బింగెళృరు గ్రలమూంతర జిల్లా జంజాయితో

ํㅜㄹㅋㅋㅋ

> ఎふో ఎふో ఎలో స 2020-21

విద్యాథిగగఆ లుక్తిఁణక్తగింందు ఫ్రగస్నఱ
గణฺత

ఆంగ్ల యృధ్యయు

సెలळే దుత్తు దూృగఁదదశణస

 హిల రెదిచుదోృరా . ఎం.ఆరో భా.ఆ.సై దొ2్య రాయుఁచిదెఁळణాధిరారిగెళు , బింగెళృరరు గృృూంంతరర జిల్లా ఱుంఙాయితోిిల గింగెదూరరెలగౌడ్డ . ఎం.ळెబో

లుఱెనిదేలళర్రరరు(ఆడళితి), సై. కి. ఇ బింగెళకృరు గృృూంంతర జిల్లి.

ి్రిల ळనుముంతజ్ల్ల

బెంగెళృరు గృృూాంతరర జిల్లి.

\begin{tabular}{|c|c|c|c|}
\hline ㅎ. \({ }^{\text {a }}\) \& చలిซృ0ひగఆు \& అОचగ\%ు \& \begin{tabular}{l}
むుఠ \\
तై \(2{ }^{2}\)
\end{tabular} \\
\hline 1 \& Graphs (7 Marks) \& 7 \& \\
\hline \& \begin{tabular}{l}
1. Solving pair of linear equation by graphical method. \\
2. Ogive Curve
\end{tabular} \& \[
4
\]
\[
3
\] \& \begin{tabular}{l}
\[
4
\] \\
5
\end{tabular} \\
\hline 2 \& Constructions (9 marks) \& \& 6-8 \\
\hline \& \begin{tabular}{l}
1. Construction of Tangents to a Circle. \\
2. Division of a line segment. \\
3. Construction of a similar triangle
\end{tabular} \& \begin{tabular}{l}
\[
2 / 3
\] \\
2 \\
3/4
\end{tabular} \& \begin{tabular}{l}
7 \\
8
\end{tabular} \\
\hline 3 \& Theorems (8 marks) \& 8 \& 9-13 \\
\hline \& \begin{tabular}{l}
Theorems (Triangles) \\
1) Basic proportionality theorem or Thales theorem. \\
2) AAA criterion theorem \\
3) Areas of Similar Triangles theorem \\
4) Pythagoras Theorem \\
Theorem (circles) \\
1. Prove that, "The lengths of tangents drawn from an external point to a circle are equal \\
2. Prove that, "The tangent at any point of a circle is Perpendicular to the radius through the point of contact".
\end{tabular} \& 5

3 \& | 9 |
| :--- |
| 10 |
| 11 |
| 12 |
| 13 |
| 13 |

\hline 4 \& Important Questions (21 marks) \& \&

\hline \& 1. To calculate , Mean / Mode / \& 3 \& 14-15

\hline
\end{tabular}

	Median.		
	2. Quadratic Equations - Formula Method, Nature of roots	4	$16-18$
	3. Pair of Linear Equations in two variables - Elimination Method	4	$19-20$
	4. Some Examples on A.P - Coordinate geometry - Examples on distance formula - Examples on section formula	4	21
	Examples on area of triangles.	45	$22-30$

 ఫృదుదాఃనుుదుదు.

Graph (7 Marks)

Ogive Curve (3 Marks)

1. Convert the distribution to a less than type cumulative frequency distribution and draw its Ogive.

Daily Income	Number of workers
$100-120$	12
$120-140$	14
$140-160$	8
$160-180$	6
$180-200$	10

Daily Income	No. of Workers	Cumulative frequency (cf)
Less than 120	12	12
Less than 140	14	26
Less than 160	8	34
Less than 180	6	40
Less than 200	10	50

2. Convert the distribution to a more than type distribution and draw its Ogive:

Production in Yield (in Kg/ha)	Number of farms
$50-55$	2
$55-60$	8
$60-65$	12
$65-70$	24
$70-75$	38
$75-80$	16

Production in Yield (Kg/ha)	No. of farms	Cumulative frequency (cf)
More than 50	2	100
More than 55	8	98
More than 60	12	90
More than 65	24	78
More than 70	38	54
More than 75	16	16

Solving a pair of linear equations by Graphical Method....
4 marks)
3. Solve the equations graphically
$X+Y=5, \quad 2 X-Y=4$.

