CHITTI CREATIONS
5 SET MODEL QUESTION PAPERS WITH KEY ANSWERS INCLUDING BOARD PAPERS

10TH STANDARD MATHEMATICS(E,M)

MARCH 22, 2021
T.SHIVAKUMAR

MMDRS, HARAPANAHALLI

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD 2020-21 MODEL PAPER - 2 with Key answers

Subject: Mathematics
Time : 3 hours
Answer the following questions.

Subject code: 81E
Max.marks: 80
$8 \times 1=8$

1. The Pair of lines $a x_{1}+b y_{1}+c_{1}=0$ and $a x_{2}+b_{2}+c_{2}=0$ are intersecting lines then the ratio of their coefficients is :
a. $\frac{a 1}{a 2} \neq \frac{b 1}{b 2}$
2. 2, $x, 14$ are in Arithmetic progression, then the value of x is :
d. 8
3. The standard form of quadratic equation is :

$$
\text { b. } a x^{2}+b x+c=0
$$

4. $\operatorname{Sin}(90-\theta)$ is equal to :
a. $\operatorname{Cos} \theta$.
5. The value of $\tan 45^{0}$ is :
c. 1
6. In the given graph. The co-ordinate of point A is :
d. $(2,0)$
7. The Emperical relationship between the three measures of central tendency is :
c. 3 Median = Mode +2 Mean
8. In the given figure $S T \| Q R$ then $P S / S Q$ is equal to:
a. $\frac{P T}{T R}$

Answer the following questions.
$8 \times 1=8$
9. Answer is 4
10. $\left(\frac{x 3+x 2}{2}, \frac{y 3+y 2}{2}\right)$
11. 90°.
12. Total suface area of a right cylinder $=2 \prod r h(r+h)$ sq units.
13. Volume of a solid sphere $=\frac{4}{3} \Pi r^{3}$.
14. $=\pi r l$, where l is the slant height of the cone. Example 1 : Find the lateral surface area of a right cone if the radius is 4 cm and the slant height is 5 cm . ?
15. In an arithmetic progression if an $=3 n-2$, then the second term is $3 \times 2-2=4$.
16. If, $15 \cot A=8$, then find the value of $\tan A=\frac{15}{8}$.

Answer the following questions.

$$
8 \times 2=16
$$

17. $x+y=82 x-y=7$

Consider the given equation.
$\mathrm{x}+\mathrm{y}=8$
$x-y=7$
On subtracting both equation (1) and (2), we get
$3 x=15$
$\mathrm{x}=5$
Now, put the value of y in equation (1), we get
$3+y=8$
$y=5$
Hence, the value of x is 3 and y is 5
18. Find the 10th term of arithmetic progression $2,7,12$....... using the formula.

The given A.P is $2,7,12 \ldots \ldots$..... we know an=a+(n-1)d.
Common Difference, $\mathrm{d}=5$.
First term, a = 2
Hence, 10th term is $a+9 \mathrm{~d}=2+45=47$.
19. Find the sum of $2+5+8+$ \qquad to 20 terms using the formula.
Given:- $2+5+8+$ \qquad
As we know that sum of n terms in an A.P. is given as-
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
whereas, a and b are the first term and common difference of A.P.
From the given series-
$a=2$
$d=5-2=3$
$n=20$
Therefore, from equation (1), we have
Hence the sum of 20 terms of the given series is 610 .
20. Find the discriminant of the equation $3 x^{2}-5 x+2=0$ and hence write the nature of its roots.
Comparing with the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
we get:
$\mathrm{a}=3 ; \mathrm{b}=-5 ; \mathrm{c}=2$
Discriminant, $D=\underline{b^{2}-4 a c}$
$=>(-5)^{2}-4(3)(2)$
$=>25-24$
=> $1>0$
D >0
The discriminant is greater than 1, that means it is real and have distinct.
21. Solve $x^{2}-2 x+3=0$ by using the quadratic formula.
answer:
$a=1, b=-2, c=3$
quadratic formula is $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& \mathrm{x}=\frac{-(-2) \pm \sqrt{2^{2}-4 x(1) x 3}}{2 \times 1} \\
& \mathrm{x}=\frac{2 \pm \sqrt{4-12}}{2} \\
& \mathrm{x}=1+\sqrt{-8} \text { or } \mathrm{x}=1-\sqrt{-8}
\end{aligned}
$$

OR
Solve by Factorisation $x^{2}+5 x+6=0$.
By factorization, $x^{2}+5 x+6=0$

$$
x^{2}+3 x+2 x+6=0
$$

$$
(x+3)(x+2)
$$

$$
X=-3 \& x=-2
$$

CHITTI CREATIONS

22. Find the distance between the points $\mathrm{A}(3,6)$ and $\mathrm{B}(5,7)$ using distance formula.

Answer: by distance formula

$$
\begin{aligned}
\mathrm{d} & =\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}} \\
\mathrm{~d} & =\sqrt{(5-3)^{2}+(7-6)^{2}} \\
\mathrm{~d} & =\sqrt{(2)^{2}+(1)^{2}}
\end{aligned}
$$

So the distance is $\sqrt{5}$ units

OR

Find the co-ordinates of the point P, which divides the line joining $A(0,0)$ and $B(5,10)$ in the ratio of $2: 3$.
By section formula, we have $(\mathrm{x}, \mathrm{y})=\left(\frac{m x 2+n x 1}{m+n}, \frac{m y 2+n y 1)}{m+n}\right)$ here $\mathrm{m}=2, \mathrm{n}=3$,

$$
\begin{aligned}
& (\mathrm{x}, \mathrm{y})=\left(\frac{2 \times 5+3 \times 0)}{2+3}, \frac{2 x 10+3 x 0}{2+3}\right) \\
& (\mathrm{x}, \mathrm{y})=\frac{10}{5}, \frac{20}{5}
\end{aligned}
$$

So coordinates are $(2,4)$
23. Construct a tangent to a circle of radius 4 cm at any point P on its circumference.

24. In the given figure, find the value of $\sin \alpha+\cos \theta$?

Answer : by figure $\sin \boldsymbol{\alpha}=\frac{3}{5} \& \cos \theta=\frac{3}{5}$
Therefore $\sin \boldsymbol{\alpha}+\cos \boldsymbol{\theta}=\frac{3}{5}+\frac{3}{5}=\frac{6}{5}$
Answer the following questions.
25. A train travels 480 km at a uniform speed. If the speed had been $10 \mathrm{~km} / \mathrm{h}$ more, it would have taken 4 hours less for the same journey, find the speed of the train?
Let the speed of the train be x
The distance covered is 450 km
So the time taken is $\frac{\mathbf{4 8 0}}{\boldsymbol{x}}$
The speed is now 40 kmph less, so the speed is $\mathrm{x}-40$
The same distance so 450 km
Time taken is $\frac{\mathbf{4 8 0}}{\boldsymbol{x}+\mathbf{1 0}}$
According to question,
The second case takes 4 more hours to reach a destination
So $\frac{\mathbf{4 8 0}}{\boldsymbol{x}}=\frac{\mathbf{4 8 0}}{\boldsymbol{x}+\mathbf{4 0}}+4$
Solve, bring this to standard form of quadratic equation
$4 x^{2}-160 x-4500=0$
$x^{2}+10 x-1200=0$
$x^{2}+40 x-30 x-1200=0$
$x(x+40)-30(x+40)=0$
$(\mathrm{x}+40)(\mathrm{x}-30)=0$
$x=40,-30$
Speed cannot be negative so the speed of the train is 30 kmph
OR
Find two consecutive odd positive integers, sum of whose squares is 290.
Let x an odd positive integer
Then, according to question
$\mathrm{x}^{2}+(\mathrm{x}+2)^{2}=290$
$2 x^{2}+4 x-286=0$
$x^{2}+2 x-143=0$
$x^{2}+13 x-11 x-143=0$
$(x+13)(x-11)=0$
$\mathrm{x}=11$ as x is positive
Hence required integers are $11 \& 13$.
26. Prove that $\{\operatorname{Cosec}(90-\theta)-\operatorname{Sin}(90-\theta)\}\{(\operatorname{Cosec} \theta-\operatorname{Sin} \theta)(\tan \theta+\cot \theta)\}=1$
$(\sec \theta-\cos \theta)(\operatorname{cosec} \theta-\sin \theta)(\tan \theta+\cot \theta)$
$(1 / \cos \theta-\cos \theta)(1 / \sin \theta-\sin \theta)(\tan \theta+1 / \tan \theta)$

$$
\begin{aligned}
& \left(\frac{1-\cos 2 \theta)}{\cos \theta}\right)\left(\frac{1-\sin 2 \theta)}{\sin \theta}\right)\left(\frac{1-\cos 2 \theta)}{\cos \theta}\right)\left(\frac{\tan 2 \theta+1)}{\tan \theta}\right) \\
& =1
\end{aligned}
$$

OR
Prove that $\frac{(\sin \theta-\cos \theta)}{(\sin \theta+\cos \theta)}+\frac{(\sin \theta+\cos \theta)}{(\sin \theta+\cos \theta)}=\frac{2}{2 \operatorname{Sin} 2 \theta}$
LHS, $\frac{(\sin \theta-\cos \theta)}{(\sin \theta+\cos \theta)}+\frac{(\sin \theta+\cos \theta)}{(\sin \theta+\cos \theta)}$
Take LCM, $\left(\frac{(\sin \theta-\cos \theta) 2+(\sin \theta+\cos \theta) 2}{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}\right.$

$$
\frac{(\operatorname{Sin} 2 \theta \mp \cos 2 \theta)+(\operatorname{Sin} 2 \theta \mp \cos 2 \theta)}{(\sin 2 \theta-\cos 2 \theta)}=\frac{2}{2 \operatorname{Sin} 2 \theta}
$$

27. From the top of a building $50 \sqrt{3} \mathrm{~m}$ high the angle of depression of a car on the ground is observed to be 60°. Find the distance of the car from the Foot of a building.

Let $Q R$ be the distance of the car from the building.
Now, In $\triangle P Q R$
$\tan 60^{\circ}=\mathrm{QR} / \mathrm{PQ}=\mathrm{QR} / 50 \sqrt{3}$
$\sqrt{3}=Q R / 50 \sqrt{3}$
$\mathrm{QR}=50 \mathrm{~m}$
The car is at 50 m distant from the building. Hence, the answer is 50 m .
28. Find the area of triangle $A B C$, whose co-ordinates are $A(4,-6), B(3,-2)$ and $C(5,2)$ then find the length of the median AD?
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(4,-6),\left(\mathrm{x} 2, \mathrm{y}_{2}\right)=(3,-2),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(5,2)$,
We know that area of triangle $=\frac{1}{2}\left(x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right)\right.$.

$$
\begin{aligned}
& =\frac{1}{2}(4(-4)+3(8)+5(-4)) \\
& =\frac{1}{2}(-12) \\
& =-6
\end{aligned}
$$

Therefore area of triangle ABC is 6 sq units.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x}, \mathrm{y})=\left(\frac{x 1+x 2}{2}, \frac{y 1+y 2}{2}\right)=\left(\frac{3+5}{2}, \frac{-2+2}{2}\right)=(4,0) \\
& \mathrm{d}=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}} \\
& \quad=\sqrt{(4-4)^{2}+(0+6)^{2}}=\sqrt{(6)^{2}}=36 \text { units }
\end{aligned}
$$

29. Find the mean of the following data, by direct method.

C.I	f
$1-5$	4
$5-9$	3
$9-13$	5
$13-17$	7
$17-21$	1
	$\mathrm{n}=20$

Answer : we know the formula that $\mathrm{x}=\frac{\sum f x x}{n}=\frac{212}{20}=10.6$

C.I	f	x	fx
$1-5$	4	3	12
$5-9$	3	7	21
$9-13$	5	11	55
$13-17$	7	15	105
$17-21$	1	19	19
	$\mathrm{n}=20$		$\sum f x x=212$

So mean value is 10.6

OR

Find the mode of the following data.

C.I	f
$\mathbf{0 - 1 0}$	$\mathbf{6}$
$10-20$	9
$20-30$	15
$\mathbf{3 0 - 4 0}$	$\mathbf{9}$
$40-50$	$\mathbf{1}$
	$\mathrm{~N}=40$

Answer: here $\mathrm{n}=40$,
Then place the chart

C.I	f
$\mathbf{0 - 1 0}$	$\mathbf{6}$
$10-20$	9
$20-30$	15
$30-40$	9
$40-50$	$\mathbf{1}$
	$\mathrm{~N}=40$

$$
\begin{aligned}
& \mathrm{f}=15, \mathrm{f}_{0}=9, \mathrm{f}_{1}=15, \mathrm{f}_{2}=9, \mathrm{~h}=10 \\
& \text { Mode }=1+\left(\frac{f 1-f 0}{2 f 1-f 0-f 2}\right) \mathrm{xh} \\
& =20+(6 / 12) \times 10 \\
& =20+5 \\
& =25
\end{aligned}
$$

30. Prove that "length of tangents drawn from an external point to a circle are equal.

To prove that: $\mathrm{SK}=\mathrm{RK}$
Proof:
Normal and tangent at a point on the circle are perpendicular to each other.
$\angle O S K=\angle O R K=90 \circ$
Using Pythagoras Theorem,
$\mathrm{OK}^{2}=\mathrm{OS}^{2}+\mathrm{SK}^{2}$.
$\mathrm{OK}^{2}=\mathrm{OR}^{2}+\mathrm{RK}^{2} \ldots \ldots$. (ii)
Subtracting (ii) from (i),
$\mathrm{OK}^{2}-\mathrm{OK}^{2}=\mathrm{OS}^{2}+\mathrm{SK}^{2}-\mathrm{OR}^{2}-\mathrm{RK}^{2}$
$\Rightarrow \mathrm{SK} 2=\mathrm{RK} 2 \because \mathrm{OS}=\mathrm{OR}$
SK=RK
31. The slant height of a frustrum of a cone is 4 cm and perimeters of its circular bases are 18 cm and 6 cm , find the curved surface area of the frustrum of a cone.

CHITTI CREATIONS

Given:
$\mathrm{l}=4 \mathrm{~cm}$
circumference of the circular end $=18 \mathrm{~cm}$.
$\Rightarrow 2 \pi r 1=18$
$\Rightarrow \pi \times r 1=18 / 2=9$
Circumference of other circular end $=6 \mathrm{~cm}$
$\Rightarrow 2 \pi r^{2}=6$
$\Rightarrow \pi r 2=6 / 2=3$
Adding (1) and (2)
Curved surface area
$=\pi(r 1+r 2) 1$
$=(9+3) \times 4$
$=48 \mathrm{~cm}^{2}$
OR
The circumference of the base of a cylinder is 132 cm and its height is 25 cm . Find the volume of the cylinder?

