DDPI OFFICE UDUPI- BEO OFFICE KUNDAPURA

SSLC

Multiple Choice Questions Based Model Question Paper - 01

2020-21

Subject : Mathematics

Medium : English

Code No : 81E	Time : 1 Hour
Total No of Questions : 40 Max.Marks	
Four Choices are give for each of the questions/incomplete statements.	
Choose correct answer and shade the c	orrect choice in the OMR given to
you with blue/black ball point pen	$40\times01=40$
1) The pair of linear equations $x = 0$ and $y = 0$ has	
A) one solution	B) two solutions
C) infinitely many solutions	D) no solutions
2) One equation of a pair of dependent linear equation is $x + 2y = 4$. The second	
equation can be	
A) $x + 3y = 5$	B) $2x + 4y = 5$
C) $2x + 4y = 8$	D) $4x + 2y = 8$
3) For what value of k , do the equations $x + 2y = 4$ and $3x + ky = 12$ represent	
coincident lines?	
A) 2	B) 3
C) 4	D) 6
4) If the pair of linear equations $a_1x + b_1$	$y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ has a
unique solution, then	
$A) \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
C) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	D) $\frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

5)	The solution of the pair of linear equation	ons $x + y = 5$ and $x - y = 1$ is
	A) $x = 2, y = 3$	B) $x = 3, y = 2$
	C) $x = 5, y = 1$	D) $x = 3, y = 5$
6)	The n th term of an arithmetic progression	n is $a_n = 4n + 5$ then the 3rd term is :
	A) 5	B) 9
	C) 13	D) 17
7)	2, x , 14 are in Arithmetic progression, th	en the value of x is :
	A) 28	B) 16
	C) 7	D) 8
8)	The sum of first 20 natural numbers is	
	A)142	B) 210
	C) 254	D) 310
9)	What is the common difference of an AI	P in which $a_{24} - a_{17} = -28$?
	A) 8	B) -8
	C) -4	D) 4

10) The roots of quadratic equation (x - 4)(2x - 1) = 0 are

A) $\frac{1}{2}$, 4 B) 4, $-\frac{1}{2}$

C)
$$-4$$
, $-\frac{1}{2}$ D) $\frac{1}{2}$, -4

- 11) The sum of the squares of consecutive natural numbers is 13. The quadratic equation of this statement is
 - A) $x^2 + x + 13 = 0$ B) $x^2 - x - 6 = 0$
 - C) $x^2 + x 6 = 0$ D) $x^2 - x + 25 = 0$

12) Standard form of a quadratic equation is

- A) $ax + bx^2 c = 0$ B) $ax^2 + by + c = 0$
- C) $ax^2 + bx + c = 0$ D) $bx^2 + c = a$

13) The determinant of the quadratic equation $3x^2 - 5x + 2 = 0$ is

A) 1 B) 2

14) If $13 \sin \theta = 12$ then the value of *cosec* θ is

B)
$$\frac{12}{5}$$
 B) $\frac{13}{5}$

C)
$$\frac{12}{13}$$
 D) $\frac{13}{12}$

- 15) Value of $\frac{1-tan^2 45^{\circ}}{1+tan^2 45^{\circ}}$ is A) tan 90° B) 1 C) sin 45° D) 0
- 16) Value of $\cos 48^\circ \sin 42^\circ$ is
 - A) 1 B) 0
 - C) 2 D) -1

17) $10sec^2 A - 10tan^2 A$ is equal to

A) 1 B) 9

C) 10 D) -10

18) The shadow of a tower is equal to its height. The sun's altitude is

A) 30°
B) 45°
C) 60°
D) 90°

19) The distance of the point P(3, 4) from y-axis is

A) 3 unitsB) 4 unitsC) 5 unitsD) 7 units

20) The distance between the origin and co-ordinates of a point (x, y) is

A) $x^2 + y^2$ B) $\sqrt{x^2 - y^2}$ D) $\sqrt{x^2 + y^2}$

21) If *P* is the mid-point of the line segment joining *A* (1,4) and *B* (3,6) then the co-ordinates of *P* is

A) (4,10) B) (2,10) D) (4,5)

