 13. Pythagoras Theorem

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides





#### Theorem ( circles )





## Important Questions (16 marks)

## To calculate , Mean / Mode / Median.

16. Find the mean for the given frequency distribution

| C-I | 5-15 | 15-25 | 25-35 | 35-45 | 45-55 |
|-----|------|-------|-------|-------|-------|
| F   | 2    | 3     | 6     | 5     | 4     |

Answer: Direct method

| C-I                                              | C-I Frequency (fi) |    | fixi |  |  |
|--------------------------------------------------|--------------------|----|------|--|--|
| 5-15                                             | 2                  | 10 | 20   |  |  |
| 15-25                                            | 3                  | 20 | 60   |  |  |
| 25-35                                            | 6                  | 30 | 180  |  |  |
| 35-45                                            | 5                  | 40 | 200  |  |  |
| 45-55                                            | 4                  | 50 | 200  |  |  |
| $\sum fi = 20$ $\sum fixi = 660$                 |                    |    |      |  |  |
| Mean, $\overline{X} = \frac{\sum fixi}{\sum fi}$ |                    |    |      |  |  |
| $\overline{\mathbf{X}} = \frac{660}{20}$         |                    |    |      |  |  |
| Mean = $\overline{X} = 33$                       |                    |    |      |  |  |

#### 17. <u>Calculate the mode for the following frequency distribution table .</u>

| C- I      | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|-----------|-------|-------|-------|-------|-------|
| frequency | 5     | 6     | 10    | 4     | 3     |

| L =30                   | Mode = L + $[\frac{f_1-f_0}{2f_1-f_0-f_2}]$ X h            |
|-------------------------|------------------------------------------------------------|
| $f_0 = 6$<br>$f_1 = 10$ | Mode = $30 + \left[\frac{10-6}{2x10-6-4}\right] \times 10$ |
| f <sub>3</sub> =4       | Mode = $30 + \left[\frac{4}{20-10}\right] \times 10$       |
| h=10                    | Mode = $30 + \frac{40}{10} = 30 + 4$                       |
|                         | Mode $= 34$                                                |

## 18. Calculate the median for the given frequency distribution table

| Class     | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|-----------|-------|-------|-------|-------|-------|
| Interval  |       |       |       |       |       |
| frequency | 5     | 9     | 12    | 8     | 6     |

| CI      | f                                 | Cf |
|---------|-----------------------------------|----|
| 30 - 40 | 5                                 | 5  |
| 40 - 50 | 9                                 | 14 |
| 50 - 60 | 12                                | 26 |
| 60 - 70 | 8                                 | 34 |
| 70 - 80 | 6                                 | 40 |
|         | N = 50                            |    |
|         | $\frac{N}{2} = \frac{40}{2} = 20$ |    |

$$L = 50, C_f = 14$$
  
 $f = 12$ 

h = 10

| Median = L + $\left[\frac{\frac{N}{2}-cf}{f}\right] X h$  |
|-----------------------------------------------------------|
| Median = $50 + \left[\frac{20 - 14}{12}\right] \times 10$ |
| Median = $50 + \left[\frac{6}{12}\right] 10$              |
| Median = 50 + 5                                           |
|                                                           |

Median 
$$= 55$$

## II Quadratic Equations – Formula Method, Nature of roots

19. Find the roots of the quadratic equation  $3x^2 - 5x + 2 = 0$  by applying quadratic formula.

 $ax^{2} + bx + c = 0$ Solution : a = 3, b = -5, c = 2.  $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a},$  $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4X3X2}}{2X3}$  $x=\frac{5\pm\sqrt{25-24}}{6}$  $x = \frac{5 \pm \sqrt{1}}{6}$  $x = \frac{5\pm 1}{6}$  $x = \frac{5+1}{6}$  $x = \frac{5-1}{6}$  $x = \frac{6}{6}$  $x = \frac{4}{6}$  $x = \frac{2}{3}$ x = 1