Let r be the radius of the cylinder , circumference $=132 \mathrm{~cm}$.
$2 \prod r=132$
$\mathrm{r}=21 \mathrm{~cm}$
then, volume of cylinder $=\prod^{2} \mathrm{~h}$.

$$
\begin{aligned}
& =3.142 \times 21 \times 21 \times 25 \\
& =34650 \mathrm{~cm}^{3} .
\end{aligned}
$$

32. Draw a "less than type ogive" for the data given in the following table.

C.I	f
$0-10$	2
$10-20$	12
$20-30$	2
$30-40$	4
$40-50$	3

Answer:

C.I	f	fc	points
$\mathbf{0 - 1 0}$	2	2	$<10,2$
$\mathbf{1 0 - 2 0}$	12	14	$<20,14$
$20-30$	2	16	$<30,16$
$\mathbf{3 0 - 4 0}$	4	20	$<40,20$
$40-50$	3	23	$<50,23$

33. Construct tangents to a circle of radius 3 cm such that the angle between the tangents is 60^{0}.

34. Find the Solution to the given pair of linear equations by graphical method. $x+y=5, \& 2 x-y=4$.
From equation (i), we have the following table:

\mathbf{x}	$\mathbf{0}$	2	4
\mathbf{y}	5	3	1

From equation (ii), we have the following table:

x	0	2	4
y	-4	0	4

So, two lines intersects at $(2,3)$ hence $x=2 \& y=3$.
35. The third term of an arithmetic progression is 8 and its ninth term exceeds three times the third term by 2 find the sum of the first 19 terms.
Answer:
We know that the nth term of an A.P with first term a and common difference d is $\mathrm{Tn}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$.
Here, it is given that the third term of an A.P is 8 , therefore,
$\Rightarrow \mathrm{T} 3=\mathrm{a}+(3-1) \mathrm{d}$
$\Rightarrow 8=\mathrm{a}+2 \mathrm{~d}$
$\Rightarrow a+2 \mathrm{~d}=8$.
It is also given that the ninth term of an A.P exceeds three times the third term by 2 , therefore,
$\Rightarrow \mathrm{T} 9=3 \mathrm{~T} 3+2=(3 \times 8)+2=24+2=26$
But
$\Rightarrow T 9=a+(9-1) d=a+8 d$, thus,
$\Rightarrow a+8 d=26$.
Now, subtract equation 1 from equation 2 as follows:
$\Rightarrow(a-a)+(8 d-2 d)=26-8$
$\Rightarrow 6 \mathrm{~d}=18$
$\Rightarrow d=618=3$
Substitute $\mathrm{d}=3$ in equation 1 :
$a+(2 \times 3)=8 \Rightarrow a+6=8 \Rightarrow a=8-6=2$
We also know that the sum of n terms of an A.P with first term a and common difference d is:
$\Rightarrow \mathrm{Sn}=2 \mathrm{n}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
\Rightarrow Substitute $\mathrm{n}=19, \mathrm{a}=2$ and $\mathrm{d}=3$ in $\mathrm{Sn}=2 \mathrm{n}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$ as follows:
$\Rightarrow S 19=219[(2 \times 2)+(19-1) 3]=219[4+(18 \times 3)]=219(4+54)=219 \times 58=19 \times 29=551$
Hence, the sum of the first 19 terms of an A.P is S19=551.
OR
In an arithmetic progressive the sum of the three terms is 24 , and their product is 480 , write three terms of the arithmetic progression?
Solution: let the three terms be a-d, a, a+d
Its sum $=24$
product $=480$
$a-d+a,+a+d=24$
a-dx a xa+d=480
$a=8$ $64-d^{2}=60$
$\mathrm{d}=2$
therefore the three terms are $a-d a, a+d$

$$
6,8,10 .
$$

36. A toy is in the form of a cone mounted on a hemisphere with the some radius is as shown in the figure. If the diameter of the conical portion is 6 cm and its height is 4 cm , then find the surface area of the toy.

Solution:

Given :
For cone -

1. Height of the cone $=4 \mathrm{~cm}$
2. diameter of the cone $=6 \mathrm{~cm}$
3.radius of the cone $=\frac{6}{2}=3 \mathrm{~cm}$

Slant height of the cone $\mathrm{l}=\sqrt{ } \mathrm{r}^{2}+\mathrm{h}^{2}$
$\Rightarrow 1=\sqrt{3}{ }^{2}+4^{2}$
$\Rightarrow 1=\sqrt{9}+16$
$\Rightarrow \mathrm{l}=5$
Lateral surface area of the cone $=\pi r l$
$\Rightarrow 3.14 \times 3 \times 5$
$\Rightarrow 3.14 \times 15$
$\Rightarrow 47,10 \mathrm{~cm}^{2}$
For Hemisphere -

1. Diameter of the hemisphere $=6 \mathrm{~cm}$
2. Radius of hemisphere $=\frac{6}{2}=3 \mathrm{~cm}$

Lateral surface area of hemisphere $=2 \pi r^{2}$
$\Rightarrow 2 \times 3.14 \times 3^{2}$
$\Rightarrow 2 \times 3.14 \times 9$
$\Rightarrow 18 \times 3.14$
$\Rightarrow 56.52 \mathrm{~cm}^{2}$
The surface are of toy = lateral surface area of cone + lateral surface area of hemisphere
$\Rightarrow 47.10+56.52$
$\Rightarrow 103.62 \mathrm{~cm}^{3}$
\therefore The total surface area of toy $=103.62 \mathrm{~cm}^{3}$
37. Construct a triangle $A B C$ of its sides $B C=4 \mathrm{~cm}, A B=6 \mathrm{~cm}$ and $A C=4.5 \mathrm{~cm}$ then construct a triangle similar to it, whose sides are $\frac{2}{3}$ of the corresponding sides of the triangle $A B C$.

Solution :

38. State and Prove "Basic proportionally theorem"

Basic Proportionality Theorem states that, if a line is parallel to a side of a triangle which intersects the other sides into two distinct points, then the line divides those sides of the triangle in proportion.

Let ABC be the triangle.
The line \mathbf{l} parallel to $\mathbf{B C}$ intersect $\mathbf{A B}$ at \mathbf{D} and $\mathbf{A C}$ at \mathbf{E}.
To prove: $\frac{D B}{\mathrm{AD}}=\frac{C B}{\mathrm{AE}}$
Join BE,CD
Draw EF \perp AB, $\mathbf{D G} \perp \mathbf{C A}$
Since $E F \perp A B$,
EF is the height of triangles ADE and DBE
Area of $\triangle A D E=1 / 2 \times$ base \times height $=1 / 2 \times A D \times E F$
Area of $\triangle D B E=1 / 2 \times D B \times E F$
$\frac{\text { areaof } \triangle D B E}{\text { areaof } \triangle A D E}=\frac{1 / 2 \times D B \times E F}{1 / 2 \times A D \times E F} \times \frac{D B}{\text { AD }}$
Similarly,
$\frac{\text { areaof } \triangle D B E}{\text { areaof } \triangle A D E}=\frac{1 / 2 \times C B \times E F}{1 / 2 \times A E \times E F} \times \frac{C B}{A E}$
But \triangle DBE and \triangle DCE are the same base DE and between the same parallel straight line $\mathbf{B C}$ and $\mathbf{D E}$.
Area of $\triangle D B E=$ area of $\triangle D C E$
From (1), (2) and (3), we have $\frac{D B}{A D}=\frac{C B}{A E}$
Hence proved.

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD 2020-21 MODEL PAPER - 1 with Key answer

Subject: Mathematics
Time : 3 hours
Answer the following questions.

1. If the pair of Linear equations $x+2 y=3$ and $2 x+4 y=k$ are coincide then the value of ' k ' is :
Answer: 6
2. The nth term of an arithmetic progression is an $=4 n+5$ then the 3 rd term is :

Answer: 17
3. If the roots of the quadratic equation $x 2+6 x+k=0$ are equal, then the value of ' k ' is :

Answer: 9
4. The value of $\sin 60^{\circ} \times \cos 30^{\circ}$ is :

Answer: $\frac{3}{4}$
5. The distance of the co-ordinate $p(4,3)$ from the x-axis is :

Answer: 3 units
6. A straight line intersecting a circle at two points is called :

Answer: a secant
7. The volume of a cylinder is 300 m 3 then the volume of a cone having the same radius and height as that of the cylinder is :
Answer: $100 \mathrm{~cm}^{3}$.
8. The surface area of a sphere of radius 7 cm is :

Answer: $616 \mathrm{~cm}^{2}$.
9. How many solutions have the pair of linear equations $2 x+3 y-9=0$ and $4 x+6 y-18=$ 0 ?
Answer: $\frac{a 1}{a 2}=\frac{2}{4}, \frac{b 1}{b 2}=\frac{3}{6}, \frac{c 1}{c 2}=-\frac{9}{18}$,
Hence all are equal. So lines are parallel (many solutions)
10. Write the standard form of a quadratic equation.

Answer: $a x^{2}+b x+c=0$
11. Find the value of $\tan \theta-\cot \left(90^{\circ}-\theta\right)$.

Answer: $\tan \theta-\cot \left(90^{\circ}-\theta\right)$.

$$
\tan \theta-\tan \theta=0
$$

12. In the figure $\angle B=90^{\circ}, \angle A=\angle C$ and $B C=10 \mathrm{~cm}$, then find the value of $\tan 45^{\circ}$.

Answer: $\tan 45^{\circ}=\frac{A B}{B C}$

$$
\begin{aligned}
& \tan 45^{0}=\frac{B C}{B C}(\text { Because } \mathrm{AB}=\mathrm{BC}) \\
& \tan 45^{\circ}=1
\end{aligned}
$$

13. Write the co-ordinates of the midpoint of the line segment joining the points $A\left(x_{1}, y_{1}\right.$) and B ($\mathrm{x}_{2}, \mathrm{y}_{2}$).
Answer: $\mathrm{p}(\mathrm{x}, \mathrm{y})=\left\lfloor\frac{x 1+x 2}{2}, \frac{y 1+y 2}{2}\right\rfloor$
14. Find the median of the scores $5,8,14,16,19$ and 20 ?

Answer: 5, 8, 14, 16, 19, 20. Median $=\frac{14+16}{2}$

$$
\begin{aligned}
& =\frac{30}{2} \\
\text { Median } & =15
\end{aligned}
$$

15. State 'Thale's theorem?

Thales theorem states that "if a line is parallel to a side of a triangle which intersects the other sides into two distinct points, then the line divides those sides of the triangle in proportion".
16. Write the formula to find the curved surface area of the frustum of a cone as shown in the figure?
Answer: C.S.A of frustum $=\Pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$ l.
17. Find the 25 th term of an arithmetic progression $2,6,10,14, \ldots \ldots$.

Solution: here $a=2, d=4, n=25$
We should have to find a_{n}, we know an=a+($\left.n-1\right) d$

$$
\begin{aligned}
& \mathrm{a}_{25}=2+(25-1) 4 \\
& \mathrm{a}_{25}=2+24 \times 4 \\
& \mathrm{a}_{25}=2+96 \\
& \mathrm{a}_{25}=98
\end{aligned}
$$

Hence $25^{\text {th }}$ term is this A.P is 98
18. Find the sum of first 20 terms of the arithmetic progression $3,8,13, \ldots \ldots$ using the formula.
Solution: here $a=3, d=5, n=20$
We should have to find sn, we know $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 a+(n-1) d)$

$$
\begin{aligned}
& \mathrm{s}_{20}=\frac{20}{2}(2 \times 3+(20-1) 5) \\
& \mathrm{s}_{20}=10(6+19 \times 5) \\
& \mathrm{s}_{20}=10 \times 101 \\
& \mathrm{~s}_{20}=1010
\end{aligned}
$$

Hence sum of first $20^{\text {th }}$ term is this A.P is 1010

OR

Find the sum of the first 30 positive integers divisible by 6
Solution: integers which is divisible by 6 is $6,12,18,24, \ldots . . .$.
Here $a=6, d=6, n=30$, we need to find S_{30}.
We know the formula, $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\frac{30}{2}(2 \mathrm{X} 6+(30-1) \mathrm{X} 6) \\
\mathrm{S}_{\mathrm{n}} & =15 X(12+29) \mathrm{X} 6) \\
& =2790
\end{aligned}
$$

Hence the sum of first 30 terms which is divisible by 6 is 2790 .
19. Solve: $3 x+y=15 \& 2 x-y=5$.

Solution: Consider the given equation.
$3 x+y=15$
$2 x-y=5$

On subtracting both equation (1) and (2), we get
$5 \mathrm{x}=20$
$\mathrm{x}=4$
Now, put the value of x in equation (1), we get
$3(4)+y=15$
$12+y=15 \quad y=3$

Hence, the value of x is 4 and y is 3
20. Solve by using quadratic formula: $x^{2}-3 x+1=0$.

Solution: $a=1, b=-3, c=1$
Quadratic formula is $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& \mathrm{x}=\frac{-(-3) \pm \sqrt{3^{2}-4 x(1) x 1}}{2 \times 1} \\
& \mathrm{x}=\frac{3 \pm \sqrt{9-4}}{2} \\
& \mathrm{x}=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

21. Find the discriminant of the quadratic equation $2 x^{2}-6 x+3=0$ and hence write the nature of roots.
Solution: $2 x^{2}-6 x+3=0$

$$
a=2, b=-6, c=3
$$

$\Delta=b^{2}-4 \mathrm{ac}$.
$\Delta=36-4 \times 2 \times 3$
$\Delta=36-24=12$
$\Delta>0$, hence roots are different.
OR
Prove that the quadratic equation $\mathrm{x} 2+\mathrm{ax}-4=0$ has distinct, real roots.
Solution: $x^{2}+a x-4=0$

$$
\begin{aligned}
& \mathrm{a}=1, \mathrm{~b}=\mathrm{a}, \mathrm{c}=-4 \\
& \Delta=\mathrm{b}^{2}-4 \mathrm{ac} . \\
& \Delta=\mathrm{a}^{2}-4 \times 1 \mathrm{x}(-4) \\
& =\mathrm{a}^{2}+16 \\
& \Delta>0
\end{aligned}
$$

So here roots are real \& exists.
22. Find the distance between the co-ordinate of the points $A(2,3)$ and $B(10,-3)$.

