

CHAMARAJANAGARA ZILLA PANCHAYATH

OFFICE OF THE DEPUTY DIRECTOR OF PUBLIC INSTRUCTION CHAMARAJANAGARA DISTRICT CHAMARAJANAGARA

COLLABORATION

DISTRICT INSTITUTE OF EDUCATION AND TRAINING

CHAMARAJANAGARA

Multiple Choice Question Based

Model Question Papers

SSLC Examination-20- 2021

MATHEMATICS

"The Only Thing That Overcomes Hard Luck Is Hard Work"

Multiple Choice Questions Based Model Question Paper- 01 2020-21 Subject: Mathematics

Medium: English

Subject code : 81 E

Max. Marks: 40

Four choices are given for each of the questions/incomplete statements. Choose the correct answer and shade the correct choice in the OMR given to you with blue / black ball point pen $1 \times 40 = 40$

1. $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ pair of linear equations which forms intersecting lines then the ratio of their co-efficient is

(a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ (b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (d) $\frac{a_1}{b_2} = \frac{c_1}{a_2}$

- 2. By solving a pair of linear equations 2x + y = 7 and x y = -1 the value of x and y are
 - (a) x = -2, y = 3(b) x = 2, y = -3(c) x = -2, y = -3(d) x = 2, y = 3
- 3. Roots of the quadratic equation $x^2 4x + 4 = 0$ are (a) 1, 2 (b) 0, 2 (c) 2, 2 (d) -2, -2
- 4. 2x 3y = -1 and x = 4 then the value of 'y' (a) -3 (b) 3 (c) 4 (d) 2
- 5. The nth term of an Arithmetic progression is given by $a_n = 4 3n$ then the common difference is
 - (a) 4 (b) -3 (c) 1 (d) 3

6. There are four terms in an A.P. In which sum of the first and last term is 13 and the product of middle terms is 40. Then the terms of the given A.P

(a) 3,5,7,9	(b) 2,5,8,11
(c) 2,6,10,14	(d) 2,6,8,11

7. The sum of first 'n' terms of an arithmetic progression is given by $S_n = 2n^2 + n$ then the A.P is

(a) 3,8,13,18		(b) 4,7,10,13	
(c) 2,6,10,14		(d) 3,7,11,15	
The sum of first	t10 natural numb	per is.	
(a) 55	(b) 550	(c) 65	(d) 110

DISTRICT INSTITUTE OF EDUCATION AND TRAINING CHAMARAJANAGARA

8.

9. In an A.P first term and common difference are 5 and 3 then its 20th is
(a) 62
(b) 670
(c) 620
(d) 67

10. The discriminant of the quadratic equation $2x^2 - 5x + 3 = 0$ (a) 25 (b) 49 (c) 1 (d) -1

11. The roots of the quadratic equation $ax^2 + bx + c = 0$ (a) $x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$ (b) $x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ (c) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (d) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- 12. The length of a rectangle is twice of its breadth. If it's area 50sq.units then its length and breadth are
 - (a) 5 units and 10 units
 (b) 5 units and 5 units
 (c) 10 units and 5 units
 (d) 25 units and 5 units
- 13. Which of the following is a quadratic equation (a) $(x + 1)^2 = 3x$ (b) $x^2 + 2 = (x + 1)^2$ (c) 2x + 3 = 0 (d) $x^2 + \frac{1}{x} = 2$

14. Which of the following standard trigonometric angles are not defined (a) $\cot 90^{\circ}$ (b) $\sin 90^{\circ}$ (c) $\cos 90^{\circ}$ (d) $\tan 90^{\circ}$

15. $\sin \theta = \frac{12}{13}$ then thre value of $\tan \theta$ (a) $\frac{5}{12}$ (b) $\frac{13}{12}$ (c) $\frac{12}{5}$ (d) $\frac{5}{13}$

16.sin $(\alpha - \beta) = \frac{1}{2}$ and $\cos(\alpha + \beta) = \frac{1}{2}$ where $\alpha + \beta < 90^{\circ}$ then the value of α and β (a) 30° and 45° (b) 45° and 15° (c) 30° and 90° (d) 45° and 30°

17. The value of $sin^2 48^\circ + sin^2 42^\circ$ (a) 1 (b) -1 (c) 2 (d) 0

18.A man observes a car from the top of a building of height 50m if the angle of depression is 45° then distance between the car and foot of the building.

(a) 25 m (b) $\frac{50}{\sqrt{3}} m$ (c) $50\sqrt{3} m$ (d) 50 m

19. The co-ordinates of the point $P(x, y)$ which divides the line segment joining the $A(x_1, y_1)$ and $B(x_2, y_2)$ in the ratio is $m_1: m_2$ is (a) $\left(\frac{m_1x_2+m_2x_1}{m_1-m_2}, \frac{m_1y_2+m_2y_1}{m_1-m_2}\right)$ (b) $\left(\frac{m_1x_1-m_2x_2}{m_1-m_2}, \frac{m_1y_1-m_2y_2}{m_1-m_2}\right)$	points
(C) $\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$ (d) $\left(\frac{m_1x_1+m_2x_2}{m_1+m_2}, \frac{m_1y_1+m_2y_2}{m_1+m_2}\right)$	
20.Distance of the point (6,8) from the origin (a) 10 units (b) -10 units (C) 8 units (d) 100 units	
21. If midpoint of the line joining co-ordinate points $A(2, -5)$ and $B(x, y)$ is origin co-ordinates of $B(x, y)$ is	n then
(a) $(2,-5)$ (b) $(-2,5)$ (C) $(5,2)$ (d) $(-5,-2)$	
22.Distance of the point $A(4, -5)$ from the $x - axis$? (a) $-2 units$ (b) $2 units$ (C) $5 units$ (d) $-5 units$	
23.In the following distribution table the class interval which containing median is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(a) $10 - 20$ (b) $20 - 30$ (c) $30 - 40$ (d) $40 - 50$	
24. The mean of the following distribution table is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(a) 20 (b) 22	
(c) 25 $(d) 24$	
25. The mean and median of the scores are 30 and 32 respectively then its mode is.	
(a) 32 (b) 30	
(c) 34 (d) 36	
26. In the given figure $\underline{ABC} = 90^\circ$, $BD \perp AC \cdot AC = 9cm$ and $AD = 4cm$ then the length of AB	
(a) $4cm$ (b) $6cm$	
(c) 9cm (d) 3cm	2