$Y=5-X$	$Y=2 X-4$

Constructions (9 marks)

Division of a line segment

4. Draw a line segment of length 7.6 cm and divide it in the ratio $5: 8$

Construction of Tangents to a Circle.

5. Draw a circle of radius 6 cm . From a point 10 cm away from its centre. Construct the pair of tangents to the circle.

6. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°

7. Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

Construction of a similar triangle
8. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle

9. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the $\triangle A B C$

THEOREMS (8 MARKS)

Theorems (Triangles)
10. Basic proportionality theorem or Thales theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Data	In ABC, DE//BC	
To Prove:	$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}}$	
Construction :	Join DC and EB. Draw $E L \perp A B, D M \perp A C$.	
Proof : $\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{BDE})}=$ $\begin{equation*} \frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{CDE})}= \tag{2} \end{equation*}$	$\begin{equation*} \frac{1 / 2 \times A D x L E}{1 / 2 \times B D x L E}=\frac{A D}{B D} \cdots \tag{1} \end{equation*}$ $\frac{1 / 2 \mathrm{xAExDM}}{1 / 2 \mathrm{xCExDM}}=\frac{\mathrm{AE}}{\mathrm{CE}}--\rightarrow$ $\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{CDE}) \cdots(3)$ From (1),(2) and(3) $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{A E}{C E}$	area of $\triangle=1 / 2 x b x h$ area of $\triangle=1 / 2 x b x h$ By theorem

11.AAA criterion theorem

If in two triangles, corresponding angles are equal then their corresponding sides are in the same ratio and hence the two triangles are similar.

Data:	In $\triangle A B C$ and $\triangle D E F$ $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{~B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$	
To Prove:	$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$	
Construction :	Cut AG = DE and AH = DF and join GH	
Proof: $\begin{array}{ll} \\ \\ & \therefore\end{array}$	In \triangle AGH and \triangle DEF	
	$\angle \mathrm{A}=\angle \mathrm{D}$	
	AG = DE Construction	
	AH = DF Construction	
	$\triangle \mathrm{AGH} \cong \triangle$ DEF SAS Congruence	
	. $\mathrm{GH}=\mathrm{EF}$	
	$\angle \mathrm{G}=\angle \mathrm{E}$	
	$\angle \mathrm{G}=\angle \mathrm{E}=\angle \mathrm{B}$	
	$\therefore \mathrm{GH} \\| \mathrm{EF}$	

$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AG}}=\frac{\mathrm{BC}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{AH}}$
By Thales theorem
$\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$

12. Areas of Similar Triangles theorem

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Data :	$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
To Prove:	$\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$
Construction:	Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$

Proof:

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{DEF})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AL}}{\frac{1}{2} \times \mathrm{EF} \times \mathrm{DM}}=\frac{\mathrm{BC} \mathrm{X} \mathrm{AL}}{\mathrm{EF} \mathrm{X} \mathrm{DM}} \rightarrow(1)
$$

In $\triangle \mathrm{ABL}$ and $\triangle \mathrm{DEM}$

$$
\angle \mathrm{B}=\angle \mathrm{E} \rightarrow \text { Data }
$$

$$
\angle \mathrm{L}=\angle \mathrm{M}=90^{\circ} \rightarrow \text { Construction }
$$

$\therefore \triangle \mathrm{ABL} \sim \triangle \mathrm{DEM} \rightarrow$ AA Similarity criterion

$$
\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{BC}}{\mathrm{EF}}
$$

$$
\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AL}}{\mathrm{DM}} \rightarrow(2)
$$

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \text { Substitute (2) in (1) }
$$