Solution: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(2,3) \quad \& \quad\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(10,-3)$
We know the distance formula $\mathrm{d}=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}}$.

$$
\begin{aligned}
& d=\sqrt{(10-2)^{2}+(-3-3)^{2}} \\
& d=\sqrt{(8)^{2}+(-6)^{2}} \\
& d=\sqrt{64+36} \\
& d=10 \text { units. }
\end{aligned}
$$

23. Draw a line segment of $A B=8 \mathrm{~cm}$ and divide it in the ratio $3: 2$ by geomtrical construction.
Solution:

24. In the figure given below find the value of $\sin \theta$ and $\cos \alpha$?.

Answer: by figure $\sin \boldsymbol{\theta}=\frac{5}{13} \& \cos \alpha=\frac{5}{13}$.
25. The sum of two natural numbers is 9 and the sum of their reciprocals is 920 . Find the numbers.
Solution:
The sum of two numbers is 9 and the sum of their reciprocal is $9 / 20$.
Let the numbers be x and y respectively.
Sum of numbers is 9 .
$\Rightarrow \mathrm{x}+\mathrm{y}=9$.... (i)
$\Rightarrow \mathrm{y}=9-\mathrm{x}$
Sum of reciprocals is $1 / 2$.
$\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{9}{20 .}$. (iii), put $\mathrm{y}=9-\mathrm{x}$ in the equation (iii)
Now, on solving (iii), we get $\mathrm{x}^{2}-9 \mathrm{x}+20=0$.

$$
\begin{aligned}
& x^{2}-5 x-4 x+20=0 \\
& (x-5)(x-4)
\end{aligned}
$$

$X=5$ \& $x=4$
Putting the value of (i) and (ii) here, we get -
Hence, the required numbers are 5 and 4.
OR
The perimeter and area of a rectangular playground are 80 m and $384 \mathrm{~m}^{2}$ respectively. Find the length and breadth of the playground.
Solution: let length of the rectangular playground be $=1$
Breadth of the rectangular playground be $=b$

$$
\begin{array}{cc}
2(\mathrm{l}+\mathrm{b})=80 & \operatorname{lxb}=384 \\
\mathrm{l}+\mathrm{b}=40 & \mathrm{lxb}=384 \\
\mathrm{l}=40-\mathrm{b} &
\end{array}
$$

this gives

$$
\begin{aligned}
& (40-b) x b=384 \\
& 40 \mathrm{~b}-\mathrm{b}^{2}=384 \\
& \mathrm{~b}^{2}-40 \mathrm{~b}+384=0 \\
& \text { by factorization } \\
& b^{2}-24 \mathrm{~b}-16 \mathrm{~b}+384=0 \\
& (\mathrm{~b}-24)(\mathrm{b}-16)
\end{aligned}
$$

CHITTI CREATIONS

$$
b=24 \& b=16
$$

put the value of b in above equations we get $\quad l+16=40$

$$
\mathrm{l}=24
$$

so the length of the rectangular garden is 24 m and breadth is 16 m .
26. Prove that $\frac{\sin \theta}{1-\cos \theta}+\frac{\cos \theta}{1-\tan \theta}=\sin \theta+\cos \theta$

Solution: LHS $\frac{\sin \theta}{1-\cos \theta}+\frac{\cos \theta}{1-\tan \theta}$

$$
\begin{aligned}
& \frac{\sin \theta}{1-1 / \sin \theta}+\frac{\cos \theta}{1-\sin \theta / \cos \theta}=\frac{\sin 2 \theta}{\sin \theta-1}+\frac{\cos 2 \theta}{\cos \theta-\sin \theta}=\frac{\sin 2 \theta}{\sin \theta-\cos \theta}-\frac{\cos 2 \theta}{\sin \theta-\cos \theta} \\
&= \frac{\sin 2 \theta-\cos 2 \theta}{\sin \theta-\cos \theta} \\
&= \frac{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}{\sin \theta-\cos \theta}=(\sin \theta+\cos \theta) \text { hence the proof } \\
& \quad \text { OR }
\end{aligned}
$$

Prove that: $\frac{\cos \theta-2 \cos 3 \theta}{2 \sin 3 \theta-\sin \theta}=\cos \theta$
Solution: $\frac{\cos \theta-2 \cos 3 \theta}{2 \sin 3 \theta-\sin \theta}=\frac{\cos \theta(1-2 \cos 2 \theta}{\sin \theta(2 \sin 2 \theta-1)}=\cot \theta \frac{1-2+2 \sin 2 \theta}{2 \sin 2 \theta-1}$

$$
=\cot \left(\frac{2 \sin 2 \theta-1}{2 \sin 2 \theta}\right)=\cot \boldsymbol{\theta} \text {. Hence the proof. }
$$

27. From a point on the ground, the angles of elevation of the top and bottom of a transmission tower fixed at the top of a 20 m high building are 60° and 45° .respectively. Find the height of the transmission tower.
Solution:

Let DC be the tower and BC be the building, then
$\angle \mathrm{CAB}=45^{\circ}, \angle \mathrm{DAB}=60^{\circ}, \mathrm{BC}=20 \mathrm{~m}$
Let height of the tower, $\mathrm{DC}=\mathrm{h} \mathrm{m}$.
In right $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{A B}{B C}$
$1=\frac{A B}{20}$
$\mathrm{AB}=20 \mathrm{~m}$
In right $\triangle \mathrm{ABD}$, $\tan 600=\mathrm{AB} / \mathrm{BD}$

$$
\begin{aligned}
& \sqrt{3}=\frac{h+20}{20}=.> \\
& h=20(\sqrt{3}-1) \mathrm{m}
\end{aligned}
$$

28. Find the value of ' k '. If the co-ordinates of the points $A(2,-2), B(-4,2)$ and $C(-7$, $k)$ are collinear.
Solution: $\left(x_{1}, y_{1}\right)=(2,-2),\left(x_{2}, y_{2}\right)=(-4,2),\left(x_{3}, y_{3}\right)=(-7, k)$.
We know that area of triangle $=\frac{1}{2}\left(x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right)\right.$.

$$
\begin{aligned}
& 0=\frac{1}{2}(2(2-\mathrm{k})+-4(\mathrm{k}+2)+-7(-2-2)) \\
& 0=-6 \mathrm{k}+4-8+28 \\
& 6 \mathrm{k}=24 \\
& \mathrm{k}=4
\end{aligned}
$$

29. Calculate the 'mean' for the frequency distribution table given below, by direct method.

c.i	f
$5-15$	4
$15-25$	3
$25-35$	6
$35-45$	5
$45-55$	2

Solution: we know the formula that $\mathrm{x}=\frac{\sum f x x}{n}=\frac{580}{20}=29$

C.I	f	x	fx
$\mathbf{5 - 1 5}$	$\mathbf{4}$	10	40
$\mathbf{1 5 - 2 5}$	$\mathbf{3}$	20	60
$\mathbf{2 5 - 3 5}$	$\mathbf{6}$	30	180
$\mathbf{3 5 - 4 5}$	$\mathbf{5}$	40	200
$\mathbf{4 5 - 5 5}$	$\mathbf{2}$	50	100
	$\mathrm{n}=20$		$f x x=580$

So mean value is 29

OR

Find the 'mode' of the frequency distribution table given below.

C.I	f
$0-10$	7
$10-20$	9
$20-30$	15
$30-40$	11
$40-50$	8
	$\mathrm{~N}=50$

Answer: here n=50,

Then place the chart

C.I	f
$0-10$	7
$10-20$	9
$20-30$	15
$30-40$	11
$40-50$	8
	$\mathrm{~N}=50$

$\mathrm{l}=20, \mathrm{f}_{0}=9, \mathrm{f}_{1}=15, \mathrm{f}_{2}=11, \mathrm{~h}=10$
Mode $=1+\left(\frac{f 1-f 0}{2 f 1-f 0-f 2}\right) \times h$
$=20+(6 / 10) \times 15$
$=20+6$
$=26$
30. The following table gives the production yield per hectare of wheat of 100 farms of a village. Draw a 'more than type ogive' for the given data.

Production yield in kg/hectare	Cumulative Frequency
More than or equal to 50	100
More than or equal to 55	98
More than or equal to 60	90
More than or equal to 65	78
More than or equal to 70	54
More than or equal to 75	16

Solution:
Answer:

C.I	f	points
>50	100	50,100
>55	98	55,98
>60	90	60,90
>65	78	65,78
>70	54	70,54
>75	16	75,16

morethan type of ogive

31. . Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact".

Given: a circle with tangent $X Y$ at point of contact P.
To Prove: $\mathrm{OP} \perp \mathrm{XY}$
Proof: Let Q be a point on XY connect OQ
Suppose it touches the circle at R
Hence,
$0 Q>O R$
$0 Q>0 P \quad O P=O R$ (radius)
Same will be the case with all other points on the circle
Hence,
We get OP is the smallest line that connects XY.
32. Draw a pair of tangents to a circle of radius 4 cm which are inclined to each other at an angle of 60° and write the measure of its length.
Solution: Draw a circle of radius 4 cm , then construct 120° between the two radii $\left(180^{0}-60^{\circ}\right)$.

33. A right circular metalic cone of height 20 cm and base radius 5 cm is melted and recast into a solid sphere. Find the radius of the sphere.
Solution: volume of the cone= volume of the sphre

$$
\begin{aligned}
\Rightarrow \frac{1}{3} \pi r_{1}{ }^{2} \mathrm{~h}=\frac{4}{3} \pi \mathrm{r}_{2}{ }^{3} \Rightarrow & 5 \times 5 \times 20=4 \times \mathrm{r}_{2}^{3} \\
\Rightarrow \mathrm{r}_{2} & =\sqrt[3]{35 \times 5 \times 5}=5 \mathrm{~cm}
\end{aligned}
$$

\therefore Radius of sphere is 5 cm .
OR
A solid sphere of radius 3 cm is melted and reformed by stretching it into a cylindrical shaped wire of length 9 m . Find the radius of the wire.
Solution: sphere, $r=3 \mathrm{~cm}$
Cylinder, $\mathrm{l}=9 \mathrm{~m}=900 \mathrm{~cm}$.
Volume of cylinder $=$ volume of sphere

$$
\begin{aligned}
& \pi r^{2} h=\frac{4}{3} \pi r^{3} \\
& r^{2} \times 900=\frac{4}{3} \times 3 \times 3 \times 3 \\
& r^{2} \times 900=36 \\
& r^{2}=\frac{4}{100}=0.2 \mathrm{~cm}
\end{aligned}
$$

radius of the wire is 0.2 cm
34. Find the Solution to the given pair of linear equations by graphical method. $2 x+y=10, \& x+y=6$.

Solution:

From equation (i), we have the following table:

\mathbf{x}	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$
\mathbf{y}	10	6	2

From equation (ii), we have the following table:

\mathbf{x}	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$
\mathbf{y}	$\mathbf{6}$	$\mathbf{4}$	2

So the two lines are intersects at $(4,2)$. Hence $x=4 \& y=2$
35. An arithmetic progression consists of 37 terms. The sum of the first 3 terms of it is 12 and the sum of its last 3 terms is 318, then find the first and last terms of the progression.
Solution: let first three terms be $a, a+d, a+2 d$, and last three terms be $a+34 d, a+35 d$, a+36d.
According to problem,
$a+a+d+a+2 d=12$
$3 a+3 d=12$
$a+d=4---\rightarrow(1)$
subtract above two equations, we get $34 \mathrm{~d}=102$

$$
\mathrm{d}=3
$$

put d value in any one equation we get $a, \quad a+3=4$
$\mathrm{a}=1$
therefore first term is 1 and last term is $1+36 \mathrm{~d}=1+36 \times 3=1+108=109$
OR

CHITTI CREATIONS

The sum of the first 7 terms of an arithmetic progression is $\mathbf{1 4 0}$ and the sum of the next 7 terms of the same progression is 385 then find the arithmetic progression.
Solution: $S_{7}=140 \quad \& \quad S_{14}=140+385$

$$
S_{7}=140 \quad S_{14}=525
$$

we know $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$

$$
\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})
$$

$$
140=\frac{7}{2}(2 a+(7-1) d)
$$

$$
\begin{equation*}
40=2 a+6 d \tag{1}
\end{equation*}
$$

Solve above two equations, $7 \mathrm{~d}=35$
$\mathrm{d}=5$
put d value in anyone equation we get $a=5$ so arithmetic progression is $5,10,15$, \qquad
36. Construct a triangle with sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 6 cm and then another triangle whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

Solution:

37.A toy is made in the shape of a cylinder with one hemisphere stuck to one end and a cone to the other end, as shown in the figure, the length of the cylindrical part of the toy is 20 cm and its diameter is 10 cm . If the slant height of the cone is 13 cm . Find the surface area of the toy.
Solution: cylinder, $\mathrm{r}=5 \mathrm{~cm}, \mathrm{~h}=20 \mathrm{~cm}$
Hemisphere, $r=5 \mathrm{~cm}$
Cone, $r=5 \mathrm{c}, \& \mathrm{l}=13 \mathrm{~cm}$
We should have to find surface area of the toy
$=$ CSA of cylinder + CSA of hemisphere + CSA of Cone
$=2 \pi r h+2 \pi r^{2}+\pi r l$.
$=\pi\left(2 r h+2 r^{2}+r l\right)$
$=\pi r(2 \times 20+2 \times 5+x 13)$
$=\pi r(40+10+13)$
$=\frac{22}{7}(63) \times 5$
$=22 \mathrm{x} 45$
$=990 \mathrm{~cm}^{2}$.
38. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Solution:

Let the two triangles be:
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$
Area of $\triangle A B C=\frac{1}{2} \times B C \times A M$.
Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}$

Dividing (1) by (2)
$\frac{\operatorname{ar}(\mathbf{A B C})}{\operatorname{ar}(\mathbf{P Q R})}=\frac{Q R \times P N}{\mathbf{B C} \times \mathbf{A M}}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$
$\angle B=\angle \mathrm{Q}$ (Angles of similar triangles)
$\angle \mathrm{M}=\angle \mathrm{N}$ (Both 90)
Therefore, $\triangle \mathrm{ABM} \sim \triangle \mathrm{PQN}$
So, $\frac{A M}{\mathrm{AB}}=\frac{P N}{\mathrm{PQ}}$
From 2 and 4
$\frac{\operatorname{ar}(\mathbf{A B C})}{\operatorname{ar}(\mathbf{P Q R})}=\frac{Q R \times B C}{\mathbf{P N} \times \mathbf{A M}}$
$\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(\mathbf{P Q R})}=\frac{B C}{Q R} X \frac{A B}{P Q}$
But $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A B}{P Q}$
Hence $\frac{\operatorname{ar}(\mathbf{A B C})}{\operatorname{ar}(\mathbf{P Q R})}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A B}{P Q}\right)^{2}$.

As per reduced syllabus-2021 MODEL QUESTION PAPER-3

Subject: Mathematics
Time : 3 hours

Subject code: 81E
Max.marks: 80

Choose the correct answer given below ------- 1x8=8

1. If $a=10$ and $d=10$, then first four terms will be:
a. 10, 30, 50, 60
b. 10, 20, 30, 40
c.10, 15, 20, 25
d. $10,18,20,30$
2. The cubic equation has degree
a. 1
b. 2
c. 0
d. 3
3. Graphically, the pair of equations $7 x-y=5 ; 21 x-3 y=10$ represents two lines which are....
a. Intersecting at one point
b. parallel c. intersecting at two points
d. coincident
4. If COT $A=\frac{1}{4}$, Then TAN A is
a. $\frac{1}{2}$
b. $\frac{1}{4}$
c. $\frac{4}{1}$
d. $\frac{3}{4}$
5. The distance of the point $(4,3)$ from the origin?
a. 3 units
b. 4 units
c. 7 units
d. 5 units
6. In an A.P, $1,5,9, \ldots .$. which of the following is common difference?
a. 4
b. 2
b. 3
d. 1
7. In $\triangle \mathrm{ABC} \mathrm{DE} \| \mathrm{AB}$. If $\mathrm{CD}=3 \mathrm{~cm}, \mathrm{EC}=4 \mathrm{~cm}, \mathrm{BE}=6 \mathrm{~cm}$, then DA is equal to \ldots
a. 7.5 cm
b. 3 cm
c. 4.5 cm
d. 6 cm
8. A cylindrical pencil sharpened at one edge is the combination of.
a. Cylinder \& hemisphere
b. Cylinder \& cone
c. Cone \& hemisphere d. two cylinder.