Page 4

27.Which of the follo (a) 5cm, 13cm, 13 (c) 7cm, 24cm, 25	5cm	(b) 10cr	angled triangle ? m, 12cm, 13cm 1, 6cm, 7cm	
$28.\Delta LMN \sim \Delta XYZ \text{ an}$ $(a) 3: 2$	d the ratio of their (b) 16:81	perimeters 9:4 (<i>c</i>) 81:16	The ratio of the (d) 9:4	eir areas is
$29.In \Delta ABC DE \parallel I$ & $AE = 6cm$ then	BC. $AD = 4cm$, A the length of EC			
(a) 3cm	(<i>b</i>) 6	ст	D	
(c) 4cm	(<i>d</i>) 1	0 <i>cm</i>		
30.In a triangle square then the angle betw	-		-	e other two sides
(a)equal angles	(b) right ang	le (c) acute	e angle (d) obtuse angle
31. The number of tan	gents drawn to a ci	rcle from a poin	it inside it	
(<i>a</i>) 0	(<i>b</i>) 1	(<i>c</i>) 2	(d) infinit	te
32.The distance betwee (a) 6cm	een the centres of e (b) 4cm	xternally touching (c) 2cm	ng circles of rad (d) 5cm	ii 4cm and 2cm i
33. In the fig. O is the radius = $5cm$, OI			l, OP⊥AB	
(<i>a</i>) 4 <i>cm</i>	(b) 8cm	(c) 3cm	(d) 5cm	A P B
34. The sides of the given triangle 4 <i>cm</i> , 5 <i>cm</i> and 6 <i>cm</i> and The corresponding sides of the other triangle which is similar to given triangle are 6 <i>cm</i> , 7.5 <i>cm</i> and 9 <i>cm</i> , then the ratio of their corresponding side.				
(a) $\frac{2}{5}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	$(d) \frac{3}{2}$	
35.At a certain time a tree of 8m high casts a shadow of length 6m at the same time the length of shadow of building 60m high is.				
(a) 60 m	(b) 40 m	(c) 30 m	(d) 45 m	
$200 cm^3$ respective	volumes 100 <i>cm</i> ³	and		
(a) $100cm^3$	• •	$100 cm^3$		
$(c) 300 cm^3$	(<i>d</i>) 1	.50 <i>cm</i> ³		

- 37. If the surface area of the sphere is $616cm^2$ then the diameter is (a) 308 cm (b) 3.5 cm (c) 14 cm (d) 7 cm
- 38. The relation between the slant height 'l' height 'h' and the radii $r_1 \& r_2$ of frustum of a cone is

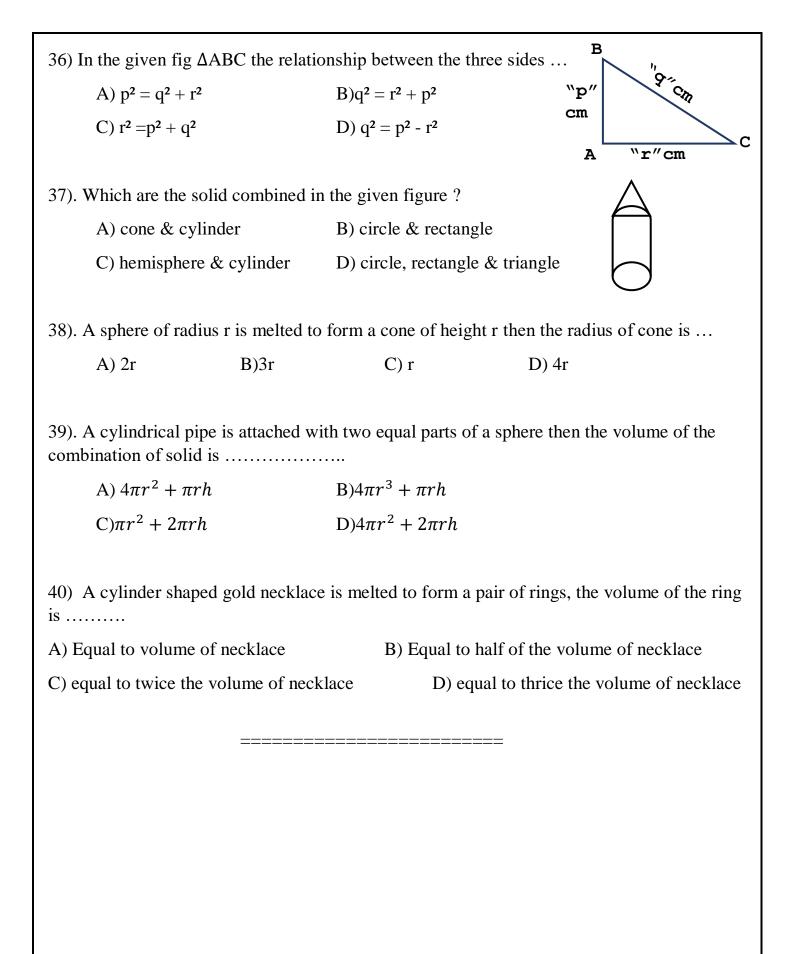
(a)
$$l^2 = h^2 - (r_1 - r_2)^2$$

(b) $l^2 = h^2 + (r_1 - r_2)^2$
(c) $l^2 = h^2 + (r_1 + r_2)^2$
(d) $h^2 = l^2 + (r_1 - r_2)^2$

39. The radius of the cylinder of height 20cm formed by melting a sphere of radius 15 cm
(a) 30 cm
(b) 7.5 cm
(c) 20 cm
(d) 15 cm

40. The ratio of heights of frustum of cones having same base 1:2 then the ratio of their volumes,

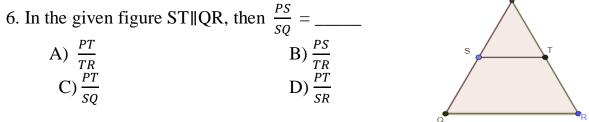
	KEY - A	ANSWI	EWRS
Q.No	Answer with option	Q.No	Answer with option
1	$(a) \ \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	21	(b) (-2,5)
2	(d) $x = 2, y = 3$	22	(C) 5 units
3	(c) 2, 2	23	(b) 20 – 30
4	(b) 3	24	(<i>d</i>) 24
5	(b) -3	25	(<i>d</i>) 36
6	(b) 2,5,8,11	26	(<i>b</i>) 6 <i>cm</i>
7	(d) 3,7,11,15	27	(c) 7cm, 24cm, 25cm
8	(<i>a</i>) 55	28	(<i>c</i>) 81:16
9	(<i>a</i>) 62	29	(a) 3 <i>cm</i>
10	(c) 1	30	(b) right angle
11	(d) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	31	(a) 0
12	(c) 10 units and 5 unit	32	(a) 6cm
13	(a) $(x+1)^2 = 3x$	33	(b) 8cm
14	(d) tan 90°	34	$(d)\frac{3}{2}$
15	(c) $\frac{12}{5}$	35	(<i>d</i>) 45 m
16	(b) 45° and 15°	36	$(c) 300 cm^3$
17	(a) 1	37	(c)14 cm
18	(d) 50 m	38	(b) $l^2 = h^2 + (r_1 - r_2)^2$
19	(C) $\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	39	(d) 15 cm
20	(a) 10 unit	40	(<i>a</i>) 1:2


