

ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಲ್ಲಾ ಪಂಚಾಯತ್ ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ

<mark>ಉಪನಿರ್ದೇಶಕರ ಕ</mark>ಛೇಲಿ (ಆಡಆತ). ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಲ್ಲೆ

ಬಹುಆಯ್ಕೆ ಮಾದಲಿ ಪ್ರಶ್ನೆಗಳು

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ 2020-21

ಗಣಿತ

(ಆಂಗ್ಲ ಮಾಧ್ಯಮ)

Multiple choice questions

Arithmetic progressions

Points to remember

- ❖ Arithmetic progression is a sequence in which common difference is constant.
- ❖ General form of arithmetic progression is a, a+d, a+2d, a+3d,.....a+(n-1)d
- Common difference in an A.P $d = a_2 a_1$
- nth term of A.P is $a_n = a+(n-1)d$
- Sum of first n terms of an A.P, $S_n = \frac{n}{2}$ [2a+(n-1)d] or $s_n = \frac{n}{2}$ (a + a_n)
- Sum of first n natural numbers, $s_n = \frac{n}{2}(n+1)$
- Sum of first n even natural numbers = n(n + 1)
- Sum of first n odd natural numbers = n^2

Multiple choice questions

- 1) The 4th term of an Arithmetic progression 5, 8, 11 is
 - a) 15

- **B**) 13
- C) 14
- D) 16
- 2) The common difference in an Arithmetic progression 8, 14, 20 is
 - A) 8

- B) 6
- **C**) 5
- D) -6
- 3) The preceding term of 13 in an Arithmetic progression 13, 10, 7...... Is
 - A) 16

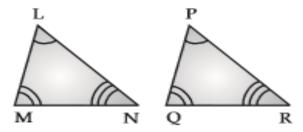
- B) 15
- C) 17
- D) 10

4) The n th term in an	n Arithmetic pro	ogression	n with fi	rst term 'a	and the common			
difference 'd' is	difference 'd' is							
A) an = $an+1$	B) an = a+((n-1)d	C) an =	a+(n+1)d	D) an = a-1			
5) In an Arithmetic p	progression an =5	5n+2, ther	1 st term	is				
A) 7	B) 6	C) 5		D) 8				
6) In an Arithmetic p	progression an =3	n+5, the	en the 5 th	term is				
A) 30 E	3) 28	C) 20		D) 13				
7) An Arithmetic pro	gression among	g the foll	lowing is	S				
A) 10,7,4,1, I	3) 5,8,12,	C) 0,3,6	,10,	D) 16,8,4,2) -,			
8) How many two digit	t numbers are divi	sible by 5	5					
A) 17	B) 18		C) 19		D) 20			
9) An Arithmetic pro	gression with fi	rst term	2 and the	common dif	ference 3 is			
A) 2,5,9,	B) 2,5,8,	C)	3,5,7,	D) 2,6,10,				
10) In an A.P, $a_n = 2n$		t of first t			D) 10			
A) 10	B) 12	sion 1 4	C) 1:		D) 18			
11)10 th term of an Arit	unneuc progress	81011 1, 4	, /,	18				
A) 31	B) 27	C) 32	D) 28	3				
12) The Sum of first 20	natural numbers	s is						
A) 210	B) 200 C) 1	90	D) 205					
13) First term in the	given Arithmeti	c progre	ession 5,	8 , 11 ,,,,,,	,,,,, is			
A) 5	B) 8	C)	11	D) 2				
14)An Arithmetic p	rogression amo	ng the fo	ollowing	is				
A) -37,-35,-33,-31	B) 2,4,8,	16	C) 4	10,16,26	D) -5,-10,+10,+5			
15)The common diff	ference in an Ar	rithmetic	progres	sion 10, 14,	, 18 is			

A) 10	B) 4	C) 18	D) -4
16)The next term	of an Arithmetic pr	rogression 13, 1	10, 7 Is
A) 3	B) 7	C) 4	D) -4
17) In an A.P,	$s_n = \frac{n}{2}(7n-1)$, t	hen the common	difference is
A) 3	B) 5	C) 7	D) 9
18)In an Arithmet	tic progression an =3:	n+5, then 8 th terr	n is
A) 29	B) 19	C) 43	D) 26
19)In an Arithmet	tic progression an =6	n-4, then the fir	est term is
A) 4	B) 2	C) -4	D) -2
20) In an Arithmet	tic progression an =2	n+3, then the cor	mmon difference is
A) 5	B) 1	C) 3	D) 2
21)In an Arithmet	tic progression an =22	n then the value	of S3 is
A) 12	B) 2	C) 14	D) 6
22) The fourth term	in an Arithmetic pro	ogression if S4=	= 38 and S ₃ = 24 is
A) 5	B) 14	C) 3	D) 8
	rms of an Arithmetic		
A) 16 , 19 ,	22 , 25	B) 15, 18, 2	24 , 30
C) 15 , 18	, 21 , 24	D) 15 , 17	, 19 , 21
24)S ₁₀ in an Arithr terms is 27 is	netic progression if	the sum of first .	3 terms is 9 and sum of next 3
A) 30	B) 38	C) 46 D) 3	36
25) The Sum of first the common di		nmetic progres	sion with first term 'a' and
A) Sn = n[2a+	·(n-1)d]	B) $S_n = \frac{n}{2} [a +$	(n-1)d]
C) $S_n = \frac{n}{2} [2a + ($	(n+1)d]	D) $S_n = \frac{n}{2} [2a$	a+(n -1)d]

26) An Arithmetic progression A) 4,7,11,15	B) 3, 7, 1		difference 4 is
C) 3 , 8 ,13 ,18	D) 3 , 6 , 9	,12	
27) The sum of first n positive into A) $S_n = \frac{(n+2)n}{2}$ B)	•	C) Sn = $\frac{n(n-1)}{2}$	D) $S_n = \frac{n(n-2)}{2}$
28) The common difference in An A) 3√3 B) 3 29) The 10 th term of an Arithmed A) 36	C) √3 D)	$\sqrt{6}$ 4, 7, 10 is	
30) Sum of first 10 odd natural n A) 120 B) 5		10	D) 100
31) In A.P if a=5, d=3, , an =20 th A) 5 32) The meaning of a ₁₀ in Arithm	B) 6	C) 3	D) 7
A) $a+10d$ 33) If 2, x,14 are in Arithmetic A) 28 B) 16	B) a+11d c progression, then the v C) 7 D) 8	•) a-9d
34) $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$ A) $\sqrt{112}$ B) $\sqrt{84}$ 35) The sum of first 'n 'ev	4 C)√98	D) √122	
A) $n(n+1)$ B) The sum of first '10'	n^2 C) $\frac{n}{2}$ even natural numb	D) ers is	n (n -1)
A) 100 B) 90 37) The sum of first 'n' oc A) 2n	,		n^3
38) a, b, c and d are in A. A) (a-b), B) (b-c)	P, then c-b is equal c) C) () (c-d)

ANSWERS:


1	С	11	D	21	А	31	В
2	В	12	Α	22	В	32	С
3	Α	13	Α	23	С	33	D
4	В	14	Α	24	D	34	Α
5	Α	15	В	25	D	35	Α
6	С	16	С	26	В	36	D
7	Α	17	С	27	В	37	С
8	С	18	Α	28	В	38	D
9	В	19	В	29	В		
10	С	20	D	30	D		

Triangles

Points to remember

- ❖ Two figures are similar if and only if they have same shape but not necessarily the same size.
- ❖ Two polygons of same number of sides are similar If
 - 1) All the corresponding angles are equal.
 - 2) All the corresponding sides are in the same ratio or in a proportion.
- Two triangles are said to be similar if there corresponding angles are equal or corresponding sides are proportional.
- ❖ Basic proportionality theorem (BPT) (Thales theorem): "If a straight line is drawn parallel to one side of a triangle, then it divides the other two sides proportionally."
- ❖ AA Similarity criterion

If two triangles if the corresponding angles are equal, then their corresponding sides will be in proportion and hence the two triangle are similar.

In Δ LMN ಮತ್ತು Δ PQR ಗಳಲ್ಲಿ,

(i)
$$\angle L = \angle P$$
, $\angle M = \angle Q$, $\angle N = \angle R$

(ii)
$$\frac{LM}{PQ} = \frac{MN}{QR} = \frac{LN}{PR}$$

 \Rightarrow \triangle LMN \sim \triangle PQR,

- ❖ The areas of similar triangles are proportional to square of the corresponding sides.
- Pythagoras theorem: In a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.
- ❖ Baudhayana theorem: The diagonal of a rectangle. Produces both areas of which its length and breadth produce separately.
- ❖ Pythagorean triplets: The triplets of natural numbers are form a right angled triangle are called pythagorean triplets

❖ Converse of pythagoras theorem:- "If the square on the longest side of a triangle is equal to the sum of the squares on the other two sides then those sides contain a right angle".

