10TH STANDARD

MULTIPLE

CHOICE

QUESTIONS

All chapters

$$
2020-21
$$

Prepared By: REKHA D R, Assistant Mistress, GHS, Jayanagar

Date: $06-06-21$	MATHEMATICS	2020 -21
CLASS: $10^{\text {th }}$	SET -1	Marks: 40

1) $21,18,15$, \qquad
 of AP: 21, 18, 15, \qquad is zero?
A) $7^{\text {th }}$
B) $8^{\text {th }}$
C) $9^{\text {th }}$
D) 10^{th}

Answer: B) $8^{\text {th }}$
Explanation: $a=21, d=18-21=-3$

$$
\begin{gathered}
a_{n}=a+(n-1) d \\
0=21+(n-1)-3 \\
0=21-3 n+3 \\
0=24-3 n \\
3 n=24 \\
n=\frac{24}{3}=8
\end{gathered}
$$

 term of an AP, then common difference is
A) 1
B) 2
C) 3
D) 4

Answer: B) 2
Explanation: $a_{1}=2(1)+3=2+3=5$

$$
\begin{aligned}
& a_{2}=2(2)+3=4+3=7 \\
& d=a_{2}-a_{1}=7-5=2
\end{aligned}
$$

3) $10,7,4$, \qquad

A) - 97
B) 97
C) 77
D) - 77

Answer: D) - 77
Explanation: $a=10, d=7-10=-3, n=30$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
& =10+(30-1)-3 \\
& =10+(29)-3 \\
& =10-87 \\
a_{30} & =-77
\end{aligned}
$$

A) 18
B) 20
C) 22
D) 24

Answer: C) 22
Explanation: $a_{n}=4 n-2$

$$
\begin{aligned}
a_{6} & =4(6)-2 \\
& =24-2 \\
a_{6} & =22
\end{aligned}
$$

ळंలందిద్దెరి, అవ్రుగెళ అనైఱ్తేవ్రు / For the pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ having unique solution, the ratio of coefficients is \qquad
A) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
B) $\frac{\mathbf{a}_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
C) $\frac{\mathrm{a}_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
D) $\frac{\mathrm{a}_{1}}{\boldsymbol{a}_{2}}=\frac{\boldsymbol{b}_{1}}{\boldsymbol{b}_{2}} \neq \frac{\boldsymbol{c}_{1}}{\boldsymbol{c}_{2}}$

Answer: C) $\frac{a_{1}}{\boldsymbol{a}_{2}} \neq \frac{b_{1}}{b_{2}}$
Explanation:

Compare the ratios	Graphical representation	Algebraic interpretation
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	Intersecting lines	Exactly one solutions (unique)

అనేృఱ్తుగేళేనున్న ळేృలలిసి	జృతినిధిసుコతిశ్ర	బిคజగగణితియయి జుతినిధిసుతిశ్ర	
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	భిలదిసైప రెఁఖిగెళు	నిఖరేఱాగ ఒందేు ఱరిळలర (అనస్య)	స్విరదాగిరుతత్తది (అฝెలంబిత)

 lines representing $x+2 y-4=0$ and $2 x+4 y-12=0$ are

B) તేయోలంతరరర రిలఖిగేళు/ Parallel lines
C) భిలదిసుృదె రిలఖిగెళ్ృ/ intersecting lines
D) లంబ రిలఖిగేళు/ Perpendicular lines

Answer: B) సేయోలంతరరు రిలఖిగేళు/Parallel lines
Explanation: $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$

$$
x+2 y-4=0 \quad \text { and } \quad 2 x+4 y-12=0
$$

Here, $a_{1}=1, \quad b_{1}=2, \quad c_{1}=-4$

$$
a_{2}=2, \quad b_{2}=4, \quad c_{2}=-12
$$

$$
\begin{array}{l|l|l}
\hline a_{1} \\
a_{2} & =\frac{1}{2} & \frac{b_{1}}{b_{2}}=\frac{2}{4}=\frac{1}{2} \quad \frac{c_{1}}{c_{2}}=\frac{-4}{-12}=\frac{1}{3}
\end{array}
$$

We know that condition for parallel lines is

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow \frac{1}{2}=\frac{1}{2} \neq \frac{1}{3}
$$

 equations in two variables, in which ratios of coefficients are $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \ldots . . .$.
A) ఐశ్యృలగగునె రిలఖిగేళు / Coincident lines
B) సెయోంంతేరె రిలఖిగెళు / Parallel lines