KEY - ANSWEWRS

	CHAMARAJA	NAGARA DISTRICT	
Multiple	-	Based Model Question	n Paper– 02
		2020-21 t: Mathematics	
Medium: English	•	code : 81 E	Max. Marks: 40
	· ·		ents. Choose the correct
-	-	-	blue / black ball point pen
			$1 \times 40 = 40$
		then $a_{15} - a_{11}$ is	
A)12	B)16	C) 20	D)24
2) If the sum of 15 term	n of an AP is 234 an	d 14 terms is 198 then 1	5 th term is
A) 34,	B) 98	C) 36	D) 64
	,	,	,
3). If X , 13,Y,3 is an A	AP then the value of	f x & Y is	
A).16,6	B).13,3	C). 18,8	D) 14,4
, ·	, .	,	,
4). Sum of first 25 odd	natural numbers		
A) 650	B) 625	c)325	D)50
A) 050	D) 023	0)323	D)50
5) The formula to find	the group of a tomag	of on AD is	
		of an AP is	
A) $S_n = \frac{\pi}{2}(a+a_n)$	B) $S_n = \frac{\pi}{2}(2a + a_n)$	C) $S_n = \frac{n}{2}(a - a_n)$	D) $S_n = \frac{\pi}{2}(n + a_n)$
		N / / / 1 / /	
6). In the given fig if \angle . A)10cm	$B = 90^{\circ} \& AB = BC$ B)25cm	C = 5 cm then the length of	DI AC 18
·	D) $5\sqrt{2}$ cm		
	,		
7). In \triangle ABC, DE BC	then $\frac{AB}{AD} = \dots$	A	CB
		\wedge	
A) $\frac{AD}{AB}$	B)	$\frac{AE}{AC}$ D	E
AC	D)	AE	\neg
C) $\frac{AC}{AE}$	D)	DE B	<u> </u>
8). If \triangle ABC $\sim \triangle$ XYZ	and the ratio of thei	r area is196 : 81 then the	e ratio of their similar
sides			
A) 14:9	B) 7	:3	
C) 9:14	D) 3:	:7	
DISTRICT INSTITUTE OF EDUCATION	AND TRAINING CHAMARAJANA	GARA	Page 7

	_
9).In the given fig, AD=3cm, A	
CF=2cm BF=2.5cm then	
A)DE BC	B) DF AC
C) EF AB	D). AD $\ CE$ B 2.5cm 2cm C
	F es are always congruent ngle are always congruent. riangles are always congruent.
11). The given equation $2X + 3$	3Y = 16 is correct to the values of x & y
A). X=5,Y=2	B) X=2,Y=5
C)X = -5, Y = -2	D). X=-5,Y=2
12). In the given equations X+ A)5	Y=8 & 2Y - X=1 the value of y is B)4
C)3	D) -3
	y, y2/
13). The two pair of linear equ	ation is represented graphically.
The solution is	
A) (-1,0)	B)(0,-1) (-1,-2)
C) (1,0)	D) (0,1)
14). The no of tangents that car	n be drawn on a point on the circle.
A). 0 C)2	B)1 D) infinity
15). The length of the tangent of	lrawn from a point 10 cm away from the circle of radius 6cm
is	Α
A)14cm,	B) 5cm
C) 8cm	D)10cm
16) In the given fig if $\angle APB =$	$\approx 80^{\circ}$ then $\angle AOP \dots B$
A) 50°	B)60°
C)80°	D)160°
DISTRICT INSTITUTE OF EDUCATION AND TRAINI	ING CHAMARAJANAGARA Page 8

17). If a straight line $AB = 5cm$ is divided into the ratio 2 : 8, the length of second part is A) 4cm B)1cm C)3cm D)3.5cm
18). The ratio of the volume of a cylinder and cone of same base and height isA) 1:3B)3:1 \setminus C) 1: $\frac{1}{3}$ D)3:4
19) The distance between (5,-5) and the origin is
A) 0 units B) 5 units C) $5\sqrt{2}$ units D) 10 units
20). The length of BP in the given fig is
A) 2 units B) 3 units C) 4 units D) 5 units
21) The midpoint between two points (6,4) & (4,6) is A)(6,6) B)(4,4) C) (5,5) D) (2,2)
22). Find the area of the triangle formed by the given points (0,1), (2,0), (0,2) ?A). 2 sq cmB). 4 sq cmC). 1 sq cmD) 0 sq cm
23). If the roots of the equation $x^2 - 4x + K = 0$ are equal, what is the value of k? A) 1, B) 2 C)3 D) 4
24) The sum of a number and its square is 42 then the equation is \dots A) X ² +x -42=0 B) x - x ² =42 C) x ² +42=0 D) x ² + x=0
25). Identify the roots of the given quadratic equation $Px^2 + Qx + R = 0$. A) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ B) $x = \frac{-Q \pm \sqrt{Q^2 - 4PR}}{2P}$ C) $P = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ D) $x = \frac{-P \pm \sqrt{P^2 + 4QR}}{2P}$
26) Which of the following is a quadratic equation ?
A). $x^2 - 3\sqrt{x} + 2 = 0$ B) $x^2 + \frac{1}{x} = x^2$
C) $x^2 + \frac{1}{x} = 5$ 27) The nature of the roots of the given equation $2X^2 - X - 3=0$ is
A) real & equal B) real and distinct
C) imaginary D) none of these
28) In a right angled triangle $\angle B = 90^\circ$, if $\operatorname{Sin} \operatorname{C} = \frac{\sqrt{3}}{2}$ then $\angle A = \cdots \ldots$
A) 30° B)45° C) 60° D)90°
DISTRICT INSTITUTE OF EDUCATION AND TRAINING CHAMARAJANAGARA Page 9