Multiple choice questions

- In \triangle ABC, DE \parallel AB. If CD=3cm, EC=4cm, BE=6cm, then DA is equal to 1) (A) 7.5 cm (B) 3 cm (C) 4.5 cm (D) 6 cm
- In fig , if XY|| BC, then $\frac{AX}{XB}$ = 2)

- (A) $\frac{AX}{AY}$ (B) $\frac{AX}{AR}$ (C) $\frac{AY}{YC}$ (D) $\frac{AC}{AY}$
- 3) In a rectangle, length=8cm, breadth=6cm, then the length of its diagonal is equal to
 - (A) 9 cm
- (B) 14 cm
- (C) 10 cm
- (D) 12 cm
- 4) $\triangle ABC \sim \triangle DEF$ and $\frac{BC}{EF} = \frac{3}{5}$ then, $\frac{Area \text{ of } \triangle ABC}{Area \text{ of } \triangle DEF} = \frac{3}{5}$ (A) $\frac{3}{5}$ (B) $\frac{9}{25}$ (C) $\frac{27}{125}$ (D) $\frac{6}{10}$

- 5) $\triangle ABC \sim \triangle PQR$ and $\frac{Area \text{ of } \triangle ABC}{Area \text{ of } \triangle PQR} = \frac{25}{81}$, then BC:PQ is
 - (A) 9:5
- (B) 5:3
- (C) 25:81 (D) 5:9

6) The length of the altitude of an equilateral triangle of side 10cm is

(A) $5\sqrt{3}$ cm

(B) $10\sqrt{3}cm$

(C) $\sqrt{3}$ cm

(D) 75cm

7) The ratio of areas of two similar triangles when ratio of two of its corresponding sides is 4:9 is

(A) 16:81

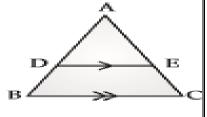
(B) 4:9

(C) 2:3

(D) 8:18

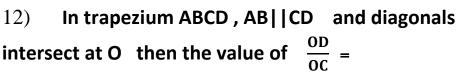
- 8) In triangle PQR , \angle PQR = 90°. PQ=12cm & QR=5cm , the length of PR= (B) 14 cm (C) 10 cm (A) 17 cm (D) 13 cm
- 9) Pythagorean triplet among these

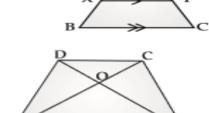
(A) 4,5,6


(B) 2,3,5

(C) 8, 10, 6

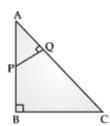
(D) 9, 10, 12


In fig, D and E are the midpoints of AB and AC Respectively. If DE=4 cm then the value BC is


(A) 4 cm (B) 6 cm (C) 8 cm (D) 12 cm

11) In fig , if XY|| BC, then the value of $\frac{AX}{AB}$ =

(A) $\frac{AX}{AY}$ (B) $\frac{AX}{YR}$ (C) $\frac{AY}{AC}$ (D) $\frac{AC}{AY}$

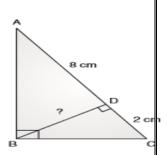


(A) $\frac{OB}{OA}$ (B) $\frac{AB}{CD}$ (C) $\frac{OC}{OD}$ (D) $\frac{AC}{BD}$

Sides of a triangle are of length 2 cm, 3 cm and 4 cm respectively. the set of numbers which are similar to the above triangle is

(A) 4, 5, 6 (B) 5, 6, 7 (C) 12, 13, 14 (D) 6, 9, 12

14) In fig $\angle ABC = \angle AQP = 90^{\circ}$, then $\frac{AQ}{AB}$

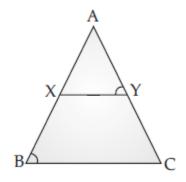


(A)
$$\frac{BC}{PQ}$$
 (B) $\frac{AC}{PQ}$ (C) $\frac{QP}{BC}$ (D) $\frac{AP}{AB}$

- 15) Corresponding sides in equiangular triangle are
 - (A) ಸಮನಾಗಿರುತ್ತವೆ

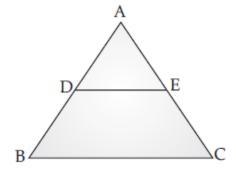
- (B) ಸಮಾಂತರದಲ್ಲಿರುತ್ತವೆ
- (C) ಸಮಾನುಪಾತದಲ್ಲಿರುತ್ತವೆ
- (D) ಆಸಮನಾಗಿರುತ್ತವೆ
- Sides of two similar triangles are in the ratio 2:3. Areas of these triangles are in the 16) ratio
 - (A) 9:4
- (B) 4:9
- (C) 2:3
- (D) 3:2
- Areas of two similar triangles are in the ratio 25: 49. Sides of these triangles are in the ratio
 - (A) 4:6
- (B) 5:7
 - (C) 6:7
- (D) 7:8
- In triangle PQR , \angle PQR = 90°. then the correct relation is 18)
 - (A) $PR^2 = PQ^2 QR^2$
- (B) $PQ^2 = QR^2 PR^2$
- (C) $PR^2 = PQ^2 + QR^2$
- (D) $QR^2 = PQ^2 PR^2$
- Pythagorean triplet among these 19)
 - (A) 3, 4, 5
- (B) 1, 2, 3
- (C) 2, 3, 4
- (D) 9, 10, 14
- Among these which one forms the sides a right angle triangle 20)
 - (A) 3, 6, 9
- (B) 15, 8, 17
- (C) 5, 12, 17 (D) 8, 5, 17
- In the fig, $\angle ABC = 90^{\circ}$, $\angle ADCB = 90^{\circ}$, AD = 8 cm, and CD = 2 cm, then find lenth of BD
 - (A) 4 cm

- (B) 8 cm (C) 16 cm (D) 10 cm


22. In the given figure, $\angle ABC \sim \angle AYX$, then the ratio of the corresponding sides is:

$$\mathbf{A)} \ \frac{\mathbf{AX}}{\mathbf{AC}} \quad = \quad \frac{\mathbf{AB}}{\mathbf{AY}} \quad = \quad \frac{\mathbf{CB}}{\mathbf{XY}}$$

$$\mathbf{B)} \ \frac{\mathbf{AB}}{\mathbf{AY}} \quad = \quad \frac{\mathbf{BC}}{\mathbf{XY}} \quad = \quad \frac{\mathbf{AX}}{\mathbf{AC}}$$

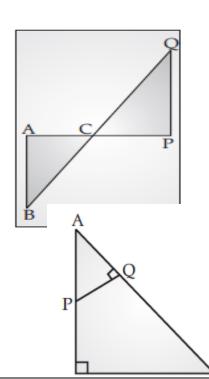

$$\mathbf{C}) \quad \frac{\mathbf{A}\mathbf{B}}{\mathbf{A}\mathbf{X}} \quad = \quad \frac{\mathbf{A}\mathbf{C}}{\mathbf{A}\mathbf{Y}} \quad = \quad \frac{\mathbf{B}\mathbf{C}}{\mathbf{X}\mathbf{Y}}$$

$$\mathbf{D}) \quad \frac{AX}{AC} \quad = \quad \frac{AY}{AB} \quad = \quad \frac{XY}{CB}$$

In the figure, $DE \parallel BC$, AD : AB = 1 : 2, BC = 6 cm, then DE is 23.

- (A) 1 cm
- (B) 2 cm (C) 3 cm (D) 4 cm

In the given figure $\triangle ABC \sim \triangle PQC$. The ratio of their 24. corresponding sides is


$$\mathbf{A)} \qquad \frac{\mathbf{AB}}{\mathbf{PQ}} \qquad = \qquad \frac{\mathbf{BC}}{\mathbf{PC}} \qquad = \qquad \frac{\mathbf{AC}}{\mathbf{QC}}$$

$$\mathbf{B)} \ \frac{\mathbf{AB}}{\mathbf{PC}} \quad = \quad \frac{\mathbf{BC}}{\mathbf{PQ}} \quad = \quad \frac{\mathbf{AC}}{\mathbf{QC}}$$

C)
$$\frac{BC}{PQ} = \frac{AB}{QC} = \frac{AC}{PC}$$

$$\mathbf{D})\,\frac{\mathbf{A}\mathbf{B}}{\mathbf{P}\mathbf{Q}} \quad = \quad \frac{\mathbf{B}\mathbf{C}}{\mathbf{Q}\mathbf{C}} \quad = \quad \frac{\mathbf{A}\mathbf{C}}{\mathbf{P}\mathbf{C}}$$

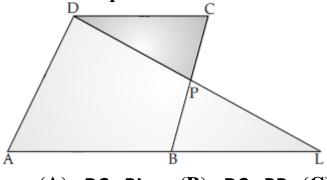
25. In the figure,
$$\angle ABC = \angle AQP = 90^{\circ}$$
, then $\frac{AQ}{AB}$

A)
$$\frac{BC}{PQ}$$
 (b) $\frac{AC}{PQ}$ (c) $\frac{QP}{BC}$ (d) $\frac{AP}{AB}$

(b)
$$\frac{AC}{PQ}$$

(c)
$$\frac{QP}{BC}$$

(d)
$$\frac{AP}{AB}$$


Sides of a triangle are of length 2 cm, 3 cm and 4 cm respectively. **26.** Which of the sets of numbers are the sides of a triangle, similar to the above triangle?