13. Pythagoras Theorem

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides

Data : \quad In $\triangle \mathrm{A}$	In $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$
To Prove : $\mathrm{AB}^{2}+\mathrm{A}$	$\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$
Construction: Draw AD	Draw $\mathrm{AD} \perp \mathrm{BC}$
Proof : In \triangle DAB and \triangle BAC	
$\angle \mathrm{D}=\angle \mathrm{A}=90^{\circ}$	0° Data and Construction
$\angle \mathrm{B}=\angle \mathrm{B}$	(Common)
$\therefore \triangle \mathrm{DAB} \sim \triangle \mathrm{BAC}$	BAC (AA Similarity criterion)
$\Rightarrow \frac{\mathrm{DB}}{\mathrm{BA}}=\frac{\mathrm{AB}}{\mathrm{BC}}$	
$\mathrm{AB}^{2}=\mathrm{DB} . \mathrm{BC} \rightarrow(1)$	
In \triangle DAC and $\triangle \mathrm{CAB}$	
$\angle \mathrm{D}=\angle \mathrm{A}=90^{\circ}$	$0^{\circ} \quad$ Data and Construction
$\angle \mathrm{C}=\angle \mathrm{C}$	(Common)
$\therefore \triangle \mathrm{DAC} \sim \triangle \mathrm{CAB}$	CAB (AA Similarity criterion)
$\therefore \Rightarrow \frac{\mathrm{DC}}{\mathrm{CA}}=\frac{\mathrm{AC}}{\mathrm{CB}}$	
$\mathrm{AC}^{2}=\mathrm{DC} . \mathrm{CB} \rightarrow(2)$	\rightarrow (2)
$(1)+(2)$	
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$	

Important Questions (16 marks)

To calculate , Mean / Mode / Median.
16. Find the mean for the given frequency distribution

C- I	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$
F	2	3	6	5	4

Answer: Direct method

C-I	Frequency (fi)	Mid Point (xi)	fixi
5-15	2	10	20
15-25	3	20	60
25-35	6	30	180
35-45	5	40	200
45-55	4	50	200
	$\sum \mathrm{fi}=20$		\sum fixi $=660$
Mean, $\overline{\mathrm{X}}=\frac{\sum f i x i}{\sum f i}$			
$\overline{\mathrm{X}}=\frac{660}{20}$			
Mean $=\overline{\mathrm{X}}=33$			

17. Calculate the mode for the following frequency distribution table.

C- I	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
frequency	5	6	10	4	3

$\mathrm{L}=30$	Mode $=\mathrm{L}+\left[\frac{\mathrm{f}_{1}-\mathrm{fo}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right] \mathrm{Xh}$
$\mathrm{f}_{0}=6$	Mode $=30+\left[\frac{10-6}{2 \times 10-6-4}\right] \times 10$
$\mathrm{f}_{1}=10$	Mode $=30+\left[\frac{4}{20-10}\right] \mathrm{X} 10$
$\mathrm{f}_{3}=4$	Mode $=30+\frac{40}{10}=30+4$
$\mathrm{~h}=10$	Mode $=34$

18. Calculate the median for the given frequency distribution table

Class Interval	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
frequency	5	9	12	8	6

CI	f	C_{f}
$30-40$	5	5
$40-50$	9	14
$50-60$	12	26
$60-70$	8	34
$70-80$	6	40
$\mathrm{~N}=50$		
$=\frac{40}{2}=20$		

$$
\mathrm{L}=50, \mathrm{C}_{\mathrm{f}}=14
$$

$$
f=12
$$

$$
\mathrm{h}=10
$$

$$
\begin{gathered}
\text { Median }=L+\left[\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}}\right] \mathrm{X} \text { h } \\
\text { Median }=50+\left[\frac{20-14}{12}\right] \times 10 \\
\text { Median }=50+\left[\frac{6}{12}\right] 10 \\
\text { Median }=50+5 \\
\text { Median }=55
\end{gathered}
$$

II Quadratic Equations - Formula Method, Nature of roots

19. Find the roots of the quadratic equation $3 \mathbf{x}^{\mathbf{2}}-\mathbf{5 x}+\mathbf{2}=\mathbf{0}$ by applying quadratic formula.
Solution:

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
a=3, b=-5, c=2 . \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, \\
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 X 3 X 2}}{2 \times 3} \\
x=\frac{5 \pm \sqrt{25-24}}{6}
\end{gathered}
$$

$$
x=\frac{5 \pm \sqrt{1}}{6}
$$

$$
x=\frac{5 \pm 1}{6}
$$

$$
\begin{array}{c|c}
x=\frac{5+1}{6} & x=\frac{5-1}{6} \\
x=\frac{6}{6} & x=\frac{4}{6} \\
x=1 & x=\frac{2}{3}
\end{array}
$$

20. Solve the quadratic equation $x^{2}-5 x-10=0 b y$ Factorization method.

$$
\begin{aligned}
& \text { Soln }: x^{2}-5 x-10=0 \\
& x^{2}-5 x+2 x-10=0 \\
& x(x-5)+2(x-5)=0 \\
& (x-5)(x+2)=0 \\
& (x-5)=0 \text { or }(x+2)=0 \\
& x=5 \text { or } \quad x=-2
\end{aligned}
$$