A) $\frac{3}{4}$		B) $\frac{4}{3}$		$C)\frac{9}{16}$		D) $\frac{16}{25}$		
30) The an	gle of eleva	tion of a Sun i	is 45 ⁰ t	then the	length of s	shadow fo	rmed by a	building o
height	10m is							
A) 1	0m	B)51	m		C)30m		D)1	5m
31) In the	given fig th	e value of tan	$\mathbf{P} = \mathbf{c}$	ot R is		R	13	
A) 0		B)1	11 - 0	C)12	••••	5 D)5 ^Q		P
11) 0	'	D)1		C)12		D)5	12	-
32). What	is the value	of sin 60°X si	n30° ?	?				
A) $\frac{1}{2}$		$B)\frac{1}{4}$		C) $\frac{\sqrt{3}}{2}$		D) $\frac{\sqrt{3}}{4}$		
$A) \frac{1}{2}$		D)-4		$C)\frac{1}{2}$		$D)_{\overline{4}}$		
33) In the	given frequ	ency distribut	ion tab	le which	n is the cla	ss interva	l of media	n 9
								LI :
CI F	0-10	<u>10-20</u> 6	20-30 12		-40 4 23	40-50 7	50-60 8	
A)20	0-30	B)30-40	umbor	C)40-		D)50-		50
	va tha halow	table . The n	uunei	of stude	sints score	I Marks Do	etween 50	1
34) Obser		v table : The n		oro	Moro	Moro	Mora	Mora
	we the below More than 1	More that	an M	lore an 30	More than 40	More than 50	More than 60	More than 70
34) Obser	More	More that	an M	an 30				More than 70 10
34) Obser Marks No of	More than 1 80	0 More that 20	an M tha	an 30)	than 40	than 50	than 60	than 70
34) Obser Marks No of students	More than 1 80	0 More that 20	an M tha 60	<u>an 30</u>) 5	than 40	than 50	than 60	than 70
34) Obser Marks No of students A)30 C)15	More than 1 80 0 5	0 More that 20	an M tha 60 B)4: D)1	an 30) 5 0	than 40 55	than 50 30	than 60 20	than 70
34) Obser Marks No of students A)30 C)15	More than 1 80 0 5 median of so	More that 0 20 75	an M tha 60 B)4: D)1	an 30) 5 0 mean is	than 40 55	than 50 30	than 60 20	than 70

Ques No	Correct Answer	Ques No	Correct Answer
1	B) 16	25	B) $x = \frac{-Q \pm \sqrt{Q^2 - 4PR}}{2P}$ D) $2x^2 - 5x = (x-1)^2$
2	C)36	26	D) $2x^2 - 5x = (x-1)^2$
3	C)18, 8	27	B) real & distinct
4	B) 625	28	A) 30°
5	A) $S_n = \frac{n}{2}(a + a_n)$	29	$C)\frac{9}{16}$
6	D) $5\sqrt{2}$ cm	30	A) 10m
7	$C)\frac{AC}{AE}$	31	A).0
8	A)14:9	32	\mathbf{D}) $\frac{\sqrt{3}}{4}$
9	C) EF AB	33	B)30-40
10	C) Two equilateral triangles are	congruent	
11	A). X=5,Y=2	34	A)30
12	C)3	35	D)84
13	B) (0,-1)	36	$\mathbf{B})\mathbf{q}^2 = \mathbf{r}^2 + \mathbf{p}^2$
14	B) 1	37	A) cone & cylinder
15	C) 8	38	D) 4r
16	A). 50°	39	D) $4\pi r^2 + 2\pi rh$
17	A). 4cm	40	B) equal to half of the necklace
18	B). 3:1		
19	C) $5\sqrt{2}$ units		
20	A) 2 units		
21	C) (5,5)		
22	C). 1 sq units		
23	D) 4		
24	A) $X^2 + x - 42 = 0$		

Multiple Choice Questions Based Model Question Paper-03				
2020-21				
Medium: English	-	ct: Mathematics	May	Marke 40
Medium: EnglishSubject code : 81 EMax. Marks: 40Four choices are given for each of the questions/incomplete statements. Choose the correct				
-	-	-		
answer and shade the c	correct choice in the	e OMR given to y		
1. The 10^{th} terms of an	A mithematic Due and	aion. 2 7 12		$1 \times 40 = 40$
1. The 10^{th} term of an 1.17	_	C) 27		
A) 17	B) 47	C) 27	D) 37	
2 The common differen	noo of an Arithmat	tia Dragragian: 2	6 0 12 is	
2. The common differe A) 3	B) 4	C) 9	D) -3	
\mathbf{A}) J	D) 4	C) 9	D) -5	
3. The sum of first ten	natural numbers is	_		
A) 45	B) 50	- C) 55	D) 65	
A) 43	D) 50	C) 55	D) 05	
4. The next two terms	of the following ari	ithmetic Progress	ion 4 -1 -6	is-
A) -10, -15	B) -12, -15	-	D) -11,-16	10
11) 10, 13	D) 12, 15	0) 11, 10	<i>D</i>) 11, 10	
5. The first term of an	Arithmetic Progres	sion is 'a' and its	n th term is '1' then t	he sum of 'n'
terms of an A.P. is-				
A) $S_n = \frac{a}{2}(n+l)$	B) S	$b_n = \frac{n}{2}(a+l)$		
$A = 3n^2 (n+i)$	D) 5	$2^{n-2}(a+i)$		
1		n		
C) $S_n = \frac{1}{2}(a+n)$	D) \$	$S_n = \frac{n}{4}(a+l)$		
			P	
6. In the given figure	ST QR, then $\frac{PS}{SS} =$		\wedge	

7. If the ratio of corresponding sides of two similar triangles is 4: 9, then the ratio of their areas is A) 2:2
 B) 4:0

A) 2:3	B) 4:9
C) 81:16	D) 16:81

8. In the following figure	e, $\angle B=90^{\circ}$, The	n the correct relati	on with respect to is-
$\mathbf{A} \mathbf{B} \mathbf{C}^2 + \mathbf{A} \mathbf{B}^2 - \mathbf{A} \mathbf{C}^2$	2 B) AB^2	$^{2} + \Lambda C^{2} - BC^{2}$	A
A) $BC^2+AB^2=AC^2$ C) $AB^2-AC^2=BC^2$	\mathbf{D} AD	+AC = DC	
C) AB -AC =BC	D) AC	+BC = AB	
9 In a right angled triang	de hynotenuse	and one of its side	es are 13cm and 12cm respectively.
Then the length of and			es die 13em and 12em respectively.
•			\mathbf{D}
A) 11cm	B) 14cm	C) 7cm	D)5cm
AR RD			
10. In $\triangle ABC$, $\frac{AB}{AC} = \frac{BD}{CD}$, A) 30°	$\angle B = 70^{\circ}$, and	$d \angle C = 50^{\circ}$, then	$\angle BAD = _$
A) 30°	B) 40°	C) 45°	D) 50° / $ $
<i>,</i>	,	,	в Д С
11. The ratio of Pair of li	near equations	in two variables is	$s \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$. Then the lines are-
A) Parallel lines) Coincide lines	$u_2 b_2$
C) Intersecting line) Perpendicular li	nas
C) intersecting inte	C5 L		lies
12. The number of coluti	one for the neir	of linear aquation	x + 2x - 2 and $5x + 10x - 1$ have
			hs: $x+2y=3$ and $5x+10y=1$ have-
A) 2	B) Unique	C) Infinite	D) No solutions
13 If pair of linear equat	ions 3x+2kv-2	and $2x+5y-1$ are	e parallel, then the value of 'k' is-
		=	-
A) $\frac{-5}{4}$	B) $\frac{-}{5}$	C) $\frac{15}{4}$	D) $\frac{3}{2}$
			ariables to be inconsistent is-
A) $\frac{a_1}{a_1} \neq \frac{b_1}{a_1}$	B) $\frac{a_1}{a_1}$	$=\frac{b_1}{a_1}=\frac{c_1}{a_2}$	
$a_2 b_2$	a_2	b ₂ C ₂ h.	
A) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ C) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	D) $\frac{a_1}{a_2}$	$=\frac{b_1}{b_2}$	
		~ 2	
15. A straight line which	intersects a cir	cle at two distinct	points is called-
A) chord		B) secant	
C) tangent		D) diameter	
C) tangent		D) tranicici	
16 The maximum numb	er of tangents o	an he drawn from	an external point to a circle is-
A) 1	B) in		un externul point to a chere is-
C) 3	D) 2		
C) 3	D) 2		
17. In the figure, $\angle ADO$	$= 35^{\circ}$ then the	measurement of 2	ABOD is-
A) 55°	B) 6	5°	
C)145°	D) 1	35°	
			В
DISTRICT INSTITUTE OF EDUCATION AN	ID TRAINING CHAMARAJ	ANAGARA	Page 14