- (A) 4, 5, 6 (B) 5, 6, 7 (C) 12, 13, 14 (D) 6, 9, 12

Select the set of numbers from the following which can form similar 27. triangles

- (A) 9, 12, 18 and 3, 4, 6 (B) 3, 4, 6 and 9, 10, 12
- (C) 8, 6, 12 and 2, 6, 3 (D) 3, 4, 5 and 2, 4, 10

In parallelogram ABCD, P is a point on BC. In \triangle DCP and \triangle BLP, **28. DP**: **PL** is equal to:

- (A) DC:BL
- (B) DC:BP (C) PC:BL
- (D) PC: PL

 \triangle ABC has sides of length 5 cm, 6 cm and 7 cm. The perimeter of \triangle DEF **29.** is 360 cm. If $\triangle ABC \sim \triangle DEF$ then the ratio of the perimeters of $\triangle ABC$ and $\triangle DEF$ is:

- (A) 1:2 (B) 2:1 (C) 1:20 (D) 20:1

(A) 3-4		(B) 2-4 cm	(C) 1-4 cm	(D) 4-4 cm	
-	•	of two similar r areas will be	•	the ratio of 4:1,	then
	6:1		(C) 2:1	(D) 2:1	
(A) All t (B) All t (C) All t	the rectang he right ai the rhomb	wing is a corregles are similangles are similar eral triangles	r are similar		
Altitude of A altitude of A	$\triangle ABC = 6$	cm. If $\triangle \overrightarrow{ABC}$	and area of $\triangle PQ$. $\triangle PQR$, then the	-	
respectively		•	as 120 sq. cm and air of correspond (C) 4 : 1 (D)	ding sides is:	
respectively	. If area of	$\begin{array}{ccc} ABC = 60 \\ (B) & \textbf{30} \end{array}$	id points of AB , sq. cm, then areasq. cm		

 $\triangle ABC \sim \triangle DEF$, $\angle A = \angle D$ and $\angle B = \angle E$, then $\frac{\text{Area of triangle ABC}}{\text{Area of triangle DEF}}$ is

 \triangle ABC ~ \triangle DEF, the area of \triangle ABC is 45 cm² and the area of \triangle DEF

(A) $\frac{AC^2}{DF^2}$ (B) $\frac{AB^2}{DF^2}$ (C) $\frac{AC^2}{EF^2}$ (D) $\frac{BC^2}{DE^2}$

is 20 cm 2 one side of \triangle ABC is 3.6 cm, then the length of corresponding

30.

31.

equal to:

37.	In $DPQR$, $PQR = 90^{\circ}$. The correct relation with respect to									
		(A	$) PR^2 =$	$PQ^2 - Q$	R^2		(B)	$PQ^2 = 0$	QR ² – PR ²	2
		(C)	$PR^2 = PC$	$Q^2 + QR^2$			(D)	$QR^2 = P$	$Q^2 - PR^2$	
	e otl	_		one side en those		_	_		of the sq '' This	uares
	(C) Cor	overse o	s theore of Thale of Pytha	s theor	em	3) Tha n.	les the	orem	
39.	T	he leng	th of a	diagona	l of a sq	uare of	side 5 c	m is:		
40.									(D) 10 v n of AC	
BD^2 a										
	(A)	$4AB^2$		(B) 4 A	IC ²	(C) 4	BD^2	(D) 4	AO^2	
dista	nce (from (A) 17m A ladd	the stan ler 17 m	rting po (B) 15r long re	int. n eaches a	(C) 12 windov	m v of a bi	(D) 23	lculate to 3m 15 m ab uilding is	ove
the g	I UU.	(A)		(B					_	3
		/ERS:	02	(2	, -	(0	,, G	(2) 10		
1		С	11	С	21	Α	31	В	41	Α
2		С	12	Α	22	D	32	Α	42	С
3	3	С	13	D	23	С	33	D		
4		В	14	С	24	D	34	Α		
5		D	15	С	25	С	35	В		
ϵ		Α	16	В	26	D	36	Α		
7		Α	17	В	27	Α	37	С		
8		D	18	С	28	Α	38	D		
S)	С	19	Α	29	С	39	Α		

10

С

20

В

30

Α

40

Α

Pair of linear equations in two variables

Points to remember

- ❖ Pair of linear equations (simultaneous): Two linear equations in the same two variables are called a pair of linear equations in two variables.
- ❖ General form of an pair of linear equations. .

$$a_1x + b_1y + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$

Where a_1 , a_2 , b_1 , b_2 , c_1 , c_2 are real numbers

Conditions for solvability (or consistency):

Condition	Solution	Graphical	Consistency /
		representatio	Inconsistency
$a_1 \downarrow b_1$	Unique solution	Intersecting lines	Consistent
$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$			pair
$\frac{a_1}{a_1} = \frac{b_1}{a_1} \neq \frac{c_1}{a_1}$	No solution	Parallel lines	Inconsistent
a_2 b_2 c_2			pair
$a_1 - b_1 - c_1$	Infinite solutions	Coincident lines	Consistent
$\overline{a_2} - \overline{b_2} - \overline{c_2}$			pair.

Multiple choice questions

1) The ratio of coefficients of linear equations $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ which have unique solution is

A)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$
 B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ C) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ D) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

2) For what value of 'k' the given pair of linear equations are parallel:

$$Kx + 3y = 5;$$
 $4x + 6y = 13$
A) 4 B) 8 C) 3 D) 2.

3) For what value of 'k' the given pair of linear equations have infinitely many solutions : 2x + 4y = 3, 6x + Ky = 9

A)	12	B) 8	C) 10	D) 4

4) The ratio of coefficients of linear equations a₁x+b₁y+c₁=0 and a₂x+b₂y+c₂=0 which have infinite solution is

A)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

A)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ C) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ D) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

$$C) \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

D)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

5) A pair of linear equations among the following which has infinitely many solutions is

A)
$$2x - 3y + 6 = 0$$
, $2x + 3y + 6 = 0$

A)
$$2x - 3y + 6 = 0$$
, $2x + 3y + 6 = 0$
B) $3x - 4y - 6 = 0$, $3x - 4y + 6 = 0$

C)
$$x - y + 10 = 0$$
, $x - y + 10 = 0$

C)
$$x - y + 10 = 0$$
, $x - y + 10 = 0$ D) $5x - 10y + 20 = 0$, $5x - 20y + 30 = 0$

6) The inconsistent pair of equations among the following

A)
$$x - y + 3 = 0$$
, $x-y+6=0$

C)
$$3x - 4y + 12 = 0$$
, $x - y + 10 = 0$

- 7) The linear equations 5x+10y=12 and 15x+30y=10 has A)unique solution B)infinitely many solutions
 - C) no solution
- D)have two solutions
- 8) The linear equations 2x-3y=7 and 3x+2y=5 are

 - A) Consistent pair B) Dependent pair
 - C) Inconsistent pair D) Straight pair
- 9) The linear equations 4x+3y=10 and 8x+6y=20 have
 - A)unique solution
- B)infinitely many solutions

- C)no solution
- D)have two solutions
- The value of x and y for two equations x+y=5 and 2x-y=4 is 10)
 - A) (2,3)
- B) (3, 2)
- C) (1.4)
- D) (4, 1)
- For what value of 'k' the given pair of linear equations are 11) parallel: 2x+3y=5, 4x+ky=8

A) 6

B) 3

C) 4

D) 2

12) For what value of 'k' the given pair of linear equations are coincident lines: 2x+ky=10, x+4y=5

A) 2.

B) 4.

C) 6.

D) 8.

13) The lines of the equations 2x+3y=5, 4x+y=10 are

A)intersecting lines

B) parallel

C)coincident

D) inconsistent

14) For what value of 'k' the given pair of linear equations have infinitely many solutions: kx-4y=3, 6x-12y=9

A) 1

B) 2

C) 3

D) 4

15) Another equation among the following to match exactly with 2x+3y=9 and get intersecting lines in its graphical representation is

A) 2x - 3y = 9.