D) లంబ రిలఖిగేళు / Perpendicular lines

Answer: B) $\boldsymbol{\sim}$ యోలంతేరు రిలఖిగేళు /Parallel lines
Explanation:

Compare the ratios	Graphical representation	Algebraic interpretation
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	Intersecting lines	Exactly one solutions (unique)
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$	Coincident lines	Infinitely many solutions
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$	Parallel lines	No solutions

అనేృఱ్తేగేళేనున్న ळోァคలిసి	జృతినిధిసుコతిశ్ర	బిలజగెణితియయ யృతినిధినుJపిశ్ర	
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	భిఁదిసైపు రెఁఖేగెళు	నిఎరేఱాగి ఒందు ๔రిळలర（అసన్య）	స్దిరేదాగిరుృత్తది （అఐాలంబిత）
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$	రెలఖెగెళ్ర	అఱ゙రియితత 딩్యియ ※రిळలరేగెళు	స్విరేలాగిరుతత్తది （అฝెలంబిత్）
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$	సేఱోంతర రెఁఖిగెళు	※రిळలర ఇల్ల	అస్దిరదృగిరుతక్తది

 equation $p x-y=2$ and $6 x-2 y=3$ will have infinitely many solutions is

A） 1
B）-1
C） 3
D）No value
Answer：D）No value
Explanation：After making RHS of each equation zero，$p x-y-2=0$ and $6 x-2 y-3=0$ ．

$$
\text { Here, } \begin{array}{lll}
a_{1}=p, & b_{1}=-1, & c_{1}=-2 \\
a_{2}=6, & b_{2}=-2, & c_{2}=-3
\end{array}
$$

For infinitely many solution，$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{p}{6}=\frac{-1}{-2}=\frac{-2}{-3}$

$$
\begin{aligned}
& \frac{p}{6}=\frac{1}{2} \text { and } \frac{p}{6}=\frac{2}{3} \\
& p=3 \text { and } p=4
\end{aligned}
$$

Since，＇p＇has different values．
Hence，for no value of＇p＇the pair of equations will have infinitely many solutions ．
 discriminant of quadratic equation $b^{2}-4 a c=0$ ，then the nature of roots are

A）లాస్తుదు యుత్తు ఱిభిన్న్／Real and distinct

C）భలగగలబ

 Explanation：

$\mathrm{b}^{2}-4 \mathrm{ac}=0$	
$\mathrm{b}^{2}-4 \mathrm{ac}>0$	
$b^{2}-4 a c=0$	

 roots of the quadratic equation $x^{2}+7 x+12=0$ are
A) -4 and -3
B) 4 and 3
C) -4 and 3
D) 4 and - 3

Answer: A) - 4 and - 3
Explanation: $x^{2}+4 x+3 x+12=0$

$$
\begin{aligned}
& x(x+4)+3(x+4)=0 \\
& (x+4)(x+3)=0 \\
& (x+4)=0 \text { and }(x+3)=0 \\
& x=-4 \text { and } x=-3
\end{aligned}
$$

 the quadratic equation $2 x^{2}-4 x+3=0$ is
A) 8
B) -8
C) 6
D) -6

Answer: B) - 8
Explanation: $\mathrm{a}=2, \mathrm{~b}=-4, \mathrm{c}=3$

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-4)^{2}-4 \times 2 \times 3 \\
& =16-24 \\
D & =-8
\end{aligned}
$$

 అฝ்లంబిత బిలియు / The nature of the roots of the quadratic equation $a x^{2}+b x+c=$ 0 depends upon the value of
A) $b^{2}-4 a c$
B) $b^{2}+4 a c$
C) $a^{2}-4 b c$
D) $b-4 a c$

Answer: A) $b^{2}-4 a c$
Explanation: Nature of the roots depends upon discriminant value $=b^{2}-4 a c$

Which of the following are the sides of a right triangle?
A) $5,12,13$
B) $3,6,8$
C) $7,25,26$
D) $50,80,100$

Answer: A) 5, 12, 13
Explanation: $A B^{2}=B C^{2}+A C^{2}$
$(13)^{2}=(12)^{2}+(5)^{2}$
$169=144+25$
$169=169$

 the hypotenuse is equal to the sum of the squares of the other two sides. This theorem is known as \qquad