 18. In a circle, the tangent and the radius drawn at the point of contact will make - A) An obtuse angle B) An acute angle C) A right angle D) A straight angle 					
19. On the X-axis, point of coordinates is in the form- (A) $(= 0)$ ($= 0$) ($= 0$) ($= 0$) ($= 0$) ($= 0$) ($= 0$)					
A) $(x.0)$ B) $(y.0)$ C) $(0.x)$ D) $(0.y)$					
20. The distance between the coordinates P(p,q) from its origin is-					
A) p^2+q^2 B) $\sqrt{p^2+q^2}$ C) $\sqrt{p^2-q^2}$ D) p^2-q^2					
21. The distance between the vertices of the point $(4, 5)$ and $(3, 7)$ is-					
A) -25 units B) 25 units C) -5 units D) $\sqrt{5}$ units					
22. The coordinates of the mid-point (x, y) of the line segment joining the points: (5, 3) and (-3, 1) is-					
A) $(4, 1)$ B) $(2, 1)$ C) $(4, 2)$ D) $(1, 2)$					
23. If the angle between the two tangents of a circle is 60° then angle between their radii is- A) 60° B) 75° C) 90° D) 120°					
24. $\cot A = \frac{12}{5}$ then $\tan A = $					
24. $\cot A = \frac{12}{5}$ then $\tan A = $ A) $\frac{12}{5}$ B) $\frac{5}{12}$ C) $-\frac{12}{5}$ D) $\frac{-17}{5}$					
25. If $\sin\theta = \cos\theta$ then, $\theta = $					
A) 0° B) 30° C) 45° D) 60°					
26. The value of: $\csc^2\theta - \cot^2\theta$ is-					
$\begin{array}{ccc} A) 0 & B) 1 \\ C) & 1 & D) 2 \end{array}$					
C) -1 D) 2					
27. $\sin\theta = \frac{3}{5}$ then the value of $\cos^2\theta =$					
A) $\frac{4}{5}$ B) $\frac{5}{4}$					
A) $\frac{4}{5}$ C) $\frac{25}{16}$ B) $\frac{5}{4}$ D) $\frac{16}{25}$					
10 25					
28. The angle of elevation at a distance 100m from the foot of the building is 60° ,					
then the height of the tower is A) $100\sqrt{3}$ m B) $\frac{100}{\sqrt{5}}$ m					
$\sqrt{3}$					
C) $50\sqrt{3}$ m D) $\frac{200}{\sqrt{3}}$ m					

		. 2	7 1 0 2		
29. One of the root then the value o	-	equation x ⁻	-/X+K=0 18 3	,	
A) 3	B) 12	(C) -3	D) -	-12
	_,		-) -	_)	
30. The discrimina	-	-			e roots is-
A) Real and	distinct		Real and equ		
C) No real		D)	Different roo	ots	
31. The nature of the only if its discrimination of the only of th	-	ic equation	ax ² +bx+c=0	are real and	distinct, if and
A) $b^2-4ac < 0$	$B = \frac{1}{2} B b^2$	-4ac> 0	C) b^2 -4ac	= 0	D) $b^2 - 4ac \neq 0$
32. "The product o	-		0	This can be e	xpressed as-
A) $x(x+2)=3$		B) x(x-2)= D) x(x+1)			
C) $x(x-3)=30$)	D) $X(X+1)$	=30		
33. The mean value	e of the following	data: 6, 5, (), 7, 8, 9 is-		
A) 6	B) 7	C) (8	D) 9	
,	elationship betwee = Mode + 3 Mear = Mode + Mean	n B) 2		ode+ 2 Mean	•
35. The mid-point	of the class interva	1 (65 - 80)	is-		
A) 72.5	B) 73.5	C)		D) 73	
36. The curved sur			nt height 10c	m and radius	of base 14cm is -
A)140cm ² C) 340cm ²		$3)240 \text{cm}^2$ $3)440 \text{cm}^2$			
C) 540cm	L	<i>)</i> 440CIII			
37. A sphere of 6ci	n diameter is melte wly formed cone i		st into a cone	e of 12cm dia	meter. Then the
A) 8cm	•	s) 5cm			
C) 3cm) 2cm			
,		, ,			
38. The formula us		me of the f	rustum of the	e cone whose	height is 'h' and
radii are ' r_1 ' ar			1 - 2 2	2.2	
A) $\frac{1}{3}\pi h(r_1 +$		B)	$\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_2^2)$	$r_1^2 r_2^2$)	
C) $\frac{1}{3}\pi h(r_1^2 + 1)$	$r_{2}^{2}+r_{1}r_{2}$)	D)	$\frac{1}{3}\pi h(r_1+r_2+r_1)$	$({}^{2}r_{2}^{2})$	
_					
DISTRICT INSTITUTE OF EDUC	ATION AND TRAINING CHAM	ARAJANAGARA			Page 16

39. A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1cm and the height of the cone is equal to its radius. Find the volume of the solid in terms of π . B) $\frac{\pi}{3}$ cm³ C) $\frac{\pi}{2}$ cm³ D) $\frac{\pi}{4}$ cm³

A) π cm³

40. If the volume of a right circular cylinder is 360cm³ units, then the volume of a cone with the same height and base as the cylinder is-