- 20. Solve the quadratic equation  $x^2 5x 10 = 0$  by Factorization method. **Soln**:  $x^2 - 5x - 10 = 0$  $x^2 - 5x + 2x - 10 = 0$ x(x - 5) + 2(x - 5) = 0(x - 5) (x +2) =0 (x-5) = 0 or (x+2) = 0X = 5 or x = -221. Solve the quadratic equation  $3x^2 - x - 10 = 0$  by Factorization method. **Soln:**  $3x^2 - x - 10 = 0$  $3x^2 - 6x + 5x - 10 = 0$  $3x^2 - 6x + 5x - 10 = 0$ 3x(x-2) + 5(x-2) = 0(x-2)(3x+5) = 0x-2 = 0or 3x + 5 = 0or 3x = -5  $x = \frac{-5}{2}$ x = +2
  - 22. Find the value of the discriminant of  $2x^2 5x + 3 = 0$

Solution :  $ax^2 + bx + c = 0$ 

a=2, b=-5, c=3

Discriminant ,  $\Delta = b^2 - 4ac$ 

 $= (-5)^2 - 4(2)(3)$ = 25 - 24 = 1

Solution : 
$$2x^2 - 4x + 3 = 0$$
  
 $ax^2 + bx + c = 0$   
here  $a = 2, b = -4, c = 3$   
Discriminant  $= \triangle = b^2 - 4ac$   
 $= (-4)^2 - 4 \times 2 \times 3$   
 $= 16 - 24$   
 $= -8 < 0$ 

So, the given equation has no real roots.

24. Determine the nature of the roots :  $x^2 - 6x + 9 = 0$ Solution:  $x^2 - 6x + 9 = 0$  $ax^2 + bx + c = 0$ a=1, b=-6, c=9

\_

Discriminant,  $\Delta = b^2 - 4ac$ =  $(-6)^2 - 4(1)(9)$ = 36 - 36= 0

Roots are real and equal.

25. Find the value of 'K' for the quadratic equation  $4x^2 - kx + 1 = 0$ , if it has equal roots.

Solution :  $4x^2 - kx + 1 = 0$  $ax^2 + bx + c = 0$ a = 4, b = -k, c = 1

Roots are real and equal

$$b^2 - 4 \ a \ c = 0$$

$$(-k)^2 - 4 \ (4) \ (1) = 0$$

 $k^{2} - 16 = 0$   $k^{2} = 16$   $k = \pm \sqrt{16}$  $k = \pm 4$ 

#### Pair of Linear Equations in two variables – Elimination Method

26. Solve the pair of linear equations : x-y = 5, 2x - 3y = 5Solution : Elimination method  $x - y = 5 \rightarrow (1)$  and  $2x - 3y = 5 \rightarrow (2)$ 

$$x - y = 3 \Rightarrow (1) \text{ and } 2x - 3y = 3 \Rightarrow (2)$$
  
multiply equation (1) by 3  

$$3x + 3y = 15 \rightarrow (3)$$
  

$$3x + 3y = 15$$
  

$$2x - 3y = 5$$
  

$$5x = 20$$
  

$$x = \frac{20}{5}, x = 4$$
  
Substitute x = 4 in equation (1)  

$$4 + y = 5$$
  

$$y = 5 - 4$$
  

$$y = 1$$
  

$$\therefore x = 4 \text{ and } y = 1$$

# 27. Solve the pair of linear equations : x + y = 6, x - y = 2

Solution :

$$x + y = 6 \rightarrow (1)$$
  

$$x - y = 2 \rightarrow (2)$$
  

$$2x = 8$$
  

$$x = \frac{8}{2},$$
  

$$x = 4$$

Substitute x = 4 in equation (1)  

$$4 + y = 6$$
  
 $y = 6 - 4$   
 $y = 2$   
 $x = 4$  and  $y = 2$ 

## 28. For what value of 'K", the pair of linear equation Kx - 4y = 3, 6x - 12y = 9 has infinitely many solutions:

Solution: 
$$Kx - 4y = 3 \text{ and } 6x - 12y = 9$$
  
 $Kx - 4y - 3 = 0 \text{ and } 6x - 12y - 9 = 0$   
Here,  $a_1 = K$ ,  
 $b_1 = -4$ ,  
 $c_1 = -3$   
 $a_2 = 6$ ,  
 $b_2 = -12$ ,  
 $c_2 = -9$ 