21. Solve the quadratic equation $3 x^{2}-x-10=0$ by Factorization method.

$$
\begin{aligned}
& \text { Soln }: 3 x^{2}-x-10=0 \\
& 3 x^{2}-6 x+5 x-10=0 \\
& 3 x^{2}-6 x+\underline{5 x-10}=0 \\
& 3 x(x-2)+5(x-2)=0 \\
& x-2=0 \quad 3 x-2)(3 x+5)=0
\end{aligned}
$$

22. Find the value of the discriminant of $2 x^{2}-5 x+3=0$

Solution :

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& \quad a=2, \quad b=-5, \quad c=3
\end{aligned}
$$

Discriminant , $\Delta=b^{2}-4 a c$

$$
=(-5)^{2}-4(2)(3)
$$

$$
=25-24=1
$$

23. Determine the nature of the roots : $2 x^{2}-4 x+3=0$

Solution: $\quad 2 x^{2}-4 x+3=0$

$$
a x^{2}+b x+c=0
$$

here $a=2, b=-4, c=3$
Discriminant $=\triangle=b^{2}-4 a c$
$=(-4)^{2}-4 \times 2 \times 3$
$=16-24$
$=-8<0$
So, the given equation has no real roots.
24. Determine the nature of the roots : $x^{2}-6 x+9=0$

Solution: $x^{2}-6 x+9=0$

$$
a x^{2}+b x+c=0
$$

$a=1, \quad b=-6, \quad c=9$
Discriminant, $\Delta=\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$

$$
\begin{aligned}
& =(-6)^{2}-4(1)(9) \\
& =36-36 \\
& =0
\end{aligned}
$$

Roots are real and equal.

25. Find the value of ' k ' for the quadratic equation $4 x^{2}-k x+1=0$, if it has equal roots.
Solution:

$$
4 x^{2}-k x+1=0
$$

$a x^{2}+b x+c=0$

$$
a=4, b=-k, c=1
$$

Roots are real and equal

$$
\begin{aligned}
\therefore & b^{2}-4 a c=0 \\
& (-k)^{2}-4(4)(1)=0
\end{aligned}
$$

$$
\begin{aligned}
& k^{2}-16=0 \\
& k^{2}=16 \\
& k= \pm \sqrt{16} \\
& k= \pm 4
\end{aligned}
$$

Pair of Linear Equations in two variables - Elimination Method

26. . Solve the pair of linear equations: $x-y=5,2 x-3 y=5$

Solution : Elimination method

$$
\begin{gathered}
x-y=5 \rightarrow(1) \text { and } 2 x-3 y=5 \rightarrow(2) \\
\text { multiply equation }(1) \text { by } 3 \\
3 x+3 y=15 \rightarrow(3) \\
\text { Sum of }(2)+(3) \\
3 x+3 y=15 \\
2 x-3 y=5 \\
5 x=20 \\
x=\frac{20}{5}, x=4 \\
\text { Substitute } x=4 \text { in equation }(1) \\
4+y=5 \\
y=5-4 \\
y=1
\end{gathered}
$$

27. Solve the pair of linear equations: $x+y=6, x-y=2$

Solution :

$$
\begin{gathered}
x+y=6 \rightarrow(1) \\
x-y=2 \rightarrow(2) \\
2 x=8 \\
x=\frac{8}{2} \\
x=4
\end{gathered}
$$

$$
\begin{aligned}
& \text { Substitute } x=4 \text { in equation }(1) \\
& \qquad \begin{array}{c}
4+y=6 \\
y=6-4 \\
y=2 \\
x=4 \text { and } y=2
\end{array}
\end{aligned}
$$

28. For what value of " K ", the pair of linear equation $K x-4 y=3$, $6 x-12 y=9$ has infinitely many solutions:

Solution: $\quad K x-4 y=3$ and $6 x-12 y=9$

$$
\begin{gathered}
K x-4 y-3=0 \text { and } 6 x-12 y-9=0 \\
\text { Here, } a_{1}=K \\
b_{1}=-4 \\
c_{1}=-3 \\
a_{2}=6 \\
b_{2}=-12 \\
c_{2}=-9
\end{gathered}
$$