A)90cm³

B)120 cm^3

C) 180cm³

D)360cm³

Q. No	Correct Answer	Q. No	Correct Answer
1	B) 47	21	D) √5 units
2	A) 3	22	D) (1, 2)
3	C) 55	23	D) 120°
4	D) -11,-16	24	$B)\frac{5}{12}$
5	B) $Sn = \frac{n}{2}(a+1)$	25	C)45°
6	A) $\frac{PT}{TR}^2$	26	B) 1
7	D) 16:81	27	$A)\frac{4}{5}$
8	A) $AB^2 + BC^2 = AC^2$	28	A) 100√3m
9	D)5cm	29	B)4
10	A) 30°	30	A) real and distinct
11	C) intersecting lines	31	B) $b^2 - 4ac > 0$
12	D) no solution	32	B) x(x-2)=30
13	C) $\frac{15}{4}$	33	A) 6
14	C) $\frac{15}{4}$ C) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	34	B) 3Median=mode+2mean
15	B) secant	35	A) 72.5
16	D) 2	36	D)440cm ²
17	A) 55°	37	C) 3cm
18	C) right angle	38	C) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$
19	A) (x.0)	39	A) π cm ³
20	B) $\sqrt{p^2 + q^2}$	40	B)120cm ³

KEY -	ANSWERS
-------	---------

<u>CHAMARAJANAGARA DIST</u>	RICT
Multiple Choice Questions Based Model Qu	estion Paper– 04
2020-21	-
Subject: Mathematics	
Medium: English Subject code : 81 E	Max. Marks: 40
Four choices are given for each of the questions/incomplete s answer and shade the correct choice in the OMR given to you	
1. The n^{th} term of an Arithmetic progression is $a_n = 5n - 1$	5 then the 5 th term is
A) 9 B)12 C) 5 D) 20	
2. The first term "p" and common difference "q". nth ter	
A) $p+(n+1)q$ B) $p-(n+1)q$ C) $p+(n+1)q$	D) p –(n-1)q
3. For natural numbers, the value of $S_{50} - S_{40}$ is	
A) 355 B) 365 C) 455 D) 475	
4. The sum of 20 terms 0f an A.P 1+2+3 is	
A) 110 B)210 C) 310 D) 375	P
N/110 D/210 C/310 D/373	\wedge
5. In the given figure, ST // QR . $\frac{PS}{SQ}$ is equal to :	
	S T
A) $\frac{PS}{SQ}$ B) $\frac{PT}{TR}$ C) $\frac{PS}{TR}$ D) $\frac{PT}{SQ}$	
C) $\frac{PS}{TR}$ D) $\frac{PT}{SQ}$	Q∕`R
TR SQ	
6. If $\triangle AOB \approx \triangle COD$. And AB=3CD then the ratio of	ΛAOB and ΛCOD is
A) 4:9 B) 9:1 C) 1:9 D) 9:	
A + .9 D + .1 C + 1.9 D + 9.1	+
7. Choose the correct Statement of Basic Proportionality	theorem is :
A) A line drawn parallel to a side of a triangle divides	
ratio.	
B) If two triangles are similar, then the ratio of corresp	oonding sides are equal.
C) If a line divides two sides of a triangle in the same	
third side.	

- D) In a right angle triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides
- 8. Identify the triplets of Pythagoras

A) 6, 8,11

C) 2,3,5

D) $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$

DISTRICT INSTITUTE OF EDUCATION AND TRAINING CHAMARAJANAGARA

B) 7,10, 12

9. In a graph repr	resenting a pair	of linear equ	ations, if the	line intersect each other, then
the equation h	nave :			
A) Exactly T	wo Solutions	B	infinitely m	any Solutions
C) Unique So	lution	D) No S	olution	
10. The line repr	resented by 2x -	+ 3y - 9=0 a	and $4x + 6y - 1$	8=0 is
A) Intersecting lines		-	ndicular lines	3
C) Parallel li	nes	D) Co in	cident lines	
11. If the pair of	linear equation	X + 2y = 3	and $2x + 4y$	= K Coincides then the value of
"K" is	1	5	5	
A) 6	B) 3	C) -3	D) 6	
12. $x - y = 2$ and	x + y = 4 solu	tions of this	two linear equ	lation
A) (-3,-1)		B)(4,	3)	
C) (5,1)		D) (3,	1)	
13. In the figure,	the radius of the	e circle is equ	ual to PQ,	
Then the va	lue of POQ is			
A) 90 ⁰	B) 30 ⁰	C) 60^{0}	D) 45 ⁰	X P Q
				A
14. In figure AP	$\mathbf{B} = 40^0$, then	find the valu	e of <u>AOP</u>	
A) 70 ⁰	B) 8	D^0		P
C) 60 ⁰	D)14	0^0		B
15. "O" is the cer	ter of the circle	e, from the E	xternal point	Q a tangent length 13 cm is
drawn to the	circle. If length	n of $OQ = 12$	2 cm . then ra	dius of the circle is
				P
A) 25 cm	B)15c	em		
C) 5cm	D) 7c	m		Q

, 3), Find the di	stance of the p	oint from X-axis	
A) 2 Units	B) 5 Units	C) 4 Units	D) 3 Units
the distance of	this point (4,	-3) from Origin :	
A) 2 Units	B) 5 Units	C) 4 Units	D) 3 Units
	A) 2 Units I the distance of	A) 2 Units B) 5 Units I the distance of this point (4,	I the distance of this point (4, -3) from Origin :

18 (3, 8) and (-7, 4) find the mid-point of line, joining these points:A) (-5,6)B) (2,-6)C) (5, 6)D) (6,5)

19. A (2, -2) and B(-1, x) if the distance between line joining between these points is5 units. Then find the value of X is :

A) X = -3 or X = 4B) X = 3 or X = -4C) X = 2 or X = -6D) X = -2 or X = 6

20. A(-4, 0), B(4,0), C(0,3) find the type of triangle formed by joining these points in a Cartesian co-ordinate system:

A) Isosceles . B) Equilateral C) Scalene D) Right – Angled À

21. $ax^2 + bx + c = 0$ If the value of the roots of the equation are equal then value of "C" is A) $\frac{-b}{2a}$ B) $\frac{b}{2a}$ C) $\frac{b2}{4a}$ D) $\frac{b2}{4a}$

22. $3x^2 + 7x + 4 = 0$ the nature of the roots of this Quadratic equation is : A) Imaginary roots . B) Real and distinct C) No real roots D) Real and Equal

23. Standard form of the Quadratic equation in the variable "X" is : A) $ax^2 + bx + c = 0$ B) $ax^2 - bx + c = 0$ C) $ax^2 - bx - c = 0$ D) $ax^2 + bx^2 + c^2 = 0$

24. (x+3)(3x-2) = 0 roots of this Quadratic equation is -3 and another one is :