Condition for infinitely many solutions

$$\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$$
$$\frac{a1}{a2} = \frac{k}{6},$$
$$\frac{b1}{b2} = \frac{-4}{-12} = \frac{1}{3}$$
$$\therefore \frac{a1}{a2} = \frac{b1}{b2}$$
$$\Rightarrow \frac{k}{6} = \frac{1}{3}$$
$$\Rightarrow 3k = 6$$
$$\therefore k = \frac{6}{3} = 2$$

#### **Arithmetic progression**

- nth term of A.P is an = a+ (n 1)d
- Sum of first n terms of A.P is  $S = \frac{n}{2} [2a + (n 1)d]$  or  $S = \frac{n}{2} [a + 1]$ 29. Find the 13<sup>th</sup> term of an A.P **3**, **8**, **13**, . . . . . .

Solution:

a = 3,  $d = a_2 - a_1 = 8 - 3 = 5$  n = 13  $a_{13} = ?$   $a_n = a + (n-1)d$   $a_{13} = 3 + (13-1)5$   $a_{13} = 3 + (12)5$   $a_{13} = 3 + 60$  $\therefore a_{13} = 63$ 

#### 30. Find the sum of first 20 terms of the series 2+6+10+.....

ಖಾಟಣಾಣುಶಟಿ: a = 2  $d = a_2 - a_1 = 6 - 2 = 4$  n = 20  $S_{20} = ?$   $S_n = \frac{n}{2} [2a + (n-1)d]$   $S_{20} = \frac{20}{2} [2 \times 2 + (20-1)4]$   $S_{20} = \frac{20}{2} [4 + (19)4]$   $S_{20} = \frac{20}{2} [4 + 76]$   $S_{20} = 10 [80]$ ∴  $S_{20} = 800$ 

- Examples on distance formula
- Examples on section formula
- Examples on area of triangles

(

31. <u>Find the distance between the origion and a point (8,-6).</u> Solution:

8, -6) = (x, y)  
d = 
$$\sqrt{x^2 + y^2}$$
  
d =  $\sqrt{8^2 + (-6)^2}$   
d =  $\sqrt{100}$   
d = 10 Units

32. Find the distance between (-5, 7) & (-1, 3)

Soliution:  $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$   $PQ = \sqrt{(-1 - (-5))^2 + (3 - 7)^2}$   $= \sqrt{(-1 + 5)^2 + (-4)^2}$   $= \sqrt{16 + 16}$   $PQ = \sqrt{32}$  Units. 33. Find the point on Y-axis which is equidistant from A (6, 5) & B (-4, 3) Solution: The point on Y-axis be (0,y).

According to given PA = PB

 $(6-0)^{2} + (5-y)^{2} = (-4-0)^{2} + (3-y)^{2}$  $36 + 25 + y^{2} - 10y = 16 + 9 + y^{2} - 6y$  $Y^{2} - y^{2} - 10y + 6y = 25 - 61$  $-4y = -36, \qquad y = \frac{-36}{-4} \qquad y = 9$ 

Point on Y-axis is (0,9)

34. The distance between P (2, -3) & Q (10, y) is 10units. Find Y. Solution:  $(x_1,y_1)=(2,-3)$ ,  $(x_2,y_2)=(10,y)$ , d=10  $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 10 =  $\sqrt{(10-2)^2 + (y-(-3))^2}$ 10 =  $\sqrt{64 + (y+3)^2}$  $(10)^2 = 64 + (y+3)^2$  $100 - 64 = (y+3)^2$  $(y+3)^2 = 36$ ,  $Y + 3 = \pm 6$ , y = 6 - 3 y = -6 - 3y = 3, or y = -935. Find the mid point of line segment joining the points (4, 1) & (2, 7) Solution:  $(x_1, y_1) = (4, 1), (x_2, y_2) = (2, 7), m: m = 1:1$ 

$$P(x, y) = \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$$
$$= \left[\frac{4 + 2}{2}, \frac{1 + 7}{2}\right]$$
$$= (3, 4)$$

36. Find the coordinates of a point which divides the line segment

joining the points (4, -3) & (8, 5) internally in the ratio 3:1.