B) 4x + 6y = 3.

C) 6x + 9y = 10.

D) 2x + 3y = 9.

16) The graph of the equation when the ratio $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is

A)coincident lines

B) intersecting lines

C)parallel lines

D) straight lines

ANSWERS:

1	С	7	С	13	С
2	D	8	Α	14	В
3	Α	9	С	15	Α
4	В	10	В	16	В
5	С	11	D		
6	Α	12	D		

Circles

Points to remember

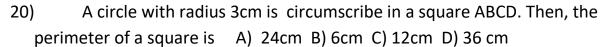
A)1

B)2

C) 3

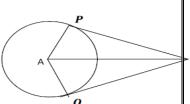
**	A straight line	which intersects a	circle at two	distinct	points is	called secant
----	-----------------	--------------------	---------------	----------	-----------	---------------

- ❖ A straight line which intersects a circle at only one point is called a tangent.
- ❖ The point where a tangent touches the circles is called the point of contact.
- In any circle, the radius drawn at the point of contact is perpendicular to the tangent.
- Only one tangent can be drawn to a circle at any point on it.
- ❖ Tangents drawn at the ends of a diameter are parallel to each other.
- ❖ Length of tangents from an external point to a circle are equal.


Mul	tiple choice	e question	<u>1S</u>		
1)	The line segm	ent joining	 two distin	ct points on a	circle is
	A) Chord	B)Seca	nt	C) Tangent	D) Radius
2)	A straight line	e that interse	ects at onl	y one point on	the circle is
	A)Tangent	B)Se	cant	C)Radius	D)arc of a circle.
3)	The maximur	n number of	parallel t	angents that ca	an be drawn to a circle is
	A)1	B)2	C)3	D)Infinite	ely many
4)	The angle su	btended bet	ween tar	gent and radiu	us of a circle is
	A) 30°	B) 60°	C) 90°	D) 180°	
5)	The maximum point is	n number of	tangents t	that can be dra	awn to a circle from an external

D) 4

6) The number of tangents to a circle passing through a point lying on the circle is


	A) 1	B) 2	C) 3	D)Infinitel	ly many	
7) Tw					center 'O' and <i>i</i>	AB is the
cho	rd of large	r circle which	touches th	ne smaller cir	rcle at P then the	<u>!</u>
	gth of the ch					
	24cm			C) 18cm	D) 8 cm	
•					6cm from an	No S
•	_	hich is 10cm				
	-		C) 10cm	D) 5cm		
•			•	•	s 70° then angle l	between
	ir radii is					
A)	110°	B) 70° C) 60°	D) 100°		
10)	If the angle	between two	radii of a c	ircle is 90°.	the angle betwee	en tangents
		ds of the radi		,	0	.
A) (B) 180°	C) 60°	D) 90°	0	
,		,	-,	,		
11)	The tang	ents drawn at	the ends of	f a diameter o	of a circle are	
A) parallel to				to each other	R
C)intersects to	each other	D) (Coincides to	each other	
12)	A quadrilate	ral ABCD is	drawn to ci	ircumscribe a	e circle.	Q
AB	+CD=					s
A)	AC+CD	B) AD+B0	C ()	AB+BC D)) AB+AD	A P B
13)	PQ is a ta	ngent to a cir	cle with ce	nter 'O' touc	hes the circle at _I	point P then
∠0	PQ =					
A)	30° E	3) 60° (C) 90°	D) 180°	C_{Γ}	P
•	_	BC, CE and El		_		V E
circ	le. If BC = 5	cm, EF = 3cm	, then the l	ength of CE =	В	₹ fr
Α) 3cm b) 5	cm C) 8cm	D) 2 cm			
15)	"D" Is the	e external poi	nt at a dist:	ance of 5cm	from the	A ^Ψ H
•		-			is the tangent to	nuches the
		the length of		Jeni ana i Q	is the tangent to	Acrics tile
Circ	A) 4cm	B) 7cm	C) 8cm	D) 2cm		
	ry T oni	<i>5)</i> / Cill	C) OCITI	D) ZCIII		

- 16) If TP and TQ are the two tangents to a circle with center 'O' so that ∠POQ = 110° then ∠PTQ =
 - A) 110°
- B) 70°
- C) 60°
- D) 100°
- 17) PQ & PR are tangents to a circle with center 'O' if $\angle QPR = 50^{\circ}$ then $\angle QOR =$
 - A) 130°
- B) 50°
- C) 65°
- D) 90°
- 18) The tangents drawn at the ends of a diameter of a circle are
 - A) parallel to each other
- B)Perpedicular to each other
- C)intersects to each other
- D) Coincides to each other
- 19) In the Figure PB is the tangent to a circle with center 'A' if \angle ABP = 40° then \angle PAB =
 - A) 90°
- B) 50°
- C) 40°
- D) 60°

1	Α	7	D	13	С	19	В
2	Α	8	Α	14	С	20	С
3	В	9	Α	15	Α		
4	С	10	D	16	В		
5	В	11	В	17	Α		
6	Α	12	В	18	Α		

110°

Constructions

- 1) A line segment of length 9cm is divided in the ratio 1:1. The length of each part is
 - A) 9cm
- B) 5cm
- C) 4.5cm
- D) 18cm
- 2) Divide a line segment of length 10cm in the ratio 2:3. The lengths of their partsrespectively are
 - A) 3cm ಮತ್ತು 7cm
- B) 4cm ಮತ್ತು 6cm
- C) 4.6cm ಮತ್ತು 5.4cm D) 4.2cm ಮತ್ತು 5.8cm
- 3) Construct a triangle of with sides 6cm, 9cm and 7.5cm respectively. Then construct another triangle similar to the given triangle such that each of its sides are $\frac{2}{3}$ of the corresponding sides of given triangle. The lengths of the new triangle respectively are
 - A) 4cm, 6cm, 8cm
- B) 4cm, 6cm, 10cm
- C) 4cm, 7cm, 6cm
- D) 4cm, 6cm, 5cm

ASWERS:

1	2	3		
С	В	D		

Coordinate geometry

Points to remember

1. Distance between $P(x_1, y_1) \& Q(x_2, y_2)$ is given by

d =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2. Distance between origion and a point P(x, y) is given by

$$d = \sqrt{x^2 + y^2}$$

3. The coordinates of the point (x, y) which divides the line segment joining the points $P(x_1, y_1) \& Q(x_2, y_2)$ in the ratio m:n are

$$(x, y) = \left[\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right]$$

4. Mid point formula: The coordinates of the mid point (x, y) of the line segment joining the points $P(x_1, y_1) & Q(x_2, y_2)$ is

$$(x, y) = \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$$

5. Area of a triangle with vertices (x_1, y_1) , (x_2, y_2) & (x_3, y_3) is

$$\Delta = \frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$$

Multiple questions

- 1) The distance between $(X_1, Y_1) \& (X_2, Y_2)$ is
 - A) $\sqrt{(X_2 X_1)^2 + (Y_2 Y_1)^2}$ B) $(X_2 X_1)^2 + (Y_2 Y_1)^2$ C) $\sqrt{(X_2 X_1)^2 + (Y_2 Y_1)^2}$ D) $(X_2 X_1)^2 + (Y_2 Y_1)^2$
- 2) The distance of a point (X,Y) from the origin is

 - A) $X^2 + Y^2$ B) $\sqrt{X^2 + Y^2}$ C) $X^2 Y^2$ D) $\sqrt{X^2 Y^2}$

3)	The mid point of the line segment joining the points $(X_1, Y_1) \& (X_2, Y_2)$ is					
	A) $\left(\frac{X_1+Y_1}{2}, \frac{X_2+Y_2}{2}\right)$ B) $\left(\frac{X_1-Y_1}{2}, \frac{X_2-Y_2}{2}\right)$					
	C) $\left(\frac{x^2+x^1}{2}, \frac{y^2+y^1}{2}\right)$ D) $\left(\frac{x^2-x^1}{2}, \frac{y^2-y^1}{2}\right)$					
4)	The distance between the coordinates (3,4) from its origin is					
	A) 6 units, B) 5 units C) 10 units D) 8 units					
5)	The distance between the coordinates (8,3) and (5,7) is					
	A) 5 units B) 11 units C) $2\sqrt{2}$ units D) 4 units					
6)	The mid point of the line joining the points (11, -4) & (5, 6) is					
	A) (5, 3) B) (-3, 7) C) (8,1) D) (16,2)					
7)	The coordinates of the end points of a diameter of a circle are (6,2) & (6,4). Then					
the co	pordinates of the center of the circle are					
	A) (4,5) B) (6,3) C) (5,4) D) (10, 8)					
8)	The value of x when the distance between the points $(7,x)$ & $(4,0)$ is 5 units is					
	A) ±7 B) ±4 C) 0 D) ±3					
9) Th	e coordinates of the point which divides the join of (3,2) & (0,5) in the ratio 2:1					
	are A) (1,4) B)(4,1) C)(3,7) D) (7,3)					
10)	The area of the triangle formed by joining the collinear points $(X_1, Y_1) \ (X_2, Y_2) \ \&$					
	(X_3, Y_3) is					
	A) 1 sq.units B) 0 sq.units C) 100 sq.units D) -1 sq.units					
11)	The value of P when the points (-5,1), (1, P) and (4,-2) are collinear is					
	A) 4 B) 5 C) -1 D) $3\sqrt{3}$					
12)	The ratio when the line $3x+y-9=0$ divides the line segment joining the points					
(1,3)	and (2,7) is					
	A) 3:4 B) 3:2 C) 2:3 D) 4:3					