A) 2 B) $\frac{-2}{3}$ C) $\frac{2}{3}$ D) -2

25. The sum of so	quare of two co	nsecutive natur	al numbers is 25. This statement can be		
written in the	e form of a equ	ation as :			
A) $X^{2} + (x-1)$	A) $X^2 + (x-1)^2 + 25 = 0$		$(x-1)^2 = 25$		
C) $X^2 + (x + x)^2$	- 1) ² =25	D) X ² +	$(x-1)^2 = 25$		
26. $\cos(90 - \theta)$	is Equal to:				
A) $\cos \theta$		B) Sir	B) $\sin \theta$		
C) $\tan \theta$		D) Cos	D) Cosec θ		
27. Sin 60 ⁰ . Sin 3	80^0 Product of t	his equal to:			
A) $\frac{1}{4}$		B) $\frac{1}{2}$	B) $\frac{1}{2}$		
C) \[\] \[\] 4		D) $\sqrt{3}$	/2		
28. Find value	of $\cos 48^{\circ}$ -	$\sin 42^0$			
A) 1	B) 0	C) 48^{0}	D) 42^{0}		
29. $(1 - \sin^2 \theta)$ S	$\sec^2\theta$ is equal	to:			
A) 1	B) 0	C) $\sqrt{2}$	D) 2		
30. The ladder is	s inclined to a v	vall making of a	n angle 60° , if the distance from foot of	the	
ladder to wa	ll is 9.5 m. the	n length of the l	adder is :		
A) 16 m	B)18m	C) 19m	D) 20m		
31. A $100\sqrt{3}$ mt	building is wie	wed is from a	point 100 mt away from the foot of the	: \	
building. T	The angle of ele	vation is :			
A) 30 ⁰	B) 90 ⁰	C) 60 ⁰	D) 45 ⁰		
32. Mean =27, m	edian=33, then	the value of mo	ode is:		
A) 30	B)43	C) 45	D) 47		
DISTRICT INSTITUTE OF EDUC		HAMARAIANAGARA		Page 21	

33. 5, 8, 14, 16, 19, and 20 Calculate the value of Mode is : A) 14 B) 19 C) 16 D) 15

- 34. The calculation of cumulative frequency is used for determine, which of the following:A) Mean B) Mode C) Median D) All of these choices
- 35. A cylindrical; shaped pencil is sharpened, after sharpening the solid formed will have these solids in joint form are:
 - A) Cylinder and hemisphere B) Cylinder and frustum
 - C) Cylinder and cone D) Cylinder and rectangular

36. The ratio of the volume of a cone to the volume of a cylinder if both solids have same radius "r" and the height "h" is :

A) 1:3 B) 3:1 C) 2:3 D) 3:2

37. The Surface area of the sphere having radius 7 cm is :A) 154 cm^2 B) 308 cm^2 C) 616 cm^2 D) 770 cm^2

38. The correct formula to find the value of a frustum is :

A)
$$\frac{1}{3} \pi h(r_1^2 + r_2^2 - r_1 r_2)$$

B) $\frac{1}{3} \pi h(r_1^2 - r_2^2 + r_1 r_2)$
C) $\frac{1}{3} \pi h(r_1^2 + r_2^2 + r_1 r_2)$
D) $\frac{1}{3} \pi h(r_1^2 - r_2^2 - r_1 r_2)$

39. The volume of a cylinder formed by two solid sphere will:

- A) Increases B) Decreases
- C) Increase by twice D) Remains Same

40. If a point "P" divides a line segment of AB. Such that $\frac{PB}{AB} = \frac{3}{7}$ then AP : PB is A) 4 : 7 B) 7 : 4 D) 4 : 3

Q. NO	Correct Answers	Q. NO	Correct Answers
1	D) 20	21	D) $\frac{-b^2}{4a}$
2	C) p+(n-1)q	22	C) No real roots
3 4	C) 455	23	$A) ax^2 + bx + c = 0$
4	B)210	24	C) $\frac{2}{3}$
5	B) $\frac{PT}{TR}$	25	C) $X^2 + (x + 1)^2 = 25$
6	B) 9:1	26	B) $\sin \theta$
7	A) A line drawn parallel to a side of	27	
	a triangle divides the other two sides		C) $\sqrt{3}$ / 4
	in the same ratio		
8	D) $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$	28	B) 0
9	A) Exactly Two Solutions .	29	A) 1
10	D) Coincident lines	30	C) 19m
11	A) 6	31	C) 60^{0}
12	D) (3, 1)	32	C) 45
13		33	D) 15
	D) 45 ⁰		
14	A) 70 ⁰	34	D) All the above
15	D) 7cm	35	C) Cylinder and cone
16	D) 3 units	36	A) 1:3
17	B) 5 units	37	C) 616 cm^2
18	B) (-2, 6)	38	C) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$
19	A) $X = -3$ or $X = 4$	39	D) Remains Same
20	A) Isosceles	40	D) 4:3

KEY - ANSWERS

	-	estions Based Model 2020-21	-
Medium: Eng		Subject: Mathematics Subject code : 81 E	S Max. Marks: 40
Four choices an	re given for each of t	he questions/incomple	te statements. Choose the correct you with blue / black ball point per $1 \times 40 = 40$
1) 2,6,10	94 The number of	of terms in the followi	
a) 23	b) 24	c)25	d)9
2) The sum of a	first two terms of the	AP whose nth term is	$a_n = 3n-5$ is
a)-2	b)1	c)2	d)-1
3) The nth ter	m of the Arithemat	ic progression is	
a)a+(2a-	1)d b)2a+(n-1)d c)a+(n-1)d	d)a+(n-1)d
4) In an Arith	ematic progression	$a = 1, a_n = 19$ and s_n	= 400 then n is equal to
a)19	b)21	c)40	d)42
5) In an AP S1	5=360 and S14=305	then the a15 is	
a)50	b)65	c)45	d)55
6) Out of the f	ollowing options id	entify the sides of a R	ight angled triangle
a)5,6,8	b)6,8,10	c)4,5,6	d)9,10,12
7) The ratio of	the sides of two sim	ilar triangles is 4: 9 the	n the ratio of their areas is
a) 2:3	b)16:81	c) 4:9	d) 81:16
8) If A pole of	height 10m cast a sl	nadow of length 6m the	en the length of shadow of a
building of	height 15m is		
a) 9m	b) 25	c) 4m	d) 10m