Answer the following questions

 $1 \times 8=8$9. What will be the nature of the roots of the quadratic equation $5 x^{2}-4 x+5=0$.
10. Find the $10^{\text {th }}$ term in the A.P $4,8,12$. \qquad
11. Find the value of $\sec ^{2} 42^{\circ}-\operatorname{cosec}^{2} 48^{\circ}$.
12. If $(1+\cos A)(1-\cos A)=3 / 4$, find the value of $\sec A$.
13. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, then calculate the height of the wall.
14. If $\triangle A B C \sim \triangle P Q R$, perimeter of $\triangle A B C=32 \mathrm{~cm}$, perimeter of $\triangle P Q R=48 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$, then find the length of $A C$.
15. In the given figure, O is the centre of a circle, AB is a chord and AT is the tangent at A . If $\angle A O B=$ 100°, then calculate $\angle B A T$.

16. Write the formula to total surface area of the cylinder.

Answer the questions

17. Find whether -150 is a term of the A.P. $17,12,7,2, \ldots$?. OR
Which term of the progression $4,9,14,19, \ldots$ is 109 ?
18. Solve the following quadratic equation by using formula:
$x^{2}+2 x-8=0$
19. Solve the equations : $x+3 y=6,2 x-3 y=12$
20.

Evaluate: $\tan 15^{\circ} \cdot \tan 25^{\circ}, \tan 60^{\circ} \cdot \tan 65^{\circ} \cdot \tan 75^{\circ}-\tan 30^{\circ}$.
21. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$. If $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}, \mathrm{CA}=2.5 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{DEF}$.
22. Express cot $75^{\circ}+\operatorname{cosec} 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 30°.
23. Draw a pair of tangents to a circle of radius 3 cm , which are inclined to each other at an angle of 60°.
24. A sphere of diameter 18 cm is dropped into a cylindrical vessel of diameter 36 cm , partly filled with water. If the sphere is completely submerged, then calculate the rise of water level (in cm).

Solve the following problems

25. A man earns ₹600 per month more than his wife. One-tenth of the man's salary and l/6 ${ }^{\text {th }}$ of the wife's salary amount to $₹ 1,500$, which is saved every month. Find their incomes.

OR

The age of the father is twice the sum of the ages of his 2 children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.
26. A solid wooden toy is in the form of a hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and the total wood used in the making of toy is $16656 \mathrm{~cm}^{3}$. Find the height of the toy. Also, find the cost of painting the hemispherical part of the toy at the rate of ₹ 10 per cm^{2}. [Use $\pi=22 / 7$]
27. If the sum of two natural numbers is 8 and their product is 15 , find the numbers.
28. Find the mean of the following data.

Class	Frequency
less than 20	15
less than 40	37
less than 60	74
less than 80	99
less than 100	120

Weekly income of 600 families is given below: Find the median

Income in $(₹)$	No. of families
$0-1000$	250
$1000-2000$	190
$2000-3000$	100
$3000-4000$	40
$4000-5000$	15
$5000-6000$	5

29. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact".
30. Find that value(s) of x for which the distance between the points $P(x, 4)$ and $Q(9,10)$ is 10 units.

CHITTI CREATIONS

31. A cubical block of side 10 cm is surmounted by a hemisphere. What is the largest diameter that the hemisphere can have? Find the cost of painting the total surface area of the solid so formed, at the rate of $₹ 5$ per 100 sq . cm. (Use $\pi=3.14$).
32. If an isosceles triangle whose base is 6 cm and altitude 4 cm . Then construct another triangle whose sides are $3 / 4$ times the corresponding sides of the isosceles triangle.
33. The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of elevation of top of the tower from the foot of the hill is 30°.If the tower is 50 m high, what is the height of the hill?

OR

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building.

Solve

$$
4 \times 4=16
$$

34. Solve pair of linear equations graphically : $x+3 y=6 \& 2 x-3 y=12$.
35. If the sum of first 7 terms of an A.P is 49 and that of its first 17 terms is 289 , find the sum of first n terms of the A.P.

OR

If S_{n}, denotes the sum of first n terms of an A.P., prove that $S_{12}=3\left(S_{8}-S_{4}\right)$.
36. The following table gives the daily income of 50 workers of a factory. Draw both types ("less than type" and "greater than type") ogives.

Daily income (in ₹)	No. of workers
$100-120$	12
$120-140$	14
$140-160$	8
$160-180$	6
$180-200$	10

37. The numerator of a fraction is 3 less than its denominator. If 1 is added to the denominator, the fraction is decreased by 115. Find the fraction.
Solve
$5 \times 1=5$
38. State and Prove Pythagoras theorem.

KEY ANSWER-3

Subject: Mathematics
Time :3 hours

Subject code: 81E
Max.marks:80

1. Answer: b

Explanation: $\mathrm{a}=10, \mathrm{~d}=10$
$a_{1}=a=10$
$\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{d}=10+10=20$
$\mathrm{a}_{3}=\mathrm{a}_{2}+\mathrm{d}=20+10=30$
$a_{4}=a_{3}+d=30+10=40$
2. Option (b) 3
3. Option (b) parallel
4. Option (c)
5. Option (d) 5 units
6. Answer: 4.
7. Option (c) 4.5 cm
8. Option (b) cylinder and cone.
9. To find the nature, let us calculate $b^{2}-4 a c$
$b^{2}-4 a c=4^{2}-4 \times 5 \times 5$
$=16-100=-84<0$, therefore it is not real.
10. Here $a=4, d=4$, we need to find a_{10}.

$$
\begin{aligned}
\mathrm{a}_{10} & =\mathrm{a}+9 \mathrm{~d} \\
\mathrm{a}_{10} & =4+9 \mathrm{x} 4 \\
& =4+36 \\
& =40
\end{aligned}
$$

11.

$$
\begin{aligned}
\sec ^{2} 42^{\circ}-\operatorname{cosec}^{2} 48^{\circ} & =\sec ^{2} 42^{\circ}-\operatorname{cosec}^{2}\left(90^{\circ}-42^{\circ}\right) \\
& =\sec ^{2} 42^{\circ}-\sec ^{2} 42^{\circ} \quad\left[\text { Using } \sec \theta=\operatorname{cosec}\left(90^{\circ}-\theta\right)\right]
\end{aligned}
$$

12.

$$
\begin{aligned}
& (1+\cos \mathrm{A})(1-\cos \mathrm{A})=\frac{3}{4} \\
& \therefore \quad 1-\cos ^{2} \mathrm{~A}
\end{aligned}=\frac{3}{4} .
$$

13.

$\angle \mathrm{BAC}=180^{\circ}-90^{\circ}-60 \mathrm{o}=30^{\circ}$
$\sin 30^{\circ}=\mathrm{BCAC}$
$12=\mathrm{BC} 15$
$2 \mathrm{BC}=15$
$B C=152 m$
14. Solution:
$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR} . .$. [Given
$\therefore \quad \frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}=\frac{A C}{P R}$
$\Rightarrow \frac{32}{48}=\frac{A C}{6} \quad \Rightarrow \quad A C=4 \mathrm{~cm}$
15.

Solution:

$\angle 1=\angle 2$
$\angle 1+\angle 2+100^{\circ}=180^{\circ}$
$\angle 1+\angle 1=80^{\circ}$
$\Rightarrow 2 \angle 1=80^{\circ}$
$\Rightarrow \angle 1=40^{\circ}$
$\angle 1+\angle B A T=90^{\circ}$
$\angle \mathrm{BAT}=90^{\circ}-40^{\circ}=50^{\circ}$
16. The Surface Area of Cylinder $=$ Curved Surface + Area of Circular bases
S.A. (in terms of π) $=2 \pi r(h+r)$ sq.unit
17. Given: $1^{\text {st }}$ term, $\mathrm{a}=17$

Common difference, $\mathrm{d}=12-17=-5$
$\mathrm{n}^{\text {th }}$ term, $\mathrm{a}_{\mathrm{n}}=-150$ (Let)
$\therefore a+(n-1) d=-150$
$17+(n-1)(-5)=-150$
$(\mathrm{n}-1)(-5)=-150-17=-167$
$(\mathrm{n}-1)=-167-5$
$\mathrm{n}=1675+1=167+55=1725$
$\mathrm{n}=1725 \ldots$...[Being not a natural number
$\therefore-150$ is not a term of given A.P.
OR
Given: A.P.: 20, 774,374,714
Here $\mathrm{a}=20, \mathrm{~d}=77-804=-34$
For first negative term, $\mathrm{a}_{\mathrm{n}}<0$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}<0 \Rightarrow 20+(\mathrm{n}-1)(-34)<0$
$\Rightarrow-34(\mathrm{n}-1)<-20 \Rightarrow 3(1-1)>80$
$\Rightarrow 3 \mathrm{n}-3>80 \Rightarrow 3 \mathrm{n}>83$
$n>834 \Rightarrow n>27.5$
\therefore Its negative term is 28 th term.
18. $\mathrm{x} 2+2 \mathrm{x}-8=0$

The equation is of the form $a x 2+b x+c=0$ where:

$$
a=1, b=2, c=-8
$$

The solutions are found using the formula
$x=-b \pm \sqrt{ } \Delta 2 \cdot a$

CHITTI CREATIONS

$$
\begin{align*}
& x=(-2) \pm \sqrt{36}) 2 \cdot 1=(-2 \pm 6) 2 \\
& x=-2+62=42=2, x=2 \\
& x=-2-62=-82=-4, x=-4 \tag{1}
\end{align*}
$$

19. Consider the given equation.
$\mathrm{x}+3 \mathrm{y}=6$
$2 x-3 y=12$
On adding both equation (1) and (2), we get
$3 x=18$
$\mathrm{x}=6$
Now, put the value of x in equation (1), we get
$6+3 y=6$
$3 y=6-6$
$3 y=0$
$\mathrm{y}=0$
Hence, the value of x is 6 and y is 0
20.

Solution:
$\tan 15^{\circ} \cdot \tan 25^{\circ}, \tan 60^{\circ} \cdot \tan 65^{\circ} \cdot \tan 75^{\circ}-\tan 30^{\circ}$
$=\tan \left(90^{\circ}-75^{\circ}\right) \tan \left(90^{\circ}-65^{\circ}\right) \cdot 3-\sqrt{ } \cdot \tan 65^{\circ} \cdot \tan 75^{\circ}-13 \sqrt{ }$
$=\cot 75^{\circ} \cdot \cot 65^{\circ} \cdot \sqrt{3} \cdot \frac{1}{\cot 65^{\circ}} \cdot \frac{1}{\cot 75^{\circ}}-\frac{1}{\sqrt{3}}$
$=\sqrt{3}-\frac{1}{\sqrt{3}} \quad \ldots\left[\begin{array}{l}\because \tan \left(90^{\circ}-\mathrm{A}\right)=\cot \mathrm{A} \\ \boldsymbol{\operatorname { t a n }} \mathrm{B}=\frac{1}{\cot \mathrm{~B}}\end{array}\right.$
$=\frac{3-1}{\sqrt{3}}=\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\mathbf{2 \sqrt { 3 }}}{\mathbf{3}}$
21. Solution:
$\Delta \mathrm{ABC}-\Delta \mathrm{DEF}$...[Given
$\therefore \quad \frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle D E F}=\frac{A C}{D F}$

$$
\frac{A B+B C+C A}{\text { Perimeter of } \triangle D E F}=\frac{A C}{D F}
$$

$\frac{4+3.5+2.5}{\text { Perimeter of } \triangle \mathrm{DEF}}=\frac{2.5}{7.5}$
$\frac{10}{\text { Perimeter of } \triangle D E F}=\frac{1}{3}$
$\therefore \quad$ Peri. $(\triangle D E F)=30 \mathrm{~cm}$

22. Solution:
$\cot 75^{\circ}+\operatorname{cosec} 75^{\circ}$
$=\cot \left(90^{\circ}-15^{\circ}\right)+\operatorname{cosec}\left(90^{\circ}-15^{\circ}\right)$
$=\tan 15^{\circ}+\sec 15^{\circ} \ldots\left[\cot \left(90^{\circ}-\mathrm{A}\right)=\tan \mathrm{A}\right.$
$\operatorname{cosec}\left(90^{\circ}-\mathrm{A}\right)=\sec \mathrm{A}$

CHITTI CREATIONS

23.