13)	The value of x when the distance between the points $(x,-1)$ and $(3,2)$ is 5 units, i					
	A) -7 or -1 B) -7 or 1 C) 7 or 1 D) 7 or -1					
14)	The relation between a and b when the points (1,2), (0,0) and (a, b) are collinear					
is	A) 2a=b B) a=-b C) a=2b D) a=b					
15)	The area of a triangle with vertices $(1,-1)$ $(-4,6)$ & $(-3,-5)$ is					
	A) 24 sq.units B) 40 sq.units C) 48 sq.units D) 32 sq.units					
16)	The distance of the point $P(2, 7)$ from the $x - axis$ is					
	A) 2 units B) 7 units C) 9 units D) 11 units					
17)	The distance of the point Q(6, 2) from the Y – axis is					
	A) 2 units B) 4 units C) 6 units D) 8 units					
18)	Co-ordinates of origin are.					
	A) (1, 1) B) (1, 0) C) (0, 1) D) (0, 0)					
19)	The formula to find out the area of the triangle whose vertices are					
	A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) is					
	A). $\frac{1}{2}$ [x ₁ (y ₂ +y ₃) + x ₂ (y ₃ + y ₁) + x ₃ (y ₁ + y ₂)					
	B). $\frac{1}{2}$ [x ₁ (y ₂ - y ₃) + x ₂ (y ₃ - y ₁) + x ₃ (y ₁ - y ₂)]					
	C). $\frac{1}{2}$ [x ₁ (y ₂ - y ₃) - x ₂ (y ₃ - y ₁) - x ₃ (y ₁ - y ₂)]					
	D). $\frac{1}{2}$ [x ₁ (y ₂ + y ₃) - x ₂ (y ₃ + y ₁) - x ₃ (y ₁ + y ₂)]					
20)	The coordinates of the points which divides the line segment joining					
the points (x_1, y_1) and (x_2, y_2) internally in the ratio m_1 : m_2 is						
	A). $\left[\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right]$ B). $\left[\frac{m_1x_2-m_2x_1}{m_1+m_2}, \frac{m_1y_2-m_2y_1}{m_1+m_2}\right]$					

is

(C) . $\left[\frac{m_1}{n}\right]$	$\frac{x_2+m_2x_1}{n_1-m_2}$	$, \frac{m_1y_2+}{m_1-}$	$\left[\frac{m_2y_1}{m_2}\right]$	D). $\left[\frac{m_1}{m_2}\right]$	$\frac{x_2-m_2x_1}{m_1-m_2}$	$, \frac{m_1y_2}{m_1}$	$\begin{bmatrix} -m_2y_1 \\ -m_2 \end{bmatrix}$	
21) T	The area of the triangle whose vertices are A (3, 3), B(3, 5) and C (2, 4) is A) 0 units B) 1 units C) 2 units D) 3 units									
22) axis is		oendicul	lar distaı	nce of p	oint A (6	, 9) fror	n the x-a	axis and	у-	
A	4) 6 unit	s, 9units	3		B) 9	9 units ,	6units			
(C) 6 unit	s ,15 uni	its		D)	15 units	, 9units			
23)	The coor	dinates	of the po	oint on t	he x- axi	is will b	e in the f	form		
	A) (0, y	') I	(x, 0)		C) (0,	, 0)	D) (x, y)		
24)			-		•		e in the f			
25)					C) (0,			(x, y)		
	X-coord	dinate or	n y-axis	is		2		D) 3		
27)	The poi	nt amon	_	llowing	which li		D) 0 axis is (2, 3)	D)	(0, 2)	
28)	The poi	nt amon	g the fol	llowing	which li	e on y-	axis is			
A) (3,0) B) (0,-4) C) (-2,0) D) (4,6) ANSWERS:										
1	Α	7	В	13	D	19	В	25	Α	
2	В	8	В	14	Α	20	Α	26	D	
3		9	Δ	15	Δ	21	R	27	Δ	

16

17

18

В

С

D

В

C

С

22

23

24

В

В

Α

28

В

4

5

6

В

Α

С

10

11

12

Quadratic equations

Points to remember

- **1. Standard form of a quadratic equation is** $ax^2 + bx + c = 0$, $a \ne 0$
- 2. Quadratic formula to find roots of $ax^2+bx+c=0$ are

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 3. Nature of roots of a quadratic equation
 - The discriminant to find nature of roots of a quadratic equation $ax^2+bx+c=0$ is given by $\Delta = b^2-4ac$
 - If $\Delta = b^2 4ac = 0$ then roots are real and equal.
- iii. If $\Delta = b^2 4ac > 0$ (+ve) then roots are real and distinct.
- iv. If $\Delta = b^2 4ac < 0$ (-ve) No real roots.
 - 1. Which of the following is not a quadratic equation

A)
$$X^2+3x-5=0$$

$$(B)x^2+x^3+2=0$$

$$(C)3+x+x^2=0$$

(B)
$$x^2+x^3+2=0$$
 (C) $3+x+x^2=0$ (D) $x^2-9=0$

- 2. The quadratic equation has degree
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- 3. The standard form of a quadratic equation is

A)
$$ax^2 + bx + c = 0$$
 B) $ax + b = c$ C) $ax^3 + bx^2 + c = 0$ D) $ax - b = 0$

B)
$$ax + b = 0$$

C)
$$ax^3 + bx^2 + c = 0$$

D)
$$ax - b = 0$$

4. Pure quadratic equation among the following is

A)
$$x^2 + 2x + 2 = 0$$
 B) $x^2 + 5x + 6 = 0$

B)
$$x^2 + 5x + 6 = 0$$

C)
$$x^2 + 9 = x$$

D)
$$x^2 - 9 = 0$$

5. Sridhara's quadratic formula for the quadratic equation $ax^2 + bx + c = 0$ is

				on $ax^2 + bx + c = 0$ is
A) $b^2 - 4$	ac	B) $\frac{b}{2a}$	C) $\frac{b}{2a}$	D) $\frac{-b}{4ac}$
7. The maximu	ım number	of roots of a q	uadratic equation	n is
A) one	B) two	C) three	(D) depen	ds on the given equati
8. Sum of a nu	umber and it	ts reciprocal is	s 17/4, the number	er is
A) 4	B) 3	C) 5	D) 2	
9. The values	of X in giv	ven Quadratio	equation X ² +1=3	101 are
A) ±1	B) ±10	C) ±11	D) $\pm\sqrt{1}$	$\overline{0}$
10.The roots o	f the Quadra	ntic equation >	κ²=49 are	
A) 7 and -7	B) 2	4 and 5	C) 8 and -8	D) 7 and 0
11. If the roo	ts of the equ	uation ax ² + b	x + c = 0 are ed	jual, then the value of
A) b ² - 4a		B) b ² X 4a	C) $\frac{b^2}{4a}$	D) $\frac{4a}{b^2}$
12. The discrin	ninant of the	e given quadr	atic equation 2x ²	-4x + 3 = 0 is
A)-8	B)8	C)0	D)1	
	of the quad	ratic equation	$1 x^2 + mx + 4 = 0$ ar	e equal, then the value
is				
A) 2	B) 4	C) 6	D) 5	

14. "The product of two consecutive positive integers is 30" this statement can be

expressed as

A) x(x+2) = 30 B) x(x-2) = 30 C) (x-3)x = 30 D) x(x+1)=30

15. Which of the following is an example for quadratic equation

A)
$$x(x+3) + 5 = x^2$$

B)
$$x(x-3)=5$$

A)
$$x(x+3) + 5 = x^2$$
 B) $x(x-3) = 5$ C) $2x^2 + 2x = 2(x^2 - 5)$ D) $(x+1)x = x(x-3)$

$$D)(x+1)x=x(x-3)$$

16. The nature of roots of the equation $x^2 + 4x + 4 = 0$ is

- A) Real and Equal
- B) Real and distinct
- C) No real
- D) Different roots

17. " The sum of squares of two consecutive odd positive integers is 34" this can expressed as

A)
$$x^2 + (x+1)^2 = 34$$
 B) $x^2 + (x+3)^2 = 34$

B)
$$x^2 + (x+3)^2 = 34$$

C)
$$(x+1)^2 + (x+2)^2 = 34$$
 D) $x^2 + (x+2)^2 = 34$

D)
$$x^2 + (x+2)^2 = 34$$

18. If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$, then the value of p is

19. The sum of the reciprocals of Rehman's ages 3 years ago and 5 years from now is 1/3. The present age of Rehman is:

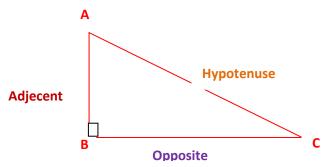
20. What number should be added to x^2+6x to make it a perfect square?