B) む్లథథగగృరేనో జ్లులియ / Pythagoras theorem
C) థiలల్స లులులయ / Thales theorem
D) థిలల్సా ఱుృమిలయదద ఎిలిృలయు / Converse of Thales theorem

 க்రయరగిది?/Which of the following statement is correct for the given triangle?
A) $A B^{2}=B C^{2}+A C^{2}$
B) $A C^{2}=A B^{2}+B C^{2}$
C) $B C^{2}=A B^{2}+A C^{2}$

D) $A B^{2}=B C^{2}-A C^{2}$

Answer: B) $A C^{2}=A B^{2}+B C^{2}$
Explanation: Pythagoras theorem
 ఆదేరి బలळు AE నె లుద్దద్రు / In triangle ABC, DE || BC, AD = $5 \mathrm{~cm}, B D=7 \mathrm{~cm}$ and $A C=18$ cm . The length of $A E$ is
A) 6.5 ㄹ.
B) 7.5 సెం. $ి \mathrm{~J} \mathrm{P} / \mathrm{cm}$
C) 8.5 సెం. ీిల / cm
D) 9.5 సెం. $\mathfrak{~ d} \mathrm{J} / \mathrm{cm}$

Answer: B) 7.5 సio.àje / cm
Explanation: $\frac{A E}{A C}=\frac{A D}{A B}$

$$
\frac{A E}{18}=\frac{5}{5+7}
$$

AE $\times 12=5 \times 18$

$$
\mathrm{AE}=\frac{5 \times 18}{12}=7.5 \mathrm{~cm}
$$

17) $\sin A=\frac{1}{\sqrt{2}}$ ఆద゙రి, $\angle A$ నా బిలియు / If $\sin A=\frac{1}{\sqrt{2}}$ then the magnitude of $\angle A$ is
A) 90°
B) 60°
C) 30°
D) 45°

Answer: D) 45^{0}
Explanation:

θ	0^{0}	30^{0}	45^{0}	60°	90^{0}
$\sin \theta$	$\mathbf{0}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\mathbf{1}$
$\cos \theta$	$\mathbf{1}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\mathbf{0}$
$\tan \theta$	$\mathbf{0}$	$\frac{1}{\sqrt{3}}$	$\mathbf{1}$	$\sqrt{3}$	Not defined

A) 30°
B) 45°
C) 90°
D) 60°

Answer: A) 30°
Explanation: $\tan \theta=\frac{1}{\sqrt{3}}$

$$
\theta=30^{\circ}
$$

θ	0^{0}	30°	45^{0}	60°	90°
$\sin \theta$	$\mathbf{0}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\mathbf{1}$
$\cos \theta$	$\mathbf{1}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\mathbf{0}$
$\tan \theta$	$\mathbf{0}$	$\frac{\mathbf{1}}{\sqrt{3}}$	$\mathbf{1}$	$\sqrt{3}$	Not defined

19) $\sin \theta=\frac{3}{5}$ యుతుత్తు $\cos \theta=\frac{4}{5}$ ఆదేరి, $\sin ^{2} \theta+\cos ^{2} \theta$ నె బిలయు / If $\sin \theta=\frac{3}{5}$ and $\cos \theta=\frac{4}{5}$, then the value of $\sin ^{2} \theta+\cos ^{2} \theta$ is
A) 0
B) 1
C) 2
D) 3

Answer: B) 1
Explanation: $\sin ^{2} \theta+\cos ^{2} \theta=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{9}{25}+\frac{16}{25}=\frac{25}{25}=1$
20) $\sin 30^{\circ}+\cos 60^{\circ}$ నె బిలియు / The value of $\sin 30^{\circ}+\cos 60^{\circ}$ is
A) 3
B) 2
C) 1
D) 0

Answer: C) 1
Explanation: $\sin 30^{\circ}+\cos 60^{\circ}=\frac{1}{2}+\frac{1}{2}=\frac{1+1}{2}=\frac{2}{2}=1$
 length of the shadow of a tree is decreasing then the angle of elevation is:
A) ఎరిశయయరగెతత్తది / Increasing
B) ఇళిళాయోగగృత్తది / Decreasing
C) బదేలలఱెణి ఇల్ల / Remains the same
D) మిৎలినె యాలద్రుదిృ అల్ల / None of the above

Answer: A) ఎరిశయయీరగౌృత్తది / Increasing Explanation:
See the following figure:

As the shadow reaches from point N to L towards the direction of the tree, the angles of elevation increase from 30° to 60°.