$\therefore \mathrm{PA} \& \mathrm{~PB}$ are the required tangents.
24. Solution:

Volume of Cylinder $=$ Volume of Sphere

$$
\begin{aligned}
& \pi \mathrm{R}^{2} h=\frac{4}{3} \pi r^{3} \\
& (18)^{2} h=\frac{4}{3} \times(9)^{3 \ldots \ldots\left[\because \mathrm{R}=\frac{36}{2}=18 \mathrm{~cm} ; r=\frac{18}{2}=9 \mathrm{~cm}\right.} \\
& \therefore \quad h=\frac{4}{3} \times \frac{9 \times 9 \times 9}{18 \times 18}=3 \mathrm{~cm}
\end{aligned}
$$

25. Solution:

Let wife's monthly income $=₹ x$
Then man's monthly income $=₹(x+600)$
According to the question,
$\frac{1}{10}(x+600)+\frac{1}{6}(x)=₹ 1,500$
$3(x+600)+5 x / 30=₹ 1,500$
$3 x+1,800+5 x=₹ 45,000$
$8 \mathrm{x}=$ ₹ 45,000 - ₹ 1,800
$\mathrm{x}=₹ 343,200 / 8$ = ₹5,400
Wife's income $=₹ x=₹ 5,400$
Man's income $=₹(x+600)=₹ 6,000$
OR
Let the sum of the ages of two children will be x and age of father will be y.
A.T.Q.,
$y=2 x$
and , After 20 years,
$\mathrm{x}+40=\mathrm{y}+20$
$==>x-y=-20$
put $y=2 x$ from (i),
$x-2 x=-20$
==> $x=20$
Now, put $\mathrm{x}=20$ in (i),
$y=2 \times 20=40$
Hence age of father will be 40 years.
26. Solution:

Let the height of cone $=\mathrm{h}$
Radius of cone $=$ Radius of hemisphere $=r=3.5 \mathrm{~cm}$
Volume of solid wooden toy = Volume of hemisphere + Volume of cone

$$
\begin{array}{ll}
\Rightarrow & 166 \frac{5}{6}=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h \\
\Rightarrow & \frac{1001}{6}=\frac{1}{3} \pi r^{2}(2 r+h) \\
\Rightarrow & \frac{1001}{6}=\frac{1}{3} \times \frac{22}{7} \times(3.5)^{2}(2 \times 3.5+h) \\
\Rightarrow & \frac{1001}{6}=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}(7+h) \\
\Rightarrow & \frac{1001}{6}=\frac{77}{6}(7+h) \Rightarrow \quad \frac{1001}{77}=7+h \\
\Rightarrow & 13=7+h \quad \Rightarrow \quad h=6
\end{array}
$$

$$
\therefore \quad \text { Height of toy }=h+r=6+3.5=9.5 \mathrm{~cm}
$$

$$
\text { Area of hemispherical part of toy }=2 \pi r^{2}
$$

$$
=\left(2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{2}=77 \mathrm{~cm}^{2}
$$

$$
\therefore \quad \text { Cost of painting }=₹(77 \times 10)=₹ 770
$$

27. Solution:

Let the numbers be x and $(8-\mathrm{x})$.
According to the Question,
$x(8-x)=15$
$\Rightarrow 8 \mathrm{x}-\mathrm{x}^{2}=15$
$\Rightarrow 0=x^{2}-8 \mathrm{x}+15$
$\Rightarrow x^{2}-5 \mathrm{x}-3 \mathrm{x}+15=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-5)-3(\mathrm{x}-5)=0$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}-5)=0$
$x-3=0$ or $x-5=0$
$x=3$ or $x=5$
When $x=3$, numbers are 3 and 5 .
When $x=5$, numbers are 5 and 3 .
28.

CHITTI CREATIONS

Class	c.f.	C.I.	Freq.	x_{i}	$\begin{gathered} d_{i}^{\prime}= \\ \frac{x_{i}-50}{20} \end{gathered}$	$f_{i} d_{i}^{\prime}$
Less than 20	15	0-20	15	10	-2	-30
Less than 40	37	20-40	22	30	-1	-22^{1-52}
Less than 60	74	40-60	37	50	0	0
Less than 80	99	60-80	25	70		25
Less than 100	120	80-100	21	90	2	$4_{42} 67$
			Σf_{i} $=120$			$\Sigma \mathrm{I}_{i} \mathrm{~d}_{i}$ $=15$

Let $a=50$

$$
\begin{aligned}
\therefore \quad \text { Mean } & =a+\left(\frac{\Sigma f_{i} d_{i}^{\prime}}{\Sigma f_{i}} \times h\right)=50+\left(\frac{15}{120} \times 20\right) \\
& =50+2.5=52.5
\end{aligned}
$$

OR		
Income (in ₹)	f_{i}	c.f.
$0-1000$	250	250
$1000-2000$	190	440
$2000-3000$	100	540
$3000-4000$	40	580
$4000-5000$	15	595
$5000-6000$	5	600
	$\boldsymbol{n = 6 0 0}$	

$$
\frac{n}{2}=\frac{600}{2}=300
$$

$\therefore \quad$ Median class is $1000-2000$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times h \\
& =1000+\left(\frac{300-250}{190} \times 1000\right) \\
& =1000+\frac{50,000}{190}=1000+263.16 \\
& =1263.16 \text { (approx.) }
\end{aligned}
$$

29. Given: a circle with tangent $X Y$ at point of contact P.

To Prove: $\mathrm{OP} \perp \mathrm{XY}$
Proof: Let Q be a point on XY connect OQ
Suppose it touches the circle at R
Hence,
OQ>OR
$0 Q>0 P \quad O P=O R$ (radius)
Same will be the case with all other points on the circle
Hence,
We get OP is the smallest line that connects XY.
30.

Solution:
$P Q=10 \ldots$ Given
$P Q Q^{2}=10^{2}=100 \ldots$ [Squaring both sides
$(9-x)^{2}+(10-4)^{2}=100 \ldots$ (using distance formula
$(9-x)^{2}+36=100$
$(9-x)^{2}=100-36=64$
$(9-x)= \pm 8 \ldots$ [Taking square-root on both sides
$9-x=8$ or $9-x=-8$
$9-8=x$ or $9+8=x$
$x=1$ or $x=17$
31. Solution:

Let the side of cuboidal block (a) $=10 \mathrm{~cm}$
Let the radius of hemisphere be r.
Side of cube = Diameter of hemisphere Largest possible diameter of hemisphere $=10 \mathrm{~cm}$
\therefore Radius, $\mathrm{r}=102=5 \mathrm{~cm}$
Total surface area $=$ Total surface area of cube + Curved surface area of hemisphere- Area of base

$$
\begin{aligned}
& =\left(6 a^{2}+2 \pi r^{2}-\pi r^{2}\right)=6 a^{2}+\pi r^{2} \\
& =6(10)^{2}+3.14 \times(5)^{2}=600+78.5 \\
\Rightarrow \quad & 678.5 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\therefore \quad \text { Cost of painting }=\frac{678.5 \times 5}{100}=\frac{3392.50}{100}
$$

$$
=₹ 33.9250 \text { or ₹33.93 }
$$

32.

33. Let AB be the tower and CD be the hill. Then, $\angle \mathrm{ACB}=30 \mathrm{o}, \angle \mathrm{CAD}=60 \mathrm{o}$ and $\mathrm{AB}=50 \mathrm{~m}$.

Let $\mathbf{C D}=\mathbf{x ~ m}$
In right $\triangle B A C$, we have,
$\cot 300=A B A C$
$3=50 \mathrm{AC}$
AC=503 m
In right $\triangle A C D$, we have,
$\tan 60 \mathrm{o}=\mathrm{ACCD}$
$3=503 x$
$\mathrm{x}=50 \times \mathbf{3}=150 \mathrm{~m}$
Therefore, the height of the hill is 150 m .
34.

$$
\begin{array}{c|c|c|}
\begin{array}{l}
x+3 y=6 \\
x=6-3 y
\end{array} \\
\begin{array}{|l|l|l|l|}
\hline x & 6 & 3 & 0 \\
\hline y & 0 & 1 & 2 \\
\hline(6,0),(3,1),(0,2)
\end{array} & \begin{array}{|c|c|c|c|}
\hline x & 0 & 6 & 3 \\
\hline y & -4 & 0 & -2 \\
\hline
\end{array} \\
\begin{array}{ll}
(0,-4),(6,0),(3,2) \\
2 x=\frac{12+3 y}{2}
\end{array} \\
\hline
\end{array}
$$

35.

Solution:
Let $1^{\text {st }}$ term $=\mathrm{a}$, Common difference $=\mathrm{d}$

Given: $S_{7}=49, S_{17}=289$
As we know, $\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{align*}
& \mathrm{S}_{7}=\frac{7}{2}(2 a+6 d) \\
& 49 \times \frac{2}{7}=2 a+6 d \quad \Rightarrow \quad 2 a+6 d=14 \tag{i}
\end{align*}
$$

Now, $\mathrm{S}_{17}=\frac{17}{2}(2 a+16 d)$

$$
\begin{align*}
& 289 \times \frac{2}{17}=2 a+16 d \\
& 2 a+16 d=34 \tag{ii}
\end{align*}
$$

Solving (i) and (ii), we get

$$
\begin{aligned}
& 2 a+6 d= 14 \\
&-2 a \pm 16 d= \pm 34 \\
& \hline-10 d=-20 \\
& \hline-1
\end{aligned}
$$

$\Rightarrow d=2$
Putting $d=2$ in (i), we get $a=1$

$$
\begin{aligned}
\therefore \quad \mathbf{S}_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[2(1)+(n-1) 2]=\frac{n}{2}(2+2 n-2) \\
& =\frac{2 n^{2}}{2}=n^{2} \text { (Hence proved) }
\end{aligned}
$$

OR

Solution:

Let a be the first term and d be the common difference of A.P.
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} 2(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$\therefore \mathrm{S}_{12}=122(2 \mathrm{a}+(12-1) \mathrm{d})$
$S_{12}=6[2 \mathrm{a}+11 \mathrm{~d}]=124+66 \mathrm{~d}$
$\therefore \mathrm{S}_{8}=8 \mathrm{n} 2(2 \mathrm{a}+(8-1) \mathrm{d})$
$\mathrm{S}_{8}=4[2 \mathrm{a}+7 \mathrm{~d}]=8 \mathrm{a}+28 \mathrm{~d}$
$\therefore \mathrm{S}_{4}=42(2 a+(4-1) d)$
$S_{4}=2[2 a+3 d)=4 a+6 d \ldots$..(iii)
Now, $\mathrm{S}_{12}=3\left(\mathrm{~S}_{8}-\mathrm{S}_{4}\right)$
$12 a+660=3(8 a+28 d-4 a-6 d) \ldots$ [From (i), (ii) \& (iii)
$12 a+660=3(4 a+22 d)$
$12 a+660=12 a+66 d \ldots$... Hence proved
36.

For 'Less than' ogive Daily	No. of Workers income (in ₹)	For 'more than' (c.f.)	No. of income Daily (in ₹)
Workers			
(c.f.)			

37. Solution:

Let the denominator be x and the numerator be $\mathrm{x}-3$.
\therefore Fraction $=\mathrm{x}-3 \mathrm{x}$
New denominator $=x+1$
According to the Question,

$$
\begin{aligned}
& \Rightarrow \frac{x-3}{x+1}=\frac{x-3}{x}-\frac{1}{15} \\
& \Rightarrow \frac{x-3}{x+1}=\frac{15 x-45-x}{15 x} \\
& \Rightarrow \frac{x-3}{x+1}=\frac{14 x-45}{15 x} \\
& \Rightarrow 15 \mathrm{x}^{2}-45 \mathrm{x}=14 \mathrm{x}^{2}-45 \mathrm{x}+14 \mathrm{x}-45 \\
& \Rightarrow 15 \mathrm{x}^{2}-14 \mathrm{x}^{2}-14 \mathrm{x}+45=0 \\
& \Rightarrow \mathrm{x}^{2}-14 \mathrm{x}+45=0 \\
& \Rightarrow \mathrm{x}^{2}-5 \mathrm{x}-9 \mathrm{x}+45=0 \\
& \Rightarrow \mathrm{x}(\mathrm{x}-5)-9(\mathrm{x}-5)=0 \\
& \Rightarrow(\mathrm{x}-5)(\mathrm{x}-9)=0 \\
& \Rightarrow \mathrm{x}-5=0 \text { or } \mathrm{x}-9=0 \\
& \Rightarrow \mathrm{x}=5 \text { or } \mathrm{x}=9
\end{aligned}
$$

When $x=5$, fraction $=5-35=25$
When $x=9$, fraction $=9-39=69=23$
\therefore Fraction $=25$ or 23
38.

In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Data: In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$

To Prove : $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
1
Construction : Draw BD $\perp \mathrm{AC}$.
Proof:
Statement
Reason
Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$, $\angle \mathrm{ABC}=\angle \mathrm{ADB}=90^{\circ}$ $\angle B A D$ is common.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$
$\Rightarrow \frac{A B}{\mathrm{AD}}=\frac{A C}{A B}$
$\therefore \mathrm{AB}^{2}=\mathrm{AC} . \mathrm{AD}$...... (1)
Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$,
$\angle \mathrm{ABC}=\angle \mathrm{BDC}=90^{\circ}$
$\angle A C B$ is common
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$
$\Rightarrow \frac{B C}{D C}=\frac{A C}{B C} \Rightarrow=$
$\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{DC}$......(2)
(Q Equiangular triangles)
(Q A A similarity criteria)
1
(Q Data and construction)
(Q Equiangular Triangles)
(Q AA similarity criteria)

1

By adding (1) and (2) we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\mathrm{AC} . \mathrm{AD})+(\mathrm{AC} . \mathrm{DC})$
$A B^{2}+B C^{2}=A C(A D+D C)$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{AC}=\mathrm{AC}^{2}$
$[\mathrm{QAD}+\mathrm{DC}=\mathrm{AC}]$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$

As per reduced syllabus-2021 MODEL QUESTION PAPER-4

Subject: Mathematics
Time : 3 hours

Subject code: 81E
Max.marks: 80

Choose the correct answer given below

1x8=8

1. The equation $(x-2)^{2}+1=2 x-3$ is a
a. linear
b. quadratic
c. cubic
d. bi-quadratic
2. A pair of linear equations $a_{1} x+b_{1} y+c_{1}=0 ; a_{2} x+b_{2} y+c_{2}=0$ is said to be inconsistent, if
(a) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
(b) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
(c) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
(d) $\frac{a_{1}}{a_{2}} \neq \frac{c_{1}}{c_{2}}$
3. The $n^{\text {th }}$ term of an A.P. is given by $a_{n}=3+4 n$. The common difference is
b. 7
b. 3
c. 4
d. 1
4. The distance of the point $P(4,3)$ from the origin is....
b. 2
b. 3
c. 1
d. 5
5. If $x \tan 45^{\circ} \sin 30^{\circ}=\cos 30^{\circ} \tan 30^{\circ}$, then x is equal to
b. $\sqrt{3}$
b. $\frac{1}{\sqrt{2}}$
c. $\frac{1}{2}$
d. 1
6. D and E are respectively the midpoints on the sides $A B$ and $A C$ of a triangle $A B C$ and $B C=6 \mathrm{~cm}$. If $D E \| B C$, then the length of $D E$ (in cm) is
a. 2.5
b. 3
b. 5
d. 6
7. The length of tangent from an external point on a circle is..
a. always greater than the radius of the circle.
b. always less than the radius of the circle.
c. may or may not be greater than the radius of circle
d. None of these.
8. If A cone is cut through a plane parallel to its base and then the cone that is for medon one side of that plane is removed. The new part that is left over on the other side of the plane is called...
b. Frustum of a cone
b. Cone
c. cylinder
d. sphere

Answer the following questions

9. Find the nature of roots of quadratic equation $5 x^{2}-4 x+5=0$.
10. A right circular cylinder of radius rcm and height $\mathrm{h} \mathrm{cm} \mathrm{(h>2r)} \mathrm{just} \mathrm{encloses}$, be a sphere of diameter?.
11. Write the general form of arithmetic progression.
12. How many solution(s) does the pair of equations $x+2 y-5=0 \&-3 x-6 y+15=0$ have?
13. Write the distance formula.
14. If $\tan A=1 / 3$, What will be the $\cot A$?.
15. State Pythagoras theorem.
16. How many tangents can be drawn to a circle from a point on the same circle?