A) 36

(B) 18

(C) 9

(D) 72


ASWERS:

1	В	6	Α	11	С	16	Α
2	С	7	В	12	Α	17	D
3	Α	8	Α	13	В	18	С
4	D	9	В	14	D	19	Α
5	D	10	A	15	В	20	A

UNIT: TRIGONOMETRY

Points to remember

TRIGONOMETRIC RATIOS:

SinA	CosA	TanA	CosecA	SecA	CotA
Opposite Hypotenuse	Adjecent	Opposite	Hypotenuse	Hypotenuse	Adjecent
	Hypotenuse	Adjecent	Opposite	Adjecent	Opposite

TRIGONOMETRICAL RATIOS TABLE FOR STANDARD ANGLES

∠A	00	30 ⁰	45 ⁰	60°	90°
SinA	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
CosA	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
TanA	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N.D
CosecA	N.D	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
SecA	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	N.D
CotA	N.D	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

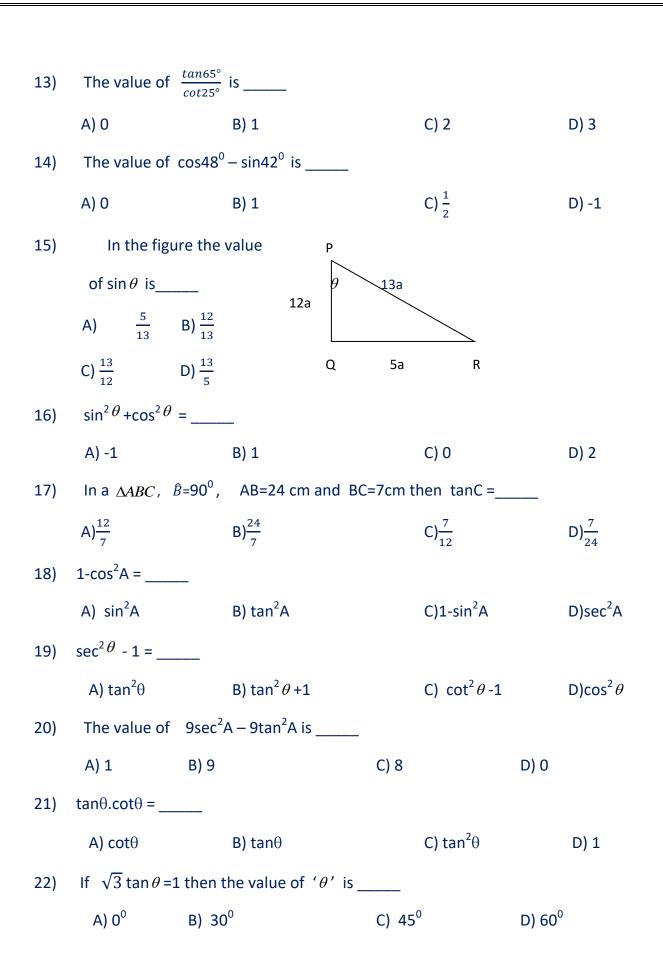
TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

SinA	CosA	TanA	CosecA	SecA	CotA
Cos(90-A)	Sin(90-A)	Cot(90-A)	Sec(90-A)	Cosec(90-A)	Tan(90-A)

TRIGONOMETRIC IDENTITY

$$\rightarrow$$
 Sin²A + Cos²A = 1

$$\rightarrow$$
 Tan²A + 1 = Sec²A


$$\rightarrow$$
 1 + Cot²A = Cosec²A

INVERSE OF TRIGONOMETRIC VALUES

1 SinA	CoSecA
$\frac{1}{CosA}$	SecA
$\frac{1}{TanA}$	CotA
1 CosecA	SinA
$\frac{1}{SecA}$	CosA
$\frac{1}{CotA}$	TanA

SOME IMPORTANT MULTIPLE CHOICE QUESTIONS

1.	The value of tan45 ⁰ is	S			
	A) $\sqrt{3}$		C) 1		D) $\frac{1}{\sqrt{3}}$
2.	If $2\sin 2\theta = \sqrt{3}$ then t A) 90°	the value of ' θ B) 60^{0}	' is C) 30 ⁰		D) 45 ⁰
3.	$\sin(90-\theta)$ is equal to A) $\cos\theta$		θ C) $\sec \theta$		D) $\cot \theta$
4.	$\tan \theta - \cot(90 - \theta)$ is e		C) 2	D) 3	
5.	A) 0 B) 1 If $\sin \theta = \frac{x}{y}$ then the		C) 2 is	D) 3	
	A) $\frac{y}{\sqrt{y^2-x^2}}$ If $13\sin\theta = 12$ then		• •		$D) \frac{\sqrt{y^2 - x^2}}{y}$
0.	A) $\frac{5}{12}$ B) $\frac{13}{5}$			D) $\frac{13}{12}$	
7.	The value of Sin30 ⁰ +	cos60 ⁰ is	_		
	A) 1	B) $\frac{3}{2}$	C) $\frac{1}{4}$		D) $\frac{2}{3}$
8)	The value of sin60 ⁰ .	$\cos 30^{\circ} + \sin 30^{\circ}$.	cos60° is		
	A) 4	B) 3	C) 2		D) 1
9)	If $tanA = \frac{4}{3}$ then co	tA =			
	A) $\frac{4}{3}$ The value of tan45 ⁰	B) $\frac{3}{4}$	J		D) $\frac{5}{3}$
	A) 3	B) 2	C) 1		D) 0
11)	The value of $\frac{sin18^{\circ}}{cos72^{\circ}}$ i	S			
	A) 0	B) 1	C) 2		D) 3
12)	The value of $\frac{tan26^{\circ}}{cot64^{\circ}}$	is			
	A) 0	B) 1	C)2		D)3

23)	The value of	$\sin^2 30^0 - \cos^2 30^0$ is	_	
	A) $-\frac{1}{2}$	$B)\frac{\sqrt{3}}{2}$	$C)\frac{3}{2}$	D) $-\frac{2}{3}$
24)	The value of	$\frac{1-tan^2 45^{\circ}}{1+tan^2 45^{\circ}}$ is		
	A) tan90 ⁰	B) 1	C) sin45 ^c	D)0
25)	If we expres	as $\csc \theta$ in the form of	$\cot \theta$, then $\csc \theta$	=
	A) $\cot \theta$	B) $\cot^2 \theta - 1$	C) $\sqrt{1 + }$	$\overline{\cot^2 \theta}$ D) 1+ $\cot^2 \theta$
26)	If $sinA = \frac{1}{2}$	and $\cos B = \frac{1}{2}$ then A	+ B =	
	A) 0 ⁰	B) 30 ⁰	C) 60 ⁰	D) 90 ⁰
27)	In a $\triangle ABC$ if	\hat{C} =90 0 , then sin(A + B)= _		
	A)0	B) $\frac{1}{2}$	C) $\frac{1}{\sqrt{2}}$	D)1
28)	If $\sin \theta = \frac{1}{2}$	and $\cos \theta = \frac{\sqrt{3}}{2}$, then $\tan \theta$	9 =	
	A)√3	$B)\frac{1}{2}$	C) $\frac{\sqrt{2}}{3}$	D) $\frac{1}{\sqrt{3}}$
29)	In a $\triangle ABC$ \hat{B} =	=90 ⁰ tanA= $\frac{1}{\sqrt{3}}$, then sir	nA=	
	A) 0	B) $\frac{1}{2}$	C) $\frac{\sqrt{3}}{2}$	D) $\frac{1}{\sqrt{2}}$
30)	In sinA, $0 \le$	$A \le 90^{\circ}$ then the leas	st value of sinA is	
	A)-1	B)0	C) $\frac{1}{\sqrt{2}}$	D) $\frac{1}{2}$
31)	If sin2A = 2s	inA then the value of A	is	
	A) 30 ⁰	B) 45 ⁰	C) 0 ⁰	D)90°
32)	In a ΔABC, Â	$\hat{c}=90^0$ and $\hat{c}=30^0$ then A	AB : AC is	
	A) 1:2	B) 2:1	C) $\sqrt{3}$: 2	D) 2: $\sqrt{3}$