Condition for infinitely many solutions

$$
\begin{gathered}
\frac{\mathrm{a} 1}{\mathrm{a} 2}=\frac{\mathrm{b} 1}{\mathrm{~b} 2}=\frac{\mathrm{c} 1}{\mathrm{c} 2} \\
\frac{\mathrm{a} 1}{\mathrm{a} 2}=\frac{\mathrm{k}}{6} \\
\frac{\mathrm{~b} 1}{\mathrm{~b} 2}=\frac{-4}{-12}=\frac{1}{3} \\
\therefore \frac{\mathrm{a} 1}{\mathrm{a} 2}=\frac{\mathrm{b} 1}{\mathrm{~b} 2} \\
\Rightarrow \frac{\mathrm{k}}{6}=\frac{1}{3} \\
\Rightarrow 3 \mathrm{k}=6 \\
\therefore \mathrm{k}=\frac{6}{3}=2
\end{gathered}
$$

Arithmetic progression

- nth term of A.P is an $=a+(n-1) d$
- Sum of first n terms of A.P is $S=\frac{n}{2}[2 a+(n-1) d]$ or $S=\frac{n}{2}[a+1]$

29. Find the $13^{\text {th }}$ term of an A.P 3, 8, 13,

Solution:

$$
\begin{aligned}
& a=3, \quad d=a_{2}-a_{1}=8-3=5 \quad n=13 \quad a_{13}=? \\
& a_{n}=a+(n-1) d \\
& a_{13}=3+(13-1) 5 \\
& a_{13}=3+(12) 5 \\
& a_{13}=3+60 \\
& \therefore a_{13}=63
\end{aligned}
$$

30. Find the sum of first 20 terms of the series $2+6+10+\ldots \ldots$

ขอఆకణణుఠఆ: $a=2 \quad d=a_{2}-a_{1}=6-2=4 \quad n=20 \quad S_{20}=$?

$$
\begin{gathered}
\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
\mathrm{S}_{20}=\frac{20}{2}[2 \times 2+(20-1) 4] \\
\mathrm{S}_{20}=\frac{20}{2}[4+(19) 4] \\
\mathrm{S}_{20}=\frac{20}{2}[4+76] \\
\mathrm{S}_{20}=10[80] \\
\therefore \mathrm{S}_{20}=800
\end{gathered}
$$

Coordinate geometry

- Examples on distance formula
- Examples on section formula
- Examples on area of triangles

31. Find the distance between the origion and a point $(8,-6)$.

Solution:

$$
\begin{aligned}
(8,-6) & =(x, y) \\
d & =\sqrt{x^{2}+y^{2}} \\
d & =\sqrt{8^{2}+(-6)^{2}} \\
d & =\sqrt{100} \\
d & =10 \text { Units }
\end{aligned}
$$

32. Find the distance between $(-5,7) \&(-1,3)$

Soliution: $\quad \mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
P Q & =\sqrt{\left.(-1-(-5))^{2}+(3-7)\right)^{2}} \\
= & \sqrt{(-1+5)^{2}+(-4)^{2}} \\
= & \sqrt{16+16} \\
P Q & =\sqrt{32} \text { Units. }
\end{aligned}
$$

33. Find the point on Y-axis which is equidistant from $A(6,5) \& B(-4,3)$

Solution: The point on Y-axis be $(0, y)$.
According to given $\quad \mathrm{PA}=\mathrm{PB}$

$$
\begin{aligned}
& (6-0)^{2}+(5-y)^{2}=(-4-0)^{2}+(3-y)^{2} \\
& 36+25+y^{2}-10 y=16+9+y^{2}-6 y \\
& Y^{2}-y^{2}-10 y+6 y=25-61 \\
& -4 y=-36, \quad y=\frac{-36}{-4} \quad y=9
\end{aligned}
$$

Point on Y-axis is $(0,9)$
34. The distance between $P(2,-3) \& Q(10, y)$ is 10 units. Find Y. Solution: $\quad\left(x_{1}, y_{1}\right)=(2,-3), \quad\left(x_{2}, y_{2}\right)=(10, y), \quad d=10$

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& 10=\sqrt{(10-2)^{2}+(y-(-3))^{2}} \\
& 10=\sqrt{64+(y+3)^{2}} \\
& (10)^{2}=64+(y+3)^{2} \\
& 100-64=(y+3)^{2} \\
& (y+3)^{2}=36, \\
& Y+3= \pm 6, \\
& y=6-3 \\
& y=3, \quad \text { or } \quad y=-9
\end{aligned}
$$