Answer the questions
 $2 x 8=16$

17. Which term of the progression $4,9,14,19, \ldots$ is 109 ?

OR
Which term of the progression $20,192,183,17 \ldots$ is the first negative term?
18. Find Find the value of $x: x+y=5 \& 2 x+3 y=11$.
19. If $\tan 4 \theta=\cot \left(\theta-10^{\circ}\right)$, where 4θ and $\left(\theta-10^{\circ}\right)$ are acute angles then find value of θ.
20. If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then find the value of p.
21. In triangle $P Q R$, if $P Q=6 \mathrm{~cm}, P R=8 \mathrm{~cm}, Q S=3 \mathrm{~cm}$, and $P S$ is the bisector of angle $Q P R$, what is the length of SR?

22. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm.
23. Find the number of solid spheres, each of diameter 6 cm that can be made by melting a solid metal cylinder of height 45 cm and diameter 4 cm .
24. If the total surface area of a solid hemisphere is $462 \mathrm{~cm}^{2}$, find its volume. [Take $\pi=22 / 7$]

Solve the following problems

25. Solve for x :

$$
36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0
$$

OR

Find the value of p for which the roots of the equation $\mathrm{px}(\mathrm{x}-2)+6=0$, are equal.
26. Find the ratio in which the point $P(3 / 4,5 / 12)$ divides the line segment joining the points $A(1 / 2,3 / 2)$ and $B(2,-5)$.

OR

Find the ratio in which y-axis divides the line segment joining the points $\mathrm{A}(5,-6)$, and $\mathrm{B}(-1,-4)$.
Also find the coordinates of the point of division.
27. A shopkeeper buys some books for 80 . If he had bought 4 more books for the same amount, each book would have cost ₹1 less. Find the number of books he bought.
28. A two digit number is seven times the sum of its digits. The number formed by reversing the digits is 18 less than the given number. Find the given number.
29. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact".
30. Find the value of: $\left[\frac{\tan 20^{\circ}}{\operatorname{cosec} 70^{\circ}}\right]^{2}+\left[\frac{\cot 20^{\circ}}{\sec 70^{\circ}}\right]^{2}+2 \tan 75^{\circ} \tan 45^{\circ} \tan 15^{\circ}$.
31. Which term of the AP: $3,8,13,18, \ldots$, is 78 ?
32. If the mean of the following distribution is 50 , find the value of p :.

Class	Frequency
$0-20$	17
$20-40$	p
$40-60$	32
$60-80$	24
$80-100$	19

OR

Weekly income of 600 families is given below:

Income in $(₹)$	No. of families
$0-1000$	250
$1000-2000$	190
$2000-3000$	100
$3000-4000$	40
$4000-5000$	15
$5000-6000$	5

Find the median.
33. The lengths of leaves of a plant are measured correct to the nearest mm and the data obtained is represented as the following frequency distribution:

Length (in mm)	No. of leaves
$110-115$	2
$115-120$	6
$120-125$	10
$125-130$	13
$130-135$	6
$135-140$	3
$140-145$	2

Draw a 'more than type' ogive for the above data..

Solve

$$
4 \times 4=16
$$

34. Draw the graphs of the equations $\mathrm{x}+2 \mathrm{y}=7$ and $2 \mathrm{x}+3 \mathrm{y}=11$.
35. A milkman was serving his customers using two types of mugs A and B of inner diameter 5 cm to Mug'A Mug'B' serve the customers. The height of the mugs is 10 cm .
He decided to serve the customers in ' B ' type of mug.
(a) Find the volume of the mugs of both types.
(b) Which mathematical concept is used in the above problem?

Mug 'A'

Mug 'B'

OR

A solid cone of base radius 10 cm is cut into two parts through the mid-point of its height, by a plane parallel to its base. Find the ratio in the volumes of the two parts of the cone.
36. Prove that "in a right angled triangle, the square of the hypotenuse is equal to the sum of the square of the other two sides".
37. Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\triangle \mathrm{A}=105^{\circ}$. Then construct a triangle whose sides are $3 / 5$ times the corresponding sides of $\triangle A B C$.
Solve
$5 \times 1=5$
38. A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Find the speed of flying of the bird. (Take $3-\sqrt{ }=1.732$).

KEY ANSWER-4

Subject: Mathematics
Time :3 hours

Subject code: 81E
Max.marks:80

1. Answer: B

Explanation: We have $(x-2)^{2}+1=2 x-3$
$\Rightarrow x^{2}+4-2 \times x \times 2+1=2 x-3$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+5-2 \mathrm{x}+3=0$
$\therefore \mathrm{x}^{2}-6 \mathrm{x}+8=0$, which is a quadratic equation.
2. Option (B).
3. Answer: c

Explanation: We have an $=3+4 n$
$\therefore a_{n+1}=3+4(n+1)=7+4 n$
$\therefore \mathrm{d}=\mathrm{a}_{\mathrm{n}+1}-\mathrm{a}_{\mathrm{n}}$
$=(7+4 n)-(3+4 n)$
$=7-3$
= 4
4. Option (d), we have to find distance between the points $(4,3) \&(0,0)$.

Using distance formula we get 5 .
5. 1
6. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$...[Given
$\therefore \quad \frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}=\frac{A C}{P R}$
$\Rightarrow \frac{32}{48}=\frac{A C}{6} \quad \Rightarrow \quad A C=4 \mathrm{~cm}$
7. $\angle 1=\angle 2$
$\angle 1+\angle 2+70^{\circ}=180^{\circ}$
$\angle 1+\angle 1=180^{\circ}-70^{\circ}$
$2 \angle 1=110^{\circ} \Rightarrow \angle 1=55^{\circ}$
$\angle 1+\angle \mathrm{TPQ}=90^{\circ}$
$55^{\circ}+\angle \mathrm{TPQ}=90^{\circ}$
$\Rightarrow \angle \mathrm{TPQ}=90^{\circ}-55^{\circ}=35^{\circ}$
8. Observe figure

9. To find the nature, let us calculate $\mathrm{b}^{2}-4 \mathrm{ac}$
$b^{2}-4 a c=4^{2}-4 \times 5 \times 5$
= $16-100$
$=-84<0$
10. Explanation: The sphere is enclosed inside the cylinder, therefore the diameter of sphere is equal to the diameter of cylinder which is $2 r \mathrm{~cm}$.
11. $a n=a+(n-1) d$.

CHITTI CREATIONS

12. there are many solutions.
13. The distance formula is $\mathrm{d}=\sqrt{(x 2-x 1) 2+(y 2-y 1) 2}$.
14. If $\tan A=1 / 3$, Then cot will be reverse of the tan. So answer is 3 .
15. Pythagoras theorem state that "in a right angled triangle, the square of the hypotenuse is equal to the sum of the square of the other two sides".
16. One and only tangent can we drawn.
17. Given AP

$$
4,9,14,19, \ldots . . .
$$

Here, first term a = 4
Common Difference $\mathrm{d}=(\mathrm{a} 2-\mathrm{a} 1)=9-4=5$
Last term an $=109$
We that the nth term of an AP is
an $=\mathrm{a}+(\mathrm{n}-1) * \mathrm{~d}$
$\Rightarrow 109=4+(n-1) * 5$
$\Rightarrow 109=4+5 n-5$
$\Rightarrow 109=-1+5 n$
=> $109+1=5 n$
$\Rightarrow 110=5 n$
$\Rightarrow 110 / 5=n$
=> $22=n$
=> $\mathrm{n}=22$
Hence the nth term of an AP is 22 .

OR

Given: a = 201
$\mathrm{d}=192-201 \quad \rightarrow \mathrm{~d}=-9$
We have to find the first negative term i.e., The first term which is less than 0.
We know that,
nth term of an AP = a + (n-1)d
$\rightarrow 201+(n-1)(-9) \leq 0$
$\rightarrow 201-9 n+9 \leq 0$
$\rightarrow 210-9 \mathrm{n} \leq 0$
$\rightarrow 9 \mathrm{n} \leq 210$
$\rightarrow \mathrm{n} \leq 23.3$
$\rightarrow \mathrm{n}=23$ (Approx.)
Hence, the 23rd term is the first negative term in the given AP.
18. Consider the given equation.
$x+y=5$ \qquad
$2 x+3 y=11$
On subtracting both equation (1) and (2), we get
$\mathrm{x}=4$
Now, put the value of x in equation (1), we get
$4+y=5$
$\mathrm{y}=1$
Hence, the value of x is 4 and y is 1
19. Given, $\tan 4 \theta=\cot \left(\theta-10^{\circ}\right)$

This can be written as
$\cot \left(90^{\circ}-4 \theta\right)=\cot \left(\theta-10^{\circ}\right)$-(i)
$\left(\because \operatorname{Tan} \theta=\operatorname{Cot}\left(90^{\circ}-\theta\right)\right)$
Hence, from (i) we have
$\Rightarrow 90^{\circ}-4 \theta=\theta-10^{\circ}$

CHITTI CREATIONS

$$
\begin{aligned}
& \Rightarrow 5 \theta=100^{\circ} \\
& \Rightarrow \theta=20^{\circ}
\end{aligned}
$$

20. According to question:
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=5$
$\Rightarrow \sqrt{(4-1)^{2}+(p-0)^{2}}=5$
$\Rightarrow \sqrt{9+p^{2}}=5$
$\Rightarrow 9+p^{2}=25$
$\Rightarrow 9+p^{2}=25$
$\Rightarrow p^{2}=16$
$\Rightarrow p= \pm 4$
21.

Since, PS is the angle bisector of angle QPR
So, by angle bisector theorem,
QS/SR = PQ/PR
$\Rightarrow 3 / \mathrm{SR}=6 / 8$
$\Rightarrow S R=(3 \times 8) / 6 \mathrm{~cm}=4 \mathrm{~cm}$
22.

23. Solution:

Number of solid spheres
Volume of cylinder
$=\overline{\text { Volume of one solid sphere }}$
$=\left(\frac{\pi(2)^{2}(45)}{\frac{4}{3} \pi(3)^{3}}\right) \quad \cdots\left[\begin{array}{l}\because \text { Volume of Cylinder }=\pi r^{2} h \\ \text { Volume of Sphere }=\frac{4}{3} \pi r^{3}\end{array}\right.$
$=\frac{2 \times 2 \times 45}{\frac{4}{3} \times 3 \times 3 \times 3}=5$
24. Solution:

Total surface area of hemisphere $=462 \mathrm{~cm}^{2}$

$$
3 \pi r^{2}=462
$$

$$
3 \times \frac{22}{7} \times r^{2}=462
$$

$$
r^{2}=\frac{462 \times 7}{3 \times 22}=49
$$

$$
r=+7 \mathrm{~cm} \quad \text {...[Radius cannot be negative }
$$

Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \\
& =\frac{2156}{3}=718 . \overline{6} \mathrm{~cm}^{3}
\end{aligned}
$$

25. Solve for x :
$36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0(20110 D)$
Solution:
We have, $36 \mathrm{x}^{2}-12 \mathrm{ax}+\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=0$
$\Rightarrow\left(36 x^{2}-12 a x+a^{2}\right)-b^{2}=0$
$\Rightarrow\left[(6 \mathrm{x})^{2}-2(6 \mathrm{x})(\mathrm{a})+(\mathrm{a})^{2}\right]-\mathrm{b}^{2}=0$
$\Rightarrow(6 x-a)^{2}-(b)^{2}=0 \ldots\left[\because x^{2}-2 x y+y^{2}=(x-y)^{2}\right.$
$\Rightarrow(6 x-a+b)(6 x-a-b)=0{ }_{n}\left[\because x^{2}-y^{2}=(x+y)(x-y)\right.$
$\Rightarrow 6 \mathrm{x}-\mathrm{a}+\mathrm{b}=0$ or $6 \mathrm{x}-\mathrm{a}-\mathrm{b}=0$
$\Rightarrow 6 \mathrm{x}=\mathrm{a}-\mathrm{b}$ or $6 \mathrm{x}=\mathrm{a}+\mathrm{b}$
$\Rightarrow \mathrm{x}=\mathrm{a}-\mathrm{b} / 6$ or $\mathrm{a}+\mathrm{b} / 6$.
OR
Solution:
We have , $\mathrm{px}(\mathrm{x}-2)+6=0$
$p x^{2}-2 p x+6=0, p \neq 0$
Two equal roots ...[Given
$b^{2}-4 a c=0 \ldots . .[a=p, b=-2 p, c=6$
$\therefore(-2 p)^{2}-4(p)(6)=0$
$4 \mathrm{p}^{2}-24 \mathrm{p}=0 \Rightarrow 4 \mathrm{p}(\mathrm{p}-6)=0$
$4 \mathrm{p}=0$ or $\mathrm{p}-6=0$
$\mathrm{p}=0$ (rejected) or $\mathrm{p}=6$
Since p cannot be equal to 0 .
\ldots...[Standard form of a quad. eq. $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, \mathrm{a} \neq 0$
$\therefore \mathrm{P}=6$
26. Solution:
A $\left(\frac{1}{2}, \frac{3}{2}\right)$,
$\mathrm{P}\left(\frac{3}{4}, \frac{5}{12}\right)$

Let P divide $A B$ in the ratio of $\mathrm{K}: 1$.
Applying section formula,

$$
\begin{aligned}
x=\frac{m x_{2}+n x_{1}}{m+n} & \Rightarrow \quad \frac{3}{4}=\frac{\mathrm{K}(2)+1\left(\frac{1}{2}\right)}{\mathrm{K}+1} \\
& \frac{2 \mathrm{~K}+\frac{1}{2}}{\mathrm{~K}+1}=\frac{3}{4} \\
\Rightarrow \quad & \Rightarrow \quad 8 \mathrm{~K}+2=3 \mathrm{~K}+3 \\
5 \mathrm{~K}=1 & \Rightarrow \quad \mathrm{~K}=\frac{1}{5}
\end{aligned}
$$

\therefore Required ratio $=1: 5$
OR
Solution:

Let $\mathrm{AC}: \mathrm{CB}=\mathrm{m}: \mathrm{n}=\mathrm{k}: 1$.
Coordinates of $\mathrm{C}=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

$$
\begin{equation*}
=\left(\frac{-k+5}{k+1}, \frac{-4 k-6}{k+1}\right) \tag{i}
\end{equation*}
$$

Point C lies on y-axis $\quad \therefore \quad \frac{-m+5}{m+1}=0$
$\Rightarrow \quad-k+5=0 \quad$ or $\quad k=5$
$\therefore \quad$ Required ratio $=k: 1=\mathbf{5}: \mathbf{1}$
From (i), required point C,
$\Rightarrow\left(\frac{-5+5}{5+1}, \frac{-20-6}{5+1}\right)=\left(0, \frac{-26}{6}\right)=\left(0, \frac{-13}{3}\right)$
27. Solution:

Let the number of books he bought $=\mathrm{x}$
Increased number of books he had bought $=x+4$
Total amount = ₹80
According to the problem,

$$
\begin{aligned}
& \frac{80}{x}-\frac{80}{x+4}=1 \\
\Rightarrow & \frac{80(x+4-x)}{x(x+4)}=1 \\
\Rightarrow & \mathrm{x}(\mathrm{x}+4)=320 \\
\Rightarrow & \mathrm{x}^{2}+4 \mathrm{x}-320=0 \\
\Rightarrow & \mathrm{x}^{2}+20 \mathrm{x}-16 \mathrm{x}-320=0 \\
\Rightarrow & \mathrm{x}(\mathrm{x}+20)-16(\mathrm{x}+20)=0 \\
\Rightarrow & (\mathrm{x}+20)(\mathrm{x}-16)=0 \\
\Rightarrow & \mathrm{x}+20=0 \text { or } \mathrm{x}-16=0 \\
\Rightarrow & \mathrm{x}=-20 \ldots \text { (neglected) or } \mathrm{x}=16
\end{aligned}
$$

\therefore Number of books he bought $=16$.
28. Solution:

Let unit's place digit be x and ten's place digit bey.
Then original number $=x+10 y$
and reversed number $=10 x+y$
According to the Question,
$x+10 y=7(x+y)$
$x+10 y=7 x+7 y$
$\Rightarrow 10 y-7 y=7 x-x$

$$
\begin{aligned}
& \Rightarrow 3 y=6 x \Rightarrow y=2 x \ldots .(\mathrm{i}) \\
& (\mathrm{x}+10 \mathrm{y})-(10 \mathrm{x}+\mathrm{y})=18 \\
& \mathrm{x}+10 \mathrm{y}-10 \mathrm{x}-\mathrm{y}=18 \\
& \Rightarrow 9 \mathrm{y}-9 \mathrm{x}=180 \\
& \Rightarrow \mathrm{y}-\mathrm{x}=2 \ldots \text { [Dividing by } 9 \\
& \Rightarrow 2 \mathrm{x}-\mathrm{x}=2 \ldots \text { [From (i) } \\
& \therefore \mathrm{x}=2
\end{aligned}
$$

Putting the value of ' x ' in (i), we get $y=2(2)=4$
\therefore Required number $=\mathrm{x}+10 \mathrm{y}$
$=2+10(4)=42$.
29. Given: a circle with tangent $X Y$ at point of contact P.