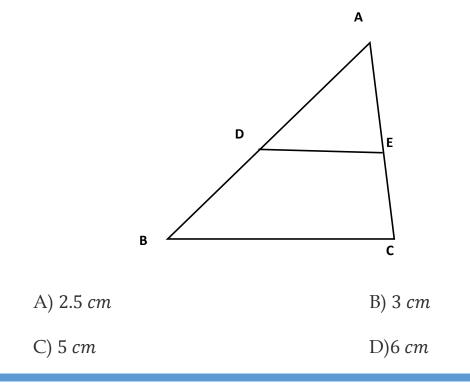
22) If the points (0,0), (a, 0), (0, b) are collinear, then

- A) a = b B) a + b = 0
- C) ab = 0 D) $a \neq 0$

23) The empirical relationship between the three measures of central tendency is

- A) 2 Median = Mode + 3Mean
- B) 3 Median = Mode + 2Mean
- C) Median = Mode + Mean
- D) Median = Mode Mean

24) The median of the scores 5,8,14,16,19 and 20 is


25) The modal class in the following frequency distribution is

Class Interval	Frequency	
5 – 15	2	
15 – 25	3	
25 – 35	6	
35 - 45	5	
45 — 55	4	
	B) 25 —	35

A) 15 – 25

C) 35 – 45 D) 45 – 55

26) *D* and *E* are the midpoints of side *AB* and *AC* of a triangle *ABC*, respectively and BC = 6cm. If *DE* || *BC*, then the length of *DE* is

27) The diagonals of a rhombus are 16 *cm* and 12*cm* in length. The side of rhombus in length is

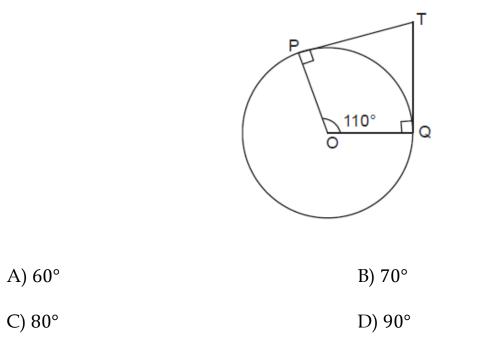
A) 20 cm	B) 8 <i>cm</i>
C) 10 <i>cm</i>	D) 9 <i>cm</i>

28) Corresponding sides of two similar triangles are in the ratio of 2:3. If the area of small triangle is 48 sq.cm, then the area of large triangle is:

A) 230 sq. cm
B) 106 sq. cm
C) 107 sq. cm
D) 108 sq. cm

29) If triangles ABC and DEF are similar and AB = 4 cm, DE= 6 cm, EF = 9 cm and FD = 12 cm, the perimeter of triangle ABC is:

A) 22 <i>cm</i>	B) 20 <i>cm</i>


- C) 21 cm D) 18 cm
- 30) The height of an equilateral triangle of side 5 cm is:
 - A) 4.33 cm B) 3.9 cm
 - C) 5 cm D) 4 cm

31) Maximum number of tangents drawn to a circle from an external point is

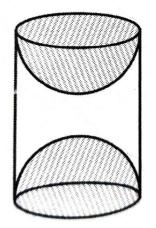
A) 1	B) 2
C) 3	D) 4

- 32) A line which intersects a circle at two points is called
 - A) diameterB) tangentC) secantD) chord

33) In the figure *TP* and *TQ* are tangents to a circle with centre '0'. If $\angle POQ = 110^{\circ}$ then $\angle PTQ$ is equal to

34) To divide a line segment *AB* in the ratio 3: 4, first a ray *AX* is drawn so that $\angle BAX$ is an acute angle and then at equal distance points are marked on the ray AX such that the minimum number of points. These points is

35) Two draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle. The angle between then shoud be


- 36) The formula to find total surface area of a cylinder is
 - A) $2\pi rh$ B) $2\pi r(r+h)$
 - C) $2\pi r^2$ D) $2\pi r^2 h$

37) The volume of two cubes is in the ratio 64 : 125. The ratio of their total surface

areas is

A) 16:25	B) 4:5
C) 4:6	D) 8:25

38) A wooden article is made by scooping out hemisphere from each end of the solid cylinder. The total surface area of the article is

C) $2\pi rh + 2\pi r^2$

B) $2\pi rh + \pi r^2$

D) $2\pi r(r+h)$

39) If the volume of a cone is $72 \ cm^3$ then the volume of a cylinder with same base

and height as that of the cone is

- A) 524 cm³
 B) 616 cm³
 D) 216 cm³
- 40) Surface area of a sphere of radius 7 cm is
 - A) $616 \ cm^2$ C) $49 \ cm^2$ D) $132 \ cm^2$