35. Find the mid point of line segment joining the points $(4,1) \&(2,7)$

Solution: $\quad\left(x_{1}, y_{1}\right)=(4,1), \quad\left(x_{2}, y_{2}\right)=(2,7), \quad m: m=1: 1$

$$
\begin{aligned}
P(x, y) & =\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right] \\
& =\left[\frac{4+2}{2}, \frac{1+7}{2}\right] \\
& =(3,4)
\end{aligned}
$$

36. Find the coordinates of a point which divides the line segment
joining the points $(4,-3) \&(8,5)$ internally in the ratio 3:1.

Solution: $\quad\left(x_{1}, y_{1}\right)=(4,-3), \quad\left(x_{2}, y_{2}\right)=(8,5), \quad m: m=3: 1$

$$
X=\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}\right]
$$

$$
\begin{gathered}
X=\left[\frac{3(8)+1(4)}{3+1}\right]=\left[\frac{24+4}{4}\right]=\frac{28}{4} \\
X=7 \\
y=\left[\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right] \\
y=\left[\frac{3(5)+1(-3)}{3+1}\right] \\
=\left[\frac{15-3}{4}\right]=\frac{12}{4} \\
y=3
\end{gathered}
$$

The point is $(7,3)$
37. In what ratio does the point $(2,5)$ divides the line segment joining the points $A(-6,2)$ and $B(3,-5)$.

Solution: $\quad(x, y)=(2,5)$,

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) & =(-6,2), \quad\left(x_{2}, y_{2}\right)=(3,-5), \quad m_{1}: m_{2}=? \\
\frac{m_{1}}{m_{2}} & =\frac{x_{1}-x}{x-x_{2}} \\
& =\frac{-6-2}{2-3} \\
& =\frac{-8}{-1}=\frac{8}{1} \\
m_{1} & : m_{2}=8: 1
\end{aligned}
$$

38. In what ratio does Y -axis divides the line segment joining the points
$(5,-6)$ and $B(-1,-4)$. Also find the coordinates of the point of
intersection.

Solution: Let the ratio be K:1 and the point on Y -axis be($0, \mathrm{y}$).
$(0, y)=\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right]$
$(0, y)=\left[\frac{-k+5}{k+1}, \frac{-4 k-6}{k+1}\right]$
$\frac{-k+5}{k+1}=0$
$-k+5=0$
$k=5$

The ratio is 5:1

Substitute k value we get

Consider, $\quad(0, y)=\left[\frac{-k+5}{k+1}, \frac{-4 k-6}{k+1}\right]$

$$
\begin{aligned}
& =\left[\frac{-k+5}{k+1}, \frac{-4 k-6}{k+1}\right] \\
& =\left[0, \frac{-4 X 5-6}{5+1}\right] \\
& =\left[0, \frac{-13}{3}\right]
\end{aligned}
$$

39. Find the coordinates of points which trisects the line segment

$$
\text { joining the points } A(2,-2) \& B(-7,4)
$$

Solution:

$$
\begin{array}{llll}
\mathbf{A} & \mathbf{P} & \mathbf{Q} & \mathbf{B}
\end{array}
$$

Let the points on $A B$ be P and Q
P divides $A B$ in the ratio 1:2.

The coordinates of $\mathbf{P}=\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right]$

$$
\begin{gathered}
=\left[\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+2(-2)}{1+2}\right] \\
=\left[\frac{-7+4}{3}, \frac{4-4}{3}\right] \\
=\left(\frac{-3}{3}, \frac{0}{3}\right)
\end{gathered}
$$

The coordinates of $P=(-1,0)$
$\therefore \mathrm{Q}$ divides AB in the ratio 2:1.
The coordinates of $Q=\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right]$

$$
\begin{aligned}
& =\left[\frac{2(-7)+1(2)}{2+1}, \frac{2(4)+1(-2)}{2+1}\right] \\
& =\left[\frac{-14+2}{3}, \frac{8-2}{3}\right]
\end{aligned}
$$

The coordinates of $Q=(-4,2)$
40. Find the area of a triangle with vertices of $\mathbf{Q}(1,-1),(-4,6) \&(-3,-5)$