To Prove: $O P \perp X Y$
Proof: Let Q be a point on $X Y$ connect $0 Q$
Suppose it touches the circle at R
Hence,
OQ>OR
OQ>OP OP=OR (radius)
Same will be the case with all other points on the circle Hence,
We get OP is the smallest line that connects XY.
30. Solution:

$$
\begin{aligned}
& \left(\frac{\tan 20^{\circ}}{\operatorname{cosec} 70^{\circ}}\right)^{2}+\left(\frac{\cot 20^{\circ}}{\sec 70^{\circ}}\right)^{2}+2 \tan 75^{\circ} \tan 45^{\circ} \tan 15^{\circ} \\
& =\left(\frac{\tan \left(90^{\circ}-70^{\circ}\right)}{\operatorname{cosec} 70^{\circ}}\right)^{2}+\left(\frac{\cot \left(90^{\circ}-70^{\circ}\right)}{\sec 70^{\circ}}\right)^{2} \\
& +2 \tan \left(90^{\circ}-15^{\circ}\right) \cdot 1 \cdot \tan 15^{\circ} \\
& =\left(\frac{\cot 70^{\circ}}{\operatorname{cosec} 70^{\circ}}\right)^{2}+\left(\frac{\tan 70^{\circ}}{\sec 70^{\circ}}\right)^{2}+2 \cot 15^{\circ} \cdot \frac{1}{\cot 15^{\circ}} \\
& \ldots\left[\begin{array}{l}
\because \tan \left(90^{\circ}-\mathbf{A}\right)=\cot \mathbf{A} \\
\cot \left(90^{\circ}-\mathbf{A}\right)=\tan \mathbf{A} \\
\tan \mathbf{A}=\frac{\mathbf{A}}{\cot \mathbf{A}}
\end{array}\right. \\
& =\left(\frac{\frac{\cos 70^{\circ}}{\sin 70^{\circ}}}{\sin ^{\circ}}\right)^{2}+\left(\frac{\frac{\sin 70^{\circ}}{\cos 70^{\circ}}}{\frac{1}{\cos 70^{\circ}}}\right)^{2}+2 \\
& = \\
& =1+2=3
\end{aligned}
$$

31. Solution:

Let a_{n} be the required term and we have given AP
$3,8,13,18, \ldots .$.
Here, $a=3, d=8-3=5$ and $a_{n}=78$
Now, $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow 78=3+(\mathrm{n}-1) 5$
$\Rightarrow 78-3=(\mathrm{n}-1) \times 5$
$\Rightarrow 75=(\mathrm{n}-1) \times 5$
$\Rightarrow 755=\mathrm{n}-1$
$\Rightarrow 15=\mathrm{n}-1$

$$
\Rightarrow \mathrm{n}=15+1=16
$$

Hence, $16^{\text {th }}$ term of given AP is 78..
32. Solution:

Class	Frequency $\left(f_{i}\right)$	X_{i}	$f_{i} X_{i}$
$0-20$	17	10	170
$20-40$	p	30	$30 p$
$40-60$	32	50	1600
$60-80$	24	70	1680
$80-100$	19	90	1710
	$\mathbf{\Sigma} f_{i}=\mathbf{9 2 + p}$		$\mathbf{\Sigma} f_{i} X_{i}=$
			$\mathbf{5 1 6 0}+\mathbf{3 0 p}$

$$
\therefore \quad \text { Mean }=\frac{\Sigma f_{i} X_{i}}{\Sigma f_{i}}
$$

$$
50=\frac{5160+30 p}{92+p}
$$

$$
\Rightarrow \quad 4600+50 p=5160+30 p
$$

$$
\Rightarrow \quad 50 p-30 p=5160-4600
$$

$$
\Rightarrow \quad 20 p=560
$$

$$
\Rightarrow \quad p=\frac{560}{20}=28 \quad \therefore \quad p=\mathbf{2 8}
$$ OR

Solution:

Income (in ₹)	f_{i}	c.f.
$0-1000$	250	250
$1000-2000$	190	440
$2000-3000$	100	540
$3000-4000$	40	580
$4000-5000$	15	595
$5000-6000$	5	600
	$\boldsymbol{n}=\mathbf{6 0 0}$	

$$
\frac{n}{2}=\frac{600}{2}=300
$$

$\therefore \quad$ Median class is $1000-2000$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times h \\
& =1000+\left(\frac{300-250}{190} \times 1000\right) \\
& =1000+\frac{50,000}{190}=1000+263.16 \\
& =1263.16 \text { (approx.) }
\end{aligned}
$$

33. Solution:

Length (in mm)	No. of leaves (f)	(c.f.)
More than 110	2	42
More than 115	6	40
More than 120	10	34
More than 125	13	24
More than 130	6	11
More than 135	3	5
More than 140	2	2

34.

| $2 x+3 y=11$,
 $2 x=11-3 y$
 $x=\frac{11-3 y}{2}$ | $1 x+2 y=7$
 $x=7-2 y$ |
| :--- | :--- | :--- |
| x 5.5 4 1
 y 0 1 3 | x 7 3 1
 y 0 2 3 |

So the two lines are intersects at $(1,3)$.
Hence the solutions are $1 \& 3$.
35. Solution:
(a) Let the radius of cylinder, hemi-sphere and cone be rcm Let the height of cylinder and cone h_{1} and h_{2} respectively.

$$
\begin{aligned}
& \text { Volume of mug of type ' } \mathrm{A}^{\prime}=\pi r^{2} h_{1}-\frac{2}{3} \pi r^{3} \\
& =3.14 \times 2.5 \times 2.5 \times 10-\frac{2}{3} \times 3.14 \times(2.5)^{3} \\
& =196.25-32.71=\mathbf{1 6 3 . 5 4} \mathbf{c m}^{3}
\end{aligned}
$$

Volume of mug of type ' $\mathrm{B}^{\prime}=\pi r^{2} h_{1}-\frac{1}{3} \pi r^{2} h_{2}$
$=196.25-\frac{1}{3} \times 3.14 \times 2.5 \times 2.5 \times 1.5$
, $=196.25-9.81=186.44 \mathrm{~cm}^{3}$
(b) Volume of solid figures (Mensuration).

OR
Solution:
Let $B C=r \mathrm{~cm}$ and
DE $=\mathrm{R}=10 \mathrm{~cm}$
B and C are the mid-points of $A D$ and $A E$ respectively. ...[Given

$$
\mathrm{BC}(r)=\frac{1}{2} \mathrm{DE}
$$

...[Mid-point Theorem
$B C=\frac{1}{2}(10)=5 \mathrm{~cm}$
$=\frac{\text { Vol. of cone }}{\text { Vol. of frustum of a cone }}=\frac{\frac{1}{3} \pi r^{2}(\mathrm{AB})}{\frac{1}{3} \pi(\mathrm{BD})\left[\mathrm{R}^{2}+r^{2}+\mathrm{Rr}\right]}$

$$
\begin{aligned}
& =\frac{(5)^{2}(h / 2)}{(h / 2)\left[10^{2}+5^{2}+10 \times 5\right]} \\
& =\frac{25}{100+25+50}=\frac{25}{175}=\frac{1}{7}
\end{aligned}
$$

\therefore Required ratio $=1: 7$
\Rightarrow Volume of small cone $=1 / 7$ (Volume of frustum of a cone)
36. In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

CHITTI CREATIONS

Data: In $\triangle A B C, \angle A B C=90^{\circ}$
To Prove : $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
1
Construction : Draw BD $\perp \mathrm{AC}$.

Proof: Statement

Reason

Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$, $\angle A B C=\angle A D B=90^{\circ} \quad$ (Q Data and construction) $\angle B A D$ is common.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB} \quad$ (Q Equiangular triangles)
$\Rightarrow \frac{A B}{\mathrm{AD}}=\frac{A C}{A B}$
(Q A A similarity criteria)
1
$\therefore \mathrm{AB}^{2}=\mathrm{AC}$. AD (1)
Compare $\triangle A B C$ and $\triangle B D C$,
$\angle A B C=\angle B D C=90^{\circ} \quad$ (Q Data and construction)
$\angle A C B$ is common
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$
$\Rightarrow \frac{B C}{D C}=\frac{A C}{B C} \Rightarrow=$
$\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{DC}$.
(Q Equiangular Triangles)
(Q AA similarity criteria)

By adding (1) and (2) we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\mathrm{AC} . \mathrm{AD})+(\mathrm{AC} . \mathrm{DC})$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{AC}=\mathrm{AC}^{2}$
$[\mathrm{QAD}+\mathrm{DC}=\mathrm{AC}]$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
37. Solution:

In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ} \ldots$ [angle sum property of a Δ
$105^{\circ}+45^{\circ}+\mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-105^{\circ}-45 \mathrm{o}=30^{\circ}$
$B C=7 \mathrm{~cm}$

38. Solution:

Let BC be the tree
In rt. $\triangle \mathrm{ABC}, \tan 45^{\circ}=\mathrm{BCAB}$.

$$
\begin{equation*}
\Rightarrow 1=\frac{80}{y} \quad \Rightarrow \quad y=80 \mathrm{~m} \tag{i}
\end{equation*}
$$

In r. $\triangle \mathrm{ADE}, \tan 30^{\circ}=\frac{\mathrm{DE}}{\mathrm{AD}}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{80}{x+y}$
$\Rightarrow \quad x+y=80 \sqrt{3}$
$\Rightarrow x+80=80 \sqrt{3}$
...[From (i)
$\Rightarrow \quad x=80 \sqrt{3}-80$
$\Rightarrow \quad x=80(\sqrt{3}-1)$
$\Rightarrow \quad x=80(1.732-1)$
$\ldots[\because \sqrt{3}=1.732$
$\Rightarrow \quad x=80(0.732)$
$\therefore \quad$ CE, $x=58.56 \mathrm{~m}$
Hence, speed of bird $=\frac{\text { Distance }}{\text { Time }}$
$=\frac{C E}{\text { Time }}=\frac{58.56 \mathrm{~m}}{2 \mathrm{sec} .}$
$=29.28 \mathrm{~m} / \mathrm{sec}$.

As per reduced syllabus-2021 MODEL QUESTION PAPER-5

Subject: Mathematics

Time : 3 hours

Subject code: 81E
Max.marks: 80

Choose the correct answer given below $1 \times 8=8$

1. Which of the following is a quadratic equation?
a. $x^{2}+2 x+1=(4-x)^{2}+3$
b. $-2 x^{2}=(5-x)[2 x-25]$
c. $(k+1) x^{2}+32 x=7$, where $k=-1$
d. $\mathrm{x}^{3}-\mathrm{x}^{2}=(\mathrm{x}-1)^{3}$
2. Graphically, the pair of equations $7 x-y=5 ; 21 x-3 y=10$ represents two lines which are
(a) intersecting at one point
(b) parallel (c) intersecting at two points
(d) coincident
3. If x and y are complementary angles, then
(a) $\sin x=\sin y$
(b) $\tan x=\tan y$
(c) $\cos x=\cos y$
(d) $\sec x=\operatorname{cosec} y$
4. If the height of a tower and the distance of the point of observation from its foot, both, are increased by 10%, then the angle of elevation of its top.....
c. increased
b. decreased
c. remains same
d. have no relation
5. The distance between the point $P(1,4)$ and $Q(4,0)$ is
b. 4
c. $\sqrt{3}$
c. 5
d. 6
6. Cumulative frequency curve is also called
a. histogram
b. ogive
b. bar graph
d. median
7. If angle between two radii of a circle is 130 , then the angle between the tangents at the ends of the radii is:
b. 60°
c. 50°
d. 120°
e. 90°
8. If A right circular cylinder of radius rcm and height $\mathrm{hcm}(\mathrm{h}>2 \mathrm{r})$ just encloses a sphere of diameter...
b. 2 rcm
c. $\mathbf{r c m}$
c. $\mathbf{h ~ c m}$
d. 2 h cm

Answer the following questions
 $1 \times 8=8$

9. Find the nature of roots of quadratic equation $x^{2}+x+3=0$.
10. Write the formula to find the volume of cube.
11. If $a_{n}=a-4$, then what will be the common difference?.
12. How many solutions does the pair of equations $y=0$ and $y=-5$ have?
13. Write the section formula.
14. If $\tan A=1 / 3$, What will be the $\cot A$?.
15. State Basic proportionality theorem.
16. How many tangents can be drawn to a circle from a point on the same circle?

Answer the questions

17. If $a_{n}=5-11 n$, find the common difference.

OR

For what value of p are $2 p+1,13,5 p-3$, three consecutive terms of AP?
18. Solve: $x-2 y=1 \& x+2 y=9$.
19. If $\sin (x-20)^{\circ}=\cos (3 x-10)^{\circ}$, then find the value of x.
20. Find a relation between x and y such that the point $P(x, y)$ is equidistant from the points $A(2,5)$ and $B(-3,7)$.
21. If the mode of a distribution is 8 and its mean is also 8 , then find median.
22. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm.