Figure 3) In the given figure a) 4.2		b) 15	-	X
c) 45		d) 27	,	Q^{\prime}
		a) 27		
10) ABC is an Equ	ilateral tri	angle with s	ide 2a then its	s height is
a) $\sqrt{5}a$	b) $\sqrt{3}a$	c) √3a	d) √5a	
11) Which of the fo	llowing tria	ingles is alwa	ays similar?	
a) Isoceles tr	iangle	b) Ea	quilateral tria	ingle
c) Right ang	le triangle	d) O b	otuse angled t	riangle
12) If X+Y=10 and	l X-Y=6 t	hen the valu	ie for X and Y	are
a) x=4 & y=6		b) x=	=8 &y=2	
c)x=6 & y=4		d) x=	=6 & y=2	
13) Number of solu	tions the lir	pear equation	$x_v - \lambda - y - \lambda'$	2X - 4Y - 3 have
a) Infinite	b) 2	ical equation	c) unique	
u) minite	0)2		c) unique	d) no solution
14) General form of	of the linea	r equation 2	2x=8-3y is	
a) 2x-3y=8	b) 2x	+3y=8		
c) 2x-3y-8=0		d) 2x+3y-8=	=0	
15) The length of th	e tangent w	hich is draw	n to a circle of	f radius 5cm from a point 13cm
away from the o	centre of the	e circle is		
a) 6 cm		b) 120	cm	
c) 5cm		d) 130	cm	
16) If angle betwee	n the tang	ents is 130 ⁰	then the angle	e between the radii is
		b) 180	O_0	
a) 50 ⁰		0)10		

17) In the given figure if $AP = 3$ cm and $PC = 8$ cm then the length of the tangent						
CE is			\sim			
a) 3cm	1	o)5cm	()>c			
c) 8cm		d)11cm	A E			
			P			
18) If the line segme	ent of length 10 cm	is divided in the ra	tio 3:2 then the measure of each			
part of the line s	egment so obtained	l is in the ratio				
a) 6:4	b) 4:6	c) 5:5	d) 8:2			
19) The distance be	tween the point (6,	- 8)and origin is				
a)12	b)14	c)10	d)5			
20) The coordinates	of the midpoints w	which divides the lir	ne segment joining the points (3, 7)			
& (-3, 1)						
a)(3,4)	b) (-3,4)	c)(0,4)	d) (3,0)			
21)If the points A (2	21)If the points A (2, 3) B (4, K) & C (6, - 3)are collinear then the value of k is					
a)1	b)-1	c)2	d)0			
	~					
	22) The formula to find the distance between the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is					
a) $\sqrt{(x^2 + x^1)}$	$(y^2 + y^1)$	b) $\sqrt{(x^2)}$	(-x1) + (y2 - y1)			
c) $\sqrt{(x^2 + x^2)}$	$(1)^2 - (y^2 + y^1)^2$	d) $\sqrt{(x^2)}$	$(-x1)^2 + (y2 - y1)^2$			
23) Roots of the eq	uation 5x ² -125=01					
a) 5		b) -5 & -4				
c) 5 & -5		d) -5				
24) If the roots of the equation $2x^2-8x+k=0$ are real and equal then the value of K is						
a) 8		b) 4				
c) 16		d) 2				

25) Sheela have 1rupee and 2 rupee coins the sum of them is 16 rupees. choose the equation which satisfy the following statement. a) x+2y+16=0 b) x-2y-16=0 c) x+2y-16=0d) x-2y+16=0 26) General form of a Quadratic equation is b) ax^2+bx+c c) $ax^2+bx+c=0$ d) $ax^2+bx-c=0$ a) ax^2+bx-c 27) Nature of roots of the quadratic equation $4x^2-4x+1=0$ a) Real & Equal b) Imaginary c) Imaginary & Equal d) Real & Different 28) $sin\theta = \frac{12}{13}$ then $cos\theta$ value is a) $\frac{12}{13}$ b) $\frac{5}{13}$ c) $\frac{5}{12}$ d) $\frac{12}{5}$ 29) $\csc\theta = 2$ then $\sin\theta =$ a) $\frac{1}{2}$ b) 2 d) $\frac{1}{\sqrt{2}}$ c)3 30)The value of $\frac{(\sin A + \cos A)^2 - 1}{\sin A \cdot \cos A}$ is b) $\frac{1}{2}$ a) 1 c) 2 d) 0 31) $\sin 15^\circ$. $\cos 75^\circ + \cos 15^\circ$. $\sin 75^\circ$ is equal to a) 4 b) 0 d) 2 c) 1 32) $tan^2 A =$ a) $1 - sec^2 A$ b) $sec^2 A - 1$ c) $sec^2 A$ d) 1 DISTRICT INSTITUTE OF EDUCATION AND TRAINING CHAMARAJANAGARA Page 27

33) Median of a data is 40 and their mean is 19 then mode of the data is							
a) 72	b) 82						
c)59	d) 21						
34) In the followin	34) In the following frequency distribution table the Modal class is						
Class interval		0-10	10-20	20-30	30-40		
Frequer	ncy	3	7	4	2		
a) 0-10	b) 10-20	c) 2	20-30	d) 30-40			
35) $\sum fixi = 1860$ a	and $\sum fi=30$ the	en x is					
a) 72	b)62	(2) 52	d) 82			
37) The water in a cylindrical shaped vessel having volume 27cu.cm is poured into a conical vessel with same height and radius then what is the volume of water in the conical vessel?							
a) 81 cu.cm			b) 9 cu.cm				
c) 27cu.cm			d) 13cu.cm				
38) The formula to find the volume of a Frustrum of a cone is							
a) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$		b	b) $\pi(r_1 + r_2)l$				
c) $\pi(r_1 + r_2) + \pi r_1^2 + \pi r_2^2$		d	d) πrl				
39) The volume of water filled in a tank which is in the shape of a cuboid having length 5m breadth 2m and height 3m is							
	a) 60 cu.cm b) 120 cu.cm						
c) 30cu.cm		d) 62 cu. Cm					

40) If the ratio of volumes of 2 spheres is 64 : 27 then the ratio of their curved surface

areas is

a) 9:16	b) 16:9
c) 3:4	d) 4:3

KEY ANSWERS

Question	Answer	Question	Answer
no		no	
1	b) 24	21	d) 0
2	d) -1	22	d)
			$\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$
3	d) a+(n-1)d	23	c) 5 & -5
4	c) 40	24	a) 8
5	d) 55	25	c) x+2y-16=0
6	b) 6,8,10	26	c) $ax^2+bx+c=0$
7	b) 16:81	27	a) Real and Equal
8	a) 9m	28	b) $\frac{5}{13}$
9	b) 15	29	b) $\frac{5}{13}$ a) $\frac{1}{2}$
10	c) √3a	30	c) 2
11	b) Equilateral triangle	31	c) 1
12	b) x=8 & y=2	32	b) $sec^2 A - 1$
13	c) Unique	33	b) 82
14	c) 2x-3y-8=0	34	b) 10-20
15	b) 12cm	35	b) 62
16	a) 50 ⁰	36	b) 440 sq.cm
17	a) 5cm	37	b) 9 cu.cm
18	a) 6:4	38	a) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$
19	c) 10	39	c) 30 cu.cm
20	c) (0,4)	40	b)16:9