 shadow of $2 \sqrt{3} \mathrm{~m}$ long on the ground, then the sun's elevation is:
(A) 60°
(B) 45°
(C) 30°
(D) 90°

Answer: A) 60°
Explanation: As per the given question:

$$
\begin{aligned}
\tan \theta & =\frac{o p p}{A d j}=\frac{6}{2 \sqrt{3}}=\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{(\sqrt{3})^{2}}=\sqrt{3} \\
\tan \theta & =\sqrt{3} \\
\tan \theta & =\tan 60^{\circ} \\
\theta & =60^{\circ}
\end{aligned}
$$

 (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ is
A) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
B) $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
C) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$
D) $\sqrt{\left(x_{2}+x_{1}\right)^{2}-\left(y_{2}+y_{1}\right)^{2}}$

Answer: A) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
 is \qquad
A) 3
B) 4
C) 7
D) 1

Answer: B) 4
Explanation:

25) $P(3,0)$ ముతుత్త $Q(3,4)$ బిందుงగెళ నేడుఎతినె దిలరేథ్ / The distance of the point $P(3,0)$ and $Q(3,4)$ is
A) 2 యోలనేగేষృ / units
B) 3 యోలనేగేళు / units
C) 4 యోలనేగిళు / units
D) 5 యోరనేగేళు / units

Answer: C) 4 యోనేగేళు / units
Explanation: Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(3,0)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(3,4)$

$$
\begin{aligned}
\therefore \text { Distance } & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3-3)^{2}+(4-0)^{2}} \\
& =\sqrt{(0)^{2}+(4)^{2}} \\
& =\sqrt{0+16}
\end{aligned}
$$

$$
\therefore \mathrm{d}=\sqrt{16}=4 \text { Units }
$$

 130°, the angle between the tangents at the end of the radii is:
A) 90°
B) 50°
C) 70°
D) 40°

Answer: B) 50°
Explanation:

 from a point P with center O. Find the radius $O A$, if $P A=4 \mathrm{~cm}$ and $O P=5 \mathrm{~cm}$.
A) 2 సెం. ీిગe / cm
B) 3 సెం. פిల / cm
C) 1.5 సెం.cిల / cm
D) మిలలినె యోవ్రుదేఁ అల్ల / none of the above

Explanation: $O P^{2}=A O^{2}+P A^{2}$

$$
\begin{aligned}
& (5)^{2}=A O^{2}+(4)^{2} \\
& A O^{2}=25-16=9 \\
& A O=\sqrt{9}=3 \mathrm{~cm}
\end{aligned}
$$

 circle at only one point is called:
A) $\vec{\sim}_{\omega}$ चFF / tangent
B) భ९దదశ / secant
C) బిందేว / point
D) $\vec{\sim}$ యోంతేరర / parallel

Answer: A) \dot{N}_{ω} चF₹ / tangent

Explanation:

 \vec{N}_{ω} चFశగగళు. $\angle A O B=120^{\circ}$ ఆదరరి $\angle O P A$ అ§ circle with centre O. If $\angle A O B=120^{\circ}$, then $\angle O P A$ is equal to:
A) 60°
B) 15^{0}
C) 30°
D) 40°

Answer: C) 30°
Explanation: $\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}$

$$
\begin{aligned}
& \angle A P B=\frac{1}{2} \times 120^{\circ} \\
& \angle A P B=60^{\circ} \\
& \angle O P A=\frac{1}{2} \angle A P B \\
& \angle O P A=\frac{1}{2} \times 60^{\circ} \quad \angle O P A=30^{\circ}
\end{aligned}
$$

30) ఎేగలఁంతేర 10-25 ముతుత 35 - 55 రు ముధ్యబిందుدథ్రు / Find the class marks of classes 10-25 and 35-55
A) 10,35
B) 25,55
C) 15,20
D) $17.5,45$

Answer: D) 17.5, 45
Explanation: Class Mark $=\frac{\text { lower limit }+ \text { upper limit }}{2}$
Class mark of class $10-25=\frac{10+25}{2}=\frac{35}{2}=17.5$

Class mark of class $35-55=\frac{35+55}{2}=\frac{95}{2}=45$
 in the following frequency distribution is
A) $40-50$
B) $20-30$
C) $30-40$
D) 50-60

Answer: C) 30-40

Class	Frequency
$0-10$	3
$10-20$	9
$20-30$	15
$30-40$	30
$40-50$	18
$50-60$	5

 ఎేగాఁంతేరేఱాగిది.
The maximum frequency from the given table is 30 and the class corresponding to this frequency is $30-40$. So, the modal class is $30-40$.
 ఆబృత్తియు / The frequency of the class preceding the modal class in the following frequency distribution is
A) 28
B) 32
C) 20
D) 100

Answer: A) 28

Marks	Number of students
$20-30$	4
$30-40$	28
$40-50$	42
$50-60$	20
$60-70$	6

 ఆగిది.
The maximum frequency from the given table is 42 and the class corresponding to this frequency is $40-50$. The frequency of the class preceding the modal class is 28.