If tanA = cotB, then A + B =_____ 33)

A) 90⁰ B)60⁰

C) 30^0 D) 0^0

34) The value of $tan1^0.tan2^0.tan3^0....tan89^0$ is _____

A) 0

B)1

C)2

D) $\frac{1}{2}$

35) $\frac{2tan30^{\circ}}{1+tan^2 30^{\circ}} =$ _____

A) sin60⁰ B)cos60⁰

C)tan60⁰ D)sin30⁰

 $\frac{1+tan^2A}{1+cot^2A} = \underline{\hspace{1cm}}$ 36)

A) sec^2A B) -1

C) cot²A

D) tan²A

37) If sinA - cosA = 0 then the value of $sin^4A + cos^4A$ is _____

A) 2

B)1

C) $\frac{3}{4}$ D) $\frac{1}{2}$

38) if $\sin\theta + \sin^2\theta = 1$ then the value of $\cos^2\theta + \cos^4\theta$ is _____

A) -1 B) 1 C)0

D) 2

ANSWERS:

1	С	11	В	21	D	31	С
2	С	12	В	22	В	32	Α
3	Α	13	В	23	Α	33	Α
4	Α	14	Α	24	D	34	В
5	D	15	В	25	С	35	Α
6	D	16	В	26	D	36	D
7	Α	17	В	27	D	37	D
8	D	18	Α	28	D	38	В
9	В	19	Α	29	В		
10	С	20	В	30	В		

12. Applications of trigonometry

Multiple choice questions

1)			-	al to its l (D) 90°	neight at	10-45 a.m.	The sun's	altitude is
2)	` '	awn from th	•		to the poir	nt in the obje	ct viewed by	y the
3)		of elevation eight of the	of the top of	of a tower	_	(D) transvent 20 metres (D) 20V3 m	away from	its base is
4)	If the length	h of the sha	dow of a to	wer increa	ses, then tl	he angle of e	levation of the	he sun
	(A) is also	increases	(B) d	lecreases				
	(C) remain	s unaffecte	d (D)	increases th	nen decrea	ses		
5)	_	of elevation gle of eleva	-		s 30°. If th	e height of th	ne tower is d	oubled,
	(A) also ge	t doubled	(B) v	will get hal	ved			
	(C) will be	less than 60)° (D) .	30°				
6)	If a pole 6 elevation i		ts a shadov 60°	w 2√3 m I (B) 45°		e ground, tl (C) 30°	nen the sun (D)90°	'S
7)	The line dra	wn from the	eye of an ob	server to th	e point of a	n object is		
A)	Horizontal li	ne B)Vertical line	!	C)Line of	sight D)1	The oblique li	ne
	ANSW	'ERS:						
	1	2	3	4	5	6	7	
	В	С	В	В	С	A	A	

Statistics

Points to remember

1. Mean for groupd data

Direct method to find mean

mean,
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

- 2. Mode for grouped data = $\left[L + \left[\frac{f_{1-}f_0}{2f_{1-}f_0-f_2}\right]X h\right]$
- 3. Median for grouped of $= \left[L + \left[\frac{\frac{N}{2} cf}{f} \right] X h \right]$

Multiple choise questoins

- 1) If the mean value of 'x',6,8,9 and 12 is 8, then the value of 'x' is
 - A) 4
- B) 5
- C) 16
- D) 10
- 2) The median of the scores 5,8,14,16,19 and 20 is
 - A) 14
- B) 15
- C) 16
- D) 17
- 3) The wickets taken by a bowler in 10 cricket matches are as follows:
- 2,6,4,5,0,2,1,3,2,3 then the mode of the data is
 - A) 0
- B)1
- C) 2
- D)3
- 4) The emperical relationship between the three measures of central tendency is
 - A) 3 median = mode + 2 mean
- B) 2 median = mode + 3 mean
- C) median = mode + mean
- D) median = mode mean
- 5) Class mark for the class 10 25 is

	A) 10.5		E	3)12.5		C)	15.5			D)	17.5		
6)	Size of th	ne clas	s interv	al 40-50	0 is								
ಗಾತ	あ A) 10		B) :	15	C) 20		D) 2	25					
7)	Modal cl	ass for	the giv	en dist	ribution	is							
		CI	1-	·3	3-5	5-	7	7-9		9-1	1		
		F	7		8	2		2		1			
	A) 1-3	В)	3-5		C) 5-7	7		D)	9-11	-			
8)	The freq	uency((f_0) of cl	ass pre	ceding t	he m	nodal (class	for th	ne gi	ven di	stribu	ıtion is
		CI	5-15	15-25	5 25-	35	35-4	45	45-	55	55-6	65	
	f	:	6	11	21	1	23	3	14	4	5		
	A) 6	 B)	11	C) 2	1	D) 2	23						
9)	The freq	·		•		•		l clas	s for	the	given	distril	bution is
				1.0	T a =								
			CI	1-3	3-5	5-		7-9	9-1	1			
	^ \ ¬	5.	F	7	8	2		2	1				
10)	A) 7	B)		C) 2		D) 1							
10)	The mide				-					2) D.	2000		
11)	A) Mean									J) No	ange		
11)	The mea	B)		C) 9	-	D) 2	_	CI 3 IS	•				
12)	The sum			•		•		vided	hv th	ne to	ntal nu	ımher	r of
12)	observa			or an cr	10 00301	vacio	JIIS GIV	viaca	by ti	10 00	otal lia	iiiibci	O1
	A) Range			C) N	⁄ledian	D)	Mode	<u>.</u>					
13)	Cumula			•		·			ne				
,	(A) mea		•	(B) me					de		(D) ra	ange	

	(A) mean	(B)	median	(C)	mode	(D) rar	ige
15) Cla	assmark of	the class 1	0 – 20 is				
	A	A) 10	B) 20	C) 15	5	D) 30		
16) Size	e of the clas	ss interval 2	25-35 is				
	А) 25	B) 10	C) 35	5	D) 15		
17) Mo	de for the	data 12,15	5,14,13,12,	15,18,25,16	5,15,20,18		
	A)1	5 B) 18	C) 12 D)	25			
18) Mo	dal class fo	or the distril	oution				
	C.I	0-10	10-20	20-30	30-40	40-50	50-60	60-70
	f	3	5	8	12	10	6	4
		A) 20 –	30	B) 30 – 4	·0 C)	40 - 50		50 - 60
19) For	mula to fin	d median is	S				
	,	A) $L \neq \left[\right]$	$\left[\frac{\frac{N}{2}-cf}{f}\right]Xf$	h	B) <i>L</i> +	$\frac{\frac{N}{2}+cf}{f}\bigg]X$	Th	
	(C) $L \neq \left[\frac{f}{2f}\right]$	$\left[\frac{f_{1-}f_0}{f_1-f_0-f_2}\right]X$	Th	D) $L \neq \left[\frac{1}{2f}\right]$	$\left[\frac{f_{1-}f_0}{f_{1-}f_0+f_2}\right] X$	(h	
20) Me	dian class f	for the distr	ibution				
	C.I	0-10	10-20	20-30	30-40	40-50	50-60	60-70
	f	3	8	16	28	38	46	50
<u> </u>	۸۱ 20	- 30	B) $30 - 40$) () <i>(</i>	10 – 50	D) 5	60 - 60	
	A) 20		D) 30 10	<i>C</i>) -	10 50	טן ט	00	
21	•		following so	,		•	,0 00	

The formula used to find mode of the grouped data

Which of the following is not a measure of central tendency

14)

22)

A)
$$l + \left[\frac{n/2 - cf}{f}\right] x h$$
 B) $\frac{\sum fixi}{\sum fi}$ C) $l + \left[\frac{f1 - f0}{2f1 - f0 - f2}\right] x h$ D) $l + \left[\frac{f1 - f0}{2f1 - f0 - f2}\right]$

- 23) If the median is 36 and mean is 18, then the value of the mode is
 - A) 36
- B) 72
- C) 18
- D) 648
- 24) If the mean of 12 numbers is 20 then their algebraic sum is
 - A) 200
- B) 32
- C) 240
- D)180

25) If
$$\sum f_i = 20$$
, $\sum f_i x_i = 140 + 5k$ and $\overline{X} = 9$ find K

- A) 2
- B) 4
- C) 8
- D) 6

- 26) The Median of 13,12,5,8,11,9 is
 - A) 5
- B) 6.5
- C) 10
- D) 9.5
- 27) For the given frequency distribution table answer the following question

C-I	F
Marks scored	No of Students
0-10	11
10-20	9
20-30	8
30-40	12
40-50	10
50-60	10