Solution:  $(x_1,y_1) = (4,-3), (x_2,y_2) = (8,5), m : m = 3 : 1$ 

$$\mathbf{X} = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}\right]$$

$$X = \left[\frac{3(8)+1(4)}{3+1}\right] = \left[\frac{24+4}{4}\right] = \frac{28}{4}$$

X = 7

$$y = \left[\frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$$
$$y = \left[\frac{3(5) + 1(-3)}{3 + 1}\right]$$
$$= \left[\frac{15 - 3}{4}\right] = \frac{12}{4}$$
$$y = 3$$



# 37. In what ratio does the point (2,5) divides the line segment joining the pointsA(-6,2) and B(3,-5).

Solution: (x , y) = (2 , 5),

$$(x_{1}, y_{1}) = (-6, 2), (x_{2}, y_{2}) = (3, -5), m_{1} : m_{2} = ?$$

$$\frac{m_{1}}{m_{2}} = \frac{x_{1} - x}{x - x_{2}}$$

$$= \frac{-6 - 2}{2 - 3}$$

$$= \frac{-8}{-1} = \frac{8}{1}$$

 $m_1: m_2 = 8: 1$ 

## 38. In what ratio does Y-axis divides the line segment joining the points

## (5,-6) and B(-1,-4). Also find the coordinates of the point of

## intersection.

Solution: Let the ratio be K:1 and the point on Y-axis be(0,y).

$$(0, y) = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$$
$$(0, y) = \left[\frac{-k + 5}{k + 1}, \frac{-4k - 6}{k + 1}\right]$$
$$\frac{-k + 5}{k + 1} = 0$$
$$-k + 5 = 0$$

k = 5

The ratio is 5:1

Substitute k value we get

Consider, (0, y) = 
$$\left[\frac{-k+5}{k+1}, \frac{-4k-6}{k+1}\right]$$
  
=  $\left[\frac{-k+5}{k+1}, \frac{-4k-6}{k+1}\right]$   
=  $\left[0, \frac{-4X5-6}{5+1}\right]$   
=  $\left[0, \frac{-13}{3}\right]$ 

#### 39. Find the coordinates of points which trisects the line segment

joining the points A (2, -2) & B (-7, 4)

Solution:

A P Q B

Let the points on AB be P and Q

P divides AB in the ratio 1:2.

The coordinates of P =  $\left[\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right]$ 

$$= \left[\frac{1(-7) + 2(2)}{1+2}, \frac{1(4) + 2(-2)}{1+2}\right]$$
$$= \left[\frac{-7+4}{3}, \frac{4-4}{3}\right]$$
$$= \left(\frac{-3}{3}, \frac{0}{3}\right)$$

The coordinates of P = (-1, 0)

∴ Q divides AB in the ratio 2:1.

The coordinates of Q = 
$$\left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$$
  
=  $\left[\frac{2(-7) + 1(2)}{2 + 1}, \frac{2(4) + 1(-2)}{2 + 1}\right]$   
=  $\left[\frac{-14 + 2}{3}, \frac{8 - 2}{3}\right]$   
The coordinates of Q = (-4, 2)

40. Find the area of a triangle with vertices of Q (1, -1), (-4, 6) & (-3, -5) Solution:  $(X_1, Y_1) = (1, -1)$ ,  $(X_2, Y_2) = (-4, 6)$   $(X_3, Y_3) = (-3, -5)$ Area of triangle  $= \frac{1}{2} \{X_1 (Y_2 - Y_3) + X_2 (Y_3 - Y_1) + X_3 (Y_1 - Y_2)\}$   $= \frac{1}{2} [1 (6 + 5) + (-4) (-5 + 1) + (-3) (-1-6)]$   $= \frac{1}{2} (11 + 16 + 21)$  $= \frac{1}{2} X48 = 24$  sq. units.