$\begin{array}{llllllllll}2 & 6 & 4 & 5 & 0 & 2 & 1 & 3 & 2 & 3\end{array}$

The wickets taken over by a bowler in ten cricket matches are as follows
2

Find the mode of this data.
A) 0
B) 1
C) 2
D) 3

Answer: C) 2

 జ్రునరరాఐేతేఁనె ఆగిది.
The mode is the number in a data set that occurs most frequently. 2 is repeated three times.

 ఇల్లిగె సెలరిసెసలలగిది / To divide a line segment AB of length 7.6 cm in the ratio $5: 8$, a ray $A X$ is drawn first such that $\angle B A X$ forms an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$. .are located at equal distances on the ray $A X$ and the point B is joined to:
A) A_{5}
B) A_{6}
C) A_{10}
D) A_{13}

Answer: D) A_{13}
Explanation: The minimum points located in the ray $A X$ is $5+8=13$. Hence, point B will join point A_{13}.

 $\vec{\sim} O 2_{\mathfrak{r}} /$ To divide a line segment $A B$ in the ratio 3: 4, first, a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is:
A) 5
B) 7
C) 9
D) 11

Answer: B) 7

Explanation: We know that to divide a line segment in the ratio $m: n$, first draw a ray $A X$ which makes an acute angle BAX, then marked $m+n$ points at equal distances from each other.
Here $m=3, n=4$
So minimum number of these point $=m+n=3+4=7$

 శేంలనేది అథేతి / To draw a pair of tangents to a circle which is inclined to each other at an angle of 35°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is:
A) 105°
B) 70°
C) 140°
D) 145°

Answer: D) 145°
Explanation: The angle between them should be 145° because the figure formed by the intersection point of pair of tangents, the two end points of those two radii (at which tangents are drawn) and the centre of circle, is a quadrilateral. Thus the sum of the opposite angles in this quadrilateral must be 180°.
 surface area of a sphere is $616 \mathrm{~cm}^{2}$. Its radius is
A) 7 cm
B) 14 cm
C) 21 cm
D) 28 cm

Answer: A) 7 cm
Explanation: T.S.A of sphere $=4 \pi r^{2}=616$

$$
\begin{aligned}
r^{2} & =\frac{616 \times 7}{4 \times 22}=49 \\
r^{2} & =49 \\
r & =\sqrt{49}=7 \mathrm{~cm}
\end{aligned}
$$

 cylinder and a cone are of same base radius and of same height. The ratio of the volume of the cylinder to that of the cone is
A) $2: 1$
B) $3: 1$
C) $2: 3$
D) $3: 2$

Answer: B) 3 : 1
$\underline{\text { Explanation: }} \frac{\text { Volume of cylinder }}{\text { Volume of cone }}=\frac{\pi r^{2} h}{\frac{1}{3} \pi r^{2} h}=1 \times \frac{3}{1}=\frac{3}{1}$
Volume of cylinder: Volume of cone = $3: 1$
 cone is given by
A) $\pi\left(r_{1}+r_{2}\right) l$
B) $\pi\left(r_{1}+r_{2}\right) h$
C) $\pi\left(r_{1}-r_{2}\right) l$
D) $\pi\left(r_{1}-r_{2}\right) h$

Answer: $A)\left(r_{1}+r_{2}\right) l$
Explanation:
 cream cone is a combination of:
A) గiఃలో + సిలిండేరా / Sphere + cylinder

C) అధే గiภలళ + సిలిండఠరో / Hemisphere + cylinder
D) అధદగి๑లఆ + ঘంఈృ / Hemisphere + cone

Explanation:

GOOGLE FORM LINK:
https://docs.google.com/forms/d/e/1FAlpQLSfOYqaUn0N9hM4nyHT eDO X5LxtiqPGulljVwskh4UTqbApUQ/viewform