- i. The modal class is
 - A) 50-60
- B) 30-40
- C) 0-10
- D) 20-30
- ii. upper limit of the modal class is
 - A) 20
- B) 30
- C) 40
- D) 50
- iii. Value of 'h' (class mark of modal class) is
 - A) 10
- B) 20
- C) 30
- D) 40

iv. The number of Students who scored more than 40 marks

A) 32

B) 12

C) 20

D) 17

ANSWERS:

1	В	7	В	13	В	19	А	25	С
2	В	8	С	14	D	20	В	26	С
3	С	9	С	15	С	21	С	27(i)	В
4	Α	10	В	16	В	22	С	27(ii)	С
5	D	11	Α	17	Α	23	В	27(iii)	Α
6	A	12	В	18	В	24	С	27(iv)	С

Surface area and volume

Points to remember

List of formulae

	1	1		
Sl.	Solid	C.S.A	T.S.A	Volume
1	Cube	$4a^2$	$6a^2$	a^3
2	Cuboid	2lb + 2lh	2lb + 2lh + 2bh	lbh
3	Cylinder	$2\pi rh$	$2\pi r^2 + 2\pi rh$	$\pi r^2 h$
4	Cone	$\pi r l$	$\pi r^2 + \pi r l$	$\frac{1}{3}\pi r^2 h$
5	Frustum of cone	$\pi(r_1+r_2)l$	$\pi r_1^2 + \pi r_2^2 + \pi (r_1 + r_2)l$	$\frac{1}{3}\pi(r_1^2 + r_2^2 + r_1r_2)h$
6	Sphere	$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
7	Hemisphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$

Important points

- Area of combination of solids is the sum of areas of visible faces.
- Volume of combination of solids is the sum of its constituent solids.
- A solid is converted from one shape in to another, their volumes remain same.

Multiple choice questions.

- If the area of the circular base of a cylinder is 22 cm² and its height is 10 cm, then 1) the volume of the cylinder is
 - A) 2200 cm²
- B) 2200 cm³
- C) 220 cm³ D) 220 cm²

2)				the frustrum of a cone whose
rac		nd slant height 'l'		5) /)
- 1				D) $\pi(r_1 \div r_2)$ l
3)		of volume 27cm ³	are joined end to end	I. The volume of the resulting
cu	boid is	. 2	. 2	. 2
	•	•	C) 108cm ³	· · · · · · · · · · · · · · · · · · ·
4)		•		of a cone having the same
rac	_	as that of the cylin		2
			C) 150 m ³	
5)	If two solid h	emisphere of sam	e radius are joined to	gether along with their bases
. T		area of their new		2
	•	·	C)4 πr²	D) 6 πr²
6)		sphere with radius		
	A) $\frac{3}{4} \pi r^3$	B) $\frac{3}{2} \pi r^3$	C) $\frac{2}{3} \pi r^3$	D) $\frac{4}{3} \pi r^3$
7)	A cylinder an	d a cone are of sa	me base , radius and o	of same height . The ratio of
the	e volume of the	cylinder to that of	the cone is	
	۸	B) 2·1	C) 2:3 D) 3:2	
	A) 2:1	D) 3.1	C) 2.3 D) 3.2	
8)	•	•	•	440 cm ² and its radius is 7cm,
,	•	•	•	440 cm ² and its radius is 7cm,
,	The curved so	urface area of a rig	•	
its	The curved so height is A) 3.5 cm	urface area of a rig	ght circular cylinder is	D)14cm
its	The curved so height is A) 3.5 cm	urface area of a rig B) 7cm pencil sharpened	ght circular cylinder is C) 10cm	D)14cm
its	The curved some height is A) 3.5 cm A cylindrical A) Two cylinder	urface area of a rig B) 7cm pencil sharpened	ght circular cylinder is C) 10cm	D)14cm
its	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe	urface area of a rig B) 7cm pencil sharpened	ght circular cylinder is C) 10cm at one edge is the cor	D)14cm
its	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe	B) 7cm pencil sharpened s re and a cylinder a cone and a cylin	ght circular cylinder is C) 10cm at one edge is the cor	D)14cm
its 9)	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemispher C) Frustrum of D) a cone and a	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylina	ght circular cylinder is C) 10cm at one edge is the cor	D)14cm
its 9)	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe C) Frustrum of D) a cone and a	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylina	c) 10cm at one edge is the cor der whose height is 24cm	D)14cm mbination of
its 9)	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe C) Frustrum of D) a cone and a	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylin a cylinder of modelling clay	c) 10cm at one edge is the cor der whose height is 24cm	D)14cm mbination of
its 9) 10 res	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe C) Frustrum of D) a cone and a so haped into spheral	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylin a cylinder of modelling clay ere, then the radiu	C) 10cm at one edge is the cor whose height is 24cm is of sphere is C) 12cm	D)14cm mbination of n and radius of base 6 cm is
its 9) 10 res	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe C) Frustrum of D) a cone and a so haped into spheral	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylin a cylinder of modelling clay ere, then the radiu	c) 10cm at one edge is the cor whose height is 24cm is of sphere is C) 12cm radius 7 cm is	D)14cm mbination of n and radius of base 6 cm is
its 9) 10 res 11	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe C) Frustrum of D) a cone and a cone and a cone made shaped into sphere and a cone	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylin a cylinder of modelling clay ere, then the radiu B)6cm area of a sphere of B)308cm ²	c) 10cm at one edge is the cor whose height is 24cm is of sphere is C) 12cm radius 7 cm is	D)14cm mbination of n and radius of base 6 cm is D)24 cm D) 770cm ²
its 9) 10 res 11	The curved so height is A) 3.5 cm A cylindrical A) Two cylinder B) A hemisphe C) Frustrum of D) a cone and a cone and a cone made shaped into sphere and a cone	B) 7cm pencil sharpened rs re and a cylinder a cone and a cylin a cylinder of modelling clay ere, then the radiu B)6cm area of a sphere of B)308cm ²	C) 10cm at one edge is the cor whose height is 24cm is of sphere is C) 12cm radius 7 cm is C) 616cm ²	D)14cm mbination of n and radius of base 6 cm is D)24 cm D) 770cm ²

13)	A toy is in t	he form	of a cone	mounted	d on a hei	misphere	of same	radius . The to	otal
surfac	ce area of t	he toy is							
A	A) πrl+2πr²	E	β) πrl+πr²		C)2 πrl+π	r ²	D) 2πrl+	$2\pi r^2$	
14)	Formul	a to find	volume o	f a cylin					
	A] $\pi r^2 h$	ı			$\mathbf{B}] \frac{1}{3}\pi$	r^2h			
	C] πrl				\mathbf{D}] 2π	rh			
15)	The solid v A] Spher		•	_		ylinder	D] Co	one	
16)	The ratio A] 2:3		of two spl		h the ratio D] 16:		radii 2:3	is	
17)]	Formula A] πr^2							hemisphere	is
	AConstitu A]cylinde		s in the gi				_	mhous	
	C] Cylino	ler , cone	- <u>-</u>]	O] cube,	, cone , h	_	-	
19)	C] Cylino The leng	ler, cone	h edge of	a cube w	O] cube ,	cone, h	emisphe 1 cm ³ is	re	
	C] Cylino The leng	ler , cone	- <u>-</u>	a cube w	O] cube ,	cone, h	emisphe 1 cm ³ is	-	
19)	C] Cylino The leng	th of each	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm³ is (D)	re	
19)	The leng (A) 12	th of each	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm³ is (D)	re 13cm	
19) 20)	The leng (A) 120 A solid for A) Cuboid	th of each cm med on r	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm³ is (D)	re 13cm	
19) 20) 1 2	The leng (A) 12 A solid for A) Cuboid Answe	th of each cm med on r	h edge of (B) 11c evolving a B) Cylinde	a cube we me a side of a r	cube , ith its vol (C) a rectang C) Sphere	lume 133 15cm le is 16 17	emispher 1 cm³ is (D) D) Right	re 13cm	
19) 20) 1 2 3	The leng (A) 12 A solid for A) Cuboid Answe	th of each cm med on r	h edge of (B) 11c evolving a B) Cylinde D B C	a cube we me side of a sid	cube, ith its vol (C) a rectang C) Sphere C D A	lume 133 15cm le is	emispher 1 cm³ is (D) D) Right C B B	re 13cm	
19) 20) 1 2	The leng (A) 12 A solid for A) Cuboid Answe	th of each cm med on r	h edge of (B) 11c evolving a B) Cylinde	a cube we me a side of a r	cube , ith its vol (C) a rectang C) Sphere	lume 133 15cm le is 16 17	emispher 1 cm³ is (D) D) Right	re 13cm	

is