Solution: $\left(X_{1}, Y_{1}\right)=(1,-1), \quad\left(X_{2}, Y_{2}\right)=(-4,6) \quad\left(X_{3}, Y_{3}\right)=(-3,-5)$

$$
\begin{aligned}
& \text { Area of triangle } \begin{aligned}
&= \frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\} \\
&=\frac{1}{2}[1(6+5)+(-4)(-5+1)+(-3)(-1-6)] \\
&=\frac{1}{2}(11+16+21) \\
&= \frac{1}{2} x 48=24 \text { sq. units. }
\end{aligned}
\end{aligned}
$$

41. Find the value of k when the points $A(2,6), B(4, k) \& C(6,-2)$ are

collinear.

Solution: Given the points are collinear, area of triangle=0

$$
\left(X_{1}, Y_{1}\right)=(2,6), \quad\left(X_{2}, Y_{2}\right)=(4, k) \quad\left(X_{3}, Y_{3}\right)=(6,-2)
$$

$$
\begin{gathered}
\therefore \text { Area of triangle }=0 \\
\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}=0 \\
\therefore \quad[2(k+2)+4(-2-6)+6(6-k)]=0 \\
{[2(k+2)+4(-8)+6(6-k)]=0} \\
2 k+4-32+36-6 k=0 \\
-4 k+8=0 \\
\therefore K=2
\end{gathered}
$$

42. Find the area of a quadrilateral whose vertices taken in order are A(-5, 7) B $(-4,-5) C(-1,-6) \& D(4,5)$

Solution :

Area of triangle $\triangle A B D$

$$
A\left(X_{1}, Y_{1}\right)=(-5,7), \quad B\left(X_{2}, Y_{2}\right)=(-4,-5) \& \quad D\left(X_{3}, Y_{3}\right)=(4,5)
$$

Area of triangle $\triangle A B D_{-}=\frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}$

$$
\begin{aligned}
=\frac{1}{2}[-5 & (-5-5)+(-4)(5-7)+4(7+5)] \\
& =\frac{1}{2}[50+8+48] \\
& =\frac{1}{2} \times 106 \\
= & 53 \text { sq. units }
\end{aligned}
$$

Area of triangle $\triangle B C D$

$$
\begin{aligned}
\text { Area of triangle } \triangle B C D= & \frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\} \\
= & \frac{1}{2}[-4(-6-5)-1(5+5)+4(-5+6)] \\
= & \frac{1}{2}[44-10+4] \\
& =\frac{1}{2} \times 38 \\
& =19 \text { sq. units }
\end{aligned}
$$

\therefore Area of a quadrilateral ABCD $=53+19=72$ sq. units
43. Find the area of a triangle formed by joining the midpoints of sides of a triangle whose vertices are $A(0,1), B(2,1) \& C(0,3)$

లుత్తర :

Let P is the mid point of $A B, Q$ is the mid point of $B C, R$ is the mid point of $A C$.
The coordinates of $\mathbf{P}=\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right]$

$$
=\left[\frac{0+2}{2}, \frac{1+1}{2}\right]=\left[\frac{2}{2}, \frac{2}{2}\right]
$$

The coordinates of $P=(1,1)$
The coordinates of $\mathrm{Q}=\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right]$

$$
=\left[\frac{2+0}{2}, \frac{1+3}{2}\right]=\left[\frac{2}{2}, \frac{4}{2}\right]
$$

The coordinates of $Q=(1,2)$

The coordinates of $\mathrm{R}=\left[\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right]$

$$
=\left[\frac{0+0}{2}, \frac{1+3}{2}\right]=\left[\frac{0}{2}, \frac{4}{2}\right]
$$

The coordinates of $R=(0,2)$

$$
P(1,1), \quad Q(1,2) \quad \& \quad R(0,2)
$$

$$
\begin{gathered}
\left(X_{1}, Y_{1}\right), \quad\left(x_{2}, Y_{2}\right) \& \quad\left(X_{3}, Y_{3}\right) \\
\Delta \text { PQR }=\frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\} \\
=\frac{1}{2}[1(2-2)+1(2-1)+0(1-2)] \\
=\frac{1}{2}[1 \times 0+1 \times 1+0 X(-1)] \\
=\frac{1}{2}[0+1+0]=\frac{1}{2} x 1 \\
\Delta P Q R=\frac{1}{2} \text { sq. units. }
\end{gathered}
$$