41.<u>Find the value of k when the points A (2,6), B (4, k) & C (6, -2) are</u> <u>collinear.</u>

Solution: Given the points are collinear, area of triangle=0

$$(X_1, Y_1) = (2, 6), (X_2, Y_2) = (4, k) (X_3, Y_3) = (6, -2)$$

$$\therefore \text{ Area of triangle} = 0$$
  
{x<sub>1</sub> (y<sub>2</sub> - y<sub>3</sub>)+ x<sub>2</sub> (y<sub>3</sub> - y<sub>1</sub>)+ x<sub>3</sub> (y<sub>1</sub> - y<sub>2</sub>)}=0  
$$\therefore [2 (k + 2) +4 (-2 -6) +6 (6 - k)] = 0$$
  
[2 (k + 2) + 4 (-8) + 6 (6 - k)] = 0  
2k + 4 - 32 + 36 - 6k = 0  
$$-4k + 8 = 0$$
  
$$\therefore K = 2$$

42. Find the area of a quadrilateral whose vertices taken in order are A (-5, 7)

<u>, B (-4, -5) C (-1, -6) & D (4, 5)</u>

Solution :



Area of triangle ΔABD

A(X<sub>1</sub>, Y<sub>1</sub>) =(-5, 7), B(X<sub>2</sub>, Y<sub>2</sub>)= (-4, -5) & D(X<sub>3</sub>, Y<sub>3</sub>)= (4, 5)  
Area of triangle 
$$\triangle ABD_{=} = \frac{1}{2} \{x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)\}$$
  
 $= \frac{1}{2} [-5 (-5 -5) + (-4) (5 - 7) + 4 (7 + 5)]$   
 $= \frac{1}{2} [50 + 8 + 48]$   
 $= \frac{1}{2} X106$   
 $= 53$  sq. units

#### Area of triangle $\triangle BCD$

Area of triangle  $\triangle BCD = \frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$  $= \frac{1}{2} [-4 (-6 -5) -1 (5 + 5) +4 (-5 + 6)]$   $= \frac{1}{2} [44 - 10 + 4]$   $= \frac{1}{2} X 38$  = 19 sq. units

∴ Area of a quadrilateral ABCD = 53 + 19 = 72 sq. units

#### 43. Find the area of a triangle formed by joining the midpoints of sides of a

triangle whose vertices are A (0, 1), B(2, 1) & C(0, 3)

ಉತ್ತರ :



Let P is the mid point of AB, Q is the mid point of BC, R is the mid point of AC.

The coordinates of P =  $\left[\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right]$ 

$$= \left[\frac{0+2}{2}, \frac{1+1}{2}\right] = \left[\frac{2}{2}, \frac{2}{2}\right]$$

The coordinates of P = (1, 1)

The coordinates of  $\mathbf{Q} = \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$ 

$$= \left[\frac{2+0}{2}, \frac{1+3}{2}\right] = \left[\frac{2}{2}, \frac{4}{2}\right]$$

The coordinates of Q = (1, 2)

The coordinates of R=  $\left[\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right]$ 

$$= \left[\frac{0+0}{2}, \frac{1+3}{2}\right] = \left[\frac{0}{2}, \frac{4}{2}\right]$$

The coordinates of R = (0, 2)

P (1,1), Q(1, 2) & R(0,2)

$$(X_{1}, Y_{1}), (X_{2}, Y_{2}) & (X_{3}, Y_{3})$$

$$\Delta PQR = \frac{1}{2} \{ x_{1} (y_{2} - y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2}) \}$$

$$= \frac{1}{2} [ 1(2 - 2) + 1(2 - 1) + 0(1 - 2) ]$$

$$= \frac{1}{2} [ 1X 0 + 1X1 + 0X(-1) ]$$

$$= \frac{1}{2} [ 0 + 1 + 0 ] = \frac{1}{2} X1$$

$$\Delta PQR = \frac{1}{2} \text{ sq. units }.$$