CHITTI CREATIONS

23. Find the number of solid spheres, each of diameter 6 cm that can be made by melting a solid metal cylinder of height 45 cm and diameter 4 cm .
24. If the total surface area of a solid hemisphere is $462 \mathrm{~cm}^{2}$, find its volume. [Take $\pi=22 / 7$]

Solve the following problems

25. Using quadratic formula solve the following quadratic equation:
$p^{2} x^{2}+\left(p^{2}-q^{2}\right) x-q^{2}=0$
OR
If the roots of the quadratic equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, prove that $2 \mathrm{a}=\mathrm{b}+\mathrm{c}$.
26. The first and the last terms of an AP are 5 and 45 respectively. If the sum of all its terms is 400 , find its common difference.

OR

Find the $31^{\text {st }}$ term of an AP whose $11^{\text {th }}$ term is 38 and the $16^{\text {th }}$ term is 73.
27. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=13 \sqrt{ } ; 0^{\circ}<A+B \leq 90^{\circ} ; A>B$, find A and B.
28. Determine the height of a mountain if the elevation of its top at an unknown distance from the base is 30° and at a distance 10 km further off from the mountain, along the same line, the angle of elevation is 15°. (Use $15^{0}=0.27$).
29. Prove that "the length of the tangent drawn from an external point to the circle are equal".
30. In the given figure, $\triangle A B C$ and $A D B C$ are on the same base $B C$. If $A D$ intersects $B C$ at 0 . Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{A O}{\mathrm{DO}}$

31. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.?
32. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

OR

ABC is an equilateral triangle of side 2a. Find each of its altitudes.
33. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm . Then construct another triangle whose sides are 53 times the corresponding sides of the given triangle.
Solve
34. Draw the graphs of the equations $\mathrm{x}-\mathrm{y}=4$ and $\mathrm{x}+\mathrm{y}=10$.
35. In an AP of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565 . Find the AP.

OR

If s, denotes the sum of the first n terms of an AP, prove that $s_{30}=3\left(s_{20}-s_{10}\right)$.

CHITTI CREATIONS

36. A solid iron pole consists of a cylinder of height 220 cm and base diameter $\mathrm{r}=8 \mathrm{~cm} 24 \mathrm{~cm}$, which is surmounted by another cylinder of height 60 cm and radius 8 cm . Find the mass of the pole, given that 1 cm of iron has approximately 8 g mass. 60 cm (Use $\pi=3.14$)
37. The following distribution gives the daily income of 50 workers of a factory.

Daily income (in ₹)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers	12	14	8	6	10

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.
Solve
$5 \times 1=5$
38. Prove that "Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".

KEY ANSWER-5

Subject: Mathematics
Time :3 hours

Subject code: 81E
Max.marks:80

1. Answer: d

Answer: (d) $\mathrm{x}^{3}-\mathrm{x}^{2}=(\mathrm{x}-1)^{3}$
2. Answer: b
3. Answer: d
4. Answer: (C)

Explanation: Since
$\tan \theta=\mathrm{h} / \mathrm{x}$
Where h is height and x is distance from tower,
If both are increased by 10%, then the angle will remain unchanged.
5. Answer: c

Reason: The required distance $=\sqrt{ }(4-1) 2+(0-4) 2=\sqrt{9}+16 \quad->\sqrt{25-->5}$.
6. Answer: (b) ogive.
7. Explanation: If the angle between two radii of a circle is 130°, then the angle between tangents is $180^{\circ}-130^{\circ}=50^{\circ}$. (By the properties of circles and tangents)
8. Option b

Because the sphere is enclosed inside the cylinder, therefore the diameter of sphere is equal to the diameter of cylinder which is $2 r \mathrm{~cm}$.
9. To find the nature, let us calculate $b^{2}-4 a c$
$b^{2}-4 a c=1^{2}-4 \times 1 \times 3$
$=1-12=-11<0$, therefore it is not real.
10. Volume of cube $=$ side x sidexside $=$ axaxa $=a^{3}$.
11. Since $a_{n}=a-4$, then $a_{1}=1-4=-3$

$$
a_{2}=2-4=-2 \text { therefore } d=a_{2}-a_{1}=-2-(-3)=1
$$

12. Solution:
$y=0$ and $y=-5$ are Parallel lines, hence no solution.
13. Section formula is $(\mathrm{x}, \mathrm{y})=\frac{m \times 2+n x 1}{m+n} \cdot \frac{m y 2+m y 1}{m+n}$
14. If $\tan A=1 / 3$, then $\cot A=3 / 1$.
15. It states that "If a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.".
16. Only one.
17. Solution:

We have $a_{n}=5-11 n$
Let d be the common difference
$d=a_{n+1}-a_{n}$
$=5-11(n+1)-(5-11 n)$
$=5-11 n-11-5+11 n=-11$.
OR
since $20+1,13,5 p-3$ are in AP.
\therefore second term - First term $=$ Third term - second term
$\Rightarrow 13-(2 \mathrm{p}+1)=5 \mathrm{p}-3-13$
$\Rightarrow 13-2 \mathrm{p}-1=5 \mathrm{p}-16$
$\Rightarrow 12-2 \mathrm{p}=5 \mathrm{p}-16$
$\Rightarrow-7 \mathrm{p}=-28$
$\Rightarrow \mathrm{p}=4$
18. Consider the given equation.
$x-2 y=1$
$x+2 y=9$
On adding both equation (1) and (2), we get
$2 \mathrm{x}=10$
$\mathrm{x}=5$
Now, put the value of x in equation (1), we get
$5-2 \mathrm{y}=1$
$2 \mathrm{y}=4$
$y=2$
Hence, the value of x is 5 and y is 2
19. Solution:

$$
\begin{aligned}
& \sin (\mathrm{x}-20)^{\circ}=\cos (3 \mathrm{x}-10)^{\circ} \\
& \Rightarrow \cos \left[90^{\circ}-(\mathrm{x}-20)^{\circ}\right]=\cos (3 \mathrm{x}-10)^{\circ} \\
& \text { By comparing the coefficient } \\
& 90^{\circ}-\mathrm{x}^{\circ}+20^{\circ}=3 \mathrm{x}^{\circ}-10^{\circ}=110^{\circ}+10^{\circ}=3 \mathrm{x}^{\circ}+\mathrm{x}^{\circ} \\
& 120^{\circ}=4 \mathrm{x}^{\circ} \\
& \Rightarrow 120 \circ 4=30^{\circ}
\end{aligned}
$$

20. Solution:

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be equidistant from the points $\mathrm{A}(2,5)$ and $\mathrm{B}(-3,7)$.
$\therefore \mathrm{AP}=\mathrm{BP} . . .[$ Given
$\mathrm{AP}^{2}=\mathrm{BP}^{2} \ldots$..[Squaring both sides
$(x-2)^{2}+(y-5)^{2}=(x+3)^{2}+(y-7)^{2}$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+4+\mathrm{y}^{2}-10 \mathrm{y}+25$
$\Rightarrow x^{2}+6 x+9+y^{2}-14 y+49$
$\Rightarrow-4 x-10 y-6 x+14 y=9+49-4-25$
$\Rightarrow-10 x+4 y=29$
$\therefore 10 x+29=4 y$ is the required relation.
21. Solution:

Mode $=8 ;$ Mean $=8 ;$ Median $=$?
Relation among mean, median and mode is
3 median $=$ mode +2 mean
$3 \times$ median $=8+2 \times 8$
Median $=8+16 / 3=24 / 3=8$.
22.

23. Solid sphere volume $\mathbf{v}=\mathbf{3 4} \boldsymbol{\pi} \mathbf{r}^{3}$
$\mathrm{rv}=34 \times 722 \times 33 \mathrm{~cm}^{3}$
$\mathrm{rv}=4 \times \pi \times 9=36 \pi \mathrm{~cm} 3$
Volume of cylinder $=\pi R^{2} h=\pi \times(24) 2 \times 45 \mathrm{~cm}$
or $v=180 \pi \mathrm{~cm}^{3}$

$\mathbf{n}=$ no of spheres $=\mathbf{v v}=\mathbf{3 6 \pi c m} 3180 \pi \mathrm{~cm} 3$

$\Rightarrow \mathbf{n}=5$
24. Total surface area of the hemisphere $=462 \mathrm{~cm} 2$

Total surface area of the hemisphere $=2 \pi r 2$
$\Rightarrow 462=3 \pi r 2$
$\Rightarrow \mathrm{r}=7 \mathrm{~cm}$
Volume of hemisphere $=32 \pi r 3$
$\mathrm{V}=32 \times 722 \times 7^{3}$
$\mathrm{V}=718.67 \mathrm{~cm}^{3}$
25. Solution:

We have, $p^{2} x^{2}+\left(p^{2}-q^{2}\right) x-q^{2}=0$
Comparing this equation with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, we have
$\mathrm{a}=\mathrm{p}^{2}, \mathrm{~b}=\mathrm{p}^{2}-\mathrm{q}^{2}$ and $\mathrm{c}=-\mathrm{q}^{2}$
$\therefore \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$
$\Rightarrow\left(\mathrm{p}^{2}-\mathrm{q}\right)^{2}-4 \times \mathrm{p}^{2} \times\left(-\mathrm{q}^{2}\right)$
$\Rightarrow\left(p^{2}-q^{2}\right)^{2}+4 p^{2} q^{2}$
$\Rightarrow\left(p^{2}+q^{3}\right)^{2}>0$
So, the given equation has real roots given by

$$
\begin{aligned}
& \quad \alpha=\frac{-b+\sqrt{D}}{2 a}=\frac{-\left(p^{2}-q^{2}\right)+\left(p^{2}+q^{2}\right)}{2 p^{2}}=\frac{2 q^{2}}{2 p^{2}}=\frac{q^{2}}{p^{2}} \\
& \text { and } \quad \beta=\frac{-b-\sqrt{D}}{2 a}=\frac{-\left(p^{2}-q^{2}\right)-\left(p^{2}+q^{2}\right)}{2 p^{2}}=\frac{-2 p^{2}}{2 p^{2}}=-1
\end{aligned}
$$

Hence, roots are $\frac{q^{2}}{p^{2}}$ and -1 .

OR

Solution:
Since the equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ has equal roots, therefore discriminant
$D=(b-c)^{2}-4(a-b)(c-a)=0$
$\Rightarrow b^{2}+c^{2}-2 b c-4\left(a c-a^{2}-b c+a b\right)$
$\Rightarrow b^{2}+c^{2}-2 b c-4 a c+4 a^{2}+4 b c-4 a b=0$
$\Rightarrow 4 a^{2}+b^{2}+c^{2}-4 a b+2 b c-4 a c=0$
$\Rightarrow(2 \mathrm{a})^{2}+(-\mathrm{b})^{2}+(-\mathrm{c})^{2}+2(2 \mathrm{a})(-\mathrm{b})+2(-\mathrm{b})(-\mathrm{c})+2(-\mathrm{c}) 2 \mathrm{a}=0$
$\Rightarrow(2 \mathrm{a}-\mathrm{b}-\mathrm{c})^{2}=0$
$\Rightarrow 2 \mathrm{a}-\mathrm{b}-\mathrm{c}=0$
$\Rightarrow 2 \mathrm{a}=\mathrm{b}+\mathrm{c}$. Hence Proved.
26. Solution:

Let the first term be 'a' and common difference be ' d '.
Given, $\mathrm{a}=5, \mathrm{~T}_{\mathrm{n}}=45, \mathrm{~s}_{\mathrm{n}}=400$.
$\mathrm{Tn}=\mathrm{a}+(\mathrm{m}-1) \mathrm{d}$
$\Rightarrow 45=5+(\mathrm{m}-1) \mathrm{d}$
$\Rightarrow(\mathrm{n}-1) \mathrm{d}=40$
$\mathrm{s}_{\mathrm{n}}=\mathrm{n} 2\left(\mathrm{a}+\mathrm{T}_{\mathrm{n}}\right)$
$\Rightarrow 400=\mathrm{n} 2(5+45)$
$\Rightarrow \mathrm{n}=2 \times 8=16$ substituting the value of n in (i)
$\Rightarrow(16-1) d=40$
$\Rightarrow d=4015=83$
OR

CHITTI CREATIONS

Solution:
Let the first term be a and common difference be d.
Now, we have

$$
\begin{array}{lll}
& a_{11}=38 \Rightarrow & a+(11-1) d=38 \\
\Rightarrow & a+10 d=38 & \\
\text { and } & a_{16}=73 \Rightarrow a+(16-1) d=73 \\
\Rightarrow & a+15 d=73 & \tag{ii}
\end{array}
$$

Now subtracting (ii) from (i), we have
Now, $\quad a+10 d=38$

$$
\frac{-^{a+15 d=73}}{-5 d=-35} \text { or } \quad 5 d=35
$$

$\therefore \quad d=\frac{35}{5}=7$
Putting the value of d in equation (i), we have
$a+10 \times 7=38$
$\Rightarrow \mathrm{a}+70=38$
$\Rightarrow \mathrm{a}=38-70$
$\Rightarrow \mathrm{a}=-32$
We have, $\mathrm{a}=-32$ and $\mathrm{d}=7$
Therefore, $a_{31}=a+(31-1) d$
$\Rightarrow \mathrm{a}_{31}=\mathrm{a}+30 \mathrm{~d}$
$\Rightarrow(-32)+30 \times 7$
$\Rightarrow-32+210$
$=a_{31}=178$
27. Solution:

We have, $\tan (A+B)=\sqrt{3}$
$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\tan 60^{\circ}$
$\therefore \mathrm{A}+\mathrm{B}=60^{\circ}$
Again, $\tan (A-B)=13 \sqrt{ }$
$\therefore \mathrm{A}-\mathrm{B}=30^{\circ}$
Adding (i) and (ii), we have
$2 \mathrm{~A}=90^{\circ}$
$\Rightarrow A=45^{\circ}$
Putting the value of A in (i), we have
$45^{\circ}+B=60^{\circ}$
$\therefore \mathrm{B}=60^{\circ}-45 \mathrm{o}=15^{\circ}$
Hence, $\mathrm{A}=45^{\circ}$ and $\mathrm{B}=15^{\circ}$
28. Solution:

Let $A B$ be the mountain of height h kilo metres. Let C be a point at a distance of $x \mathrm{~km}$, from the base of the mountain such that the angle of elevation of the top at C is 30°. Let D be a point at a distance of 10 km from C such that angle of elevation at D is of 15°.
In MBC (Fig. 11.22), we have

$$
\text { In } \triangle A B C, \quad \tan 60^{\circ}=\frac{A B}{B C} \quad \text { or } \quad \sqrt{3}=\frac{h}{x}
$$

$$
\Rightarrow \quad x \sqrt{3}=h
$$

In $\triangle A B D, \quad \tan 30^{\circ}=\frac{A B}{B D}$

$$
\begin{equation*}
\text { i.e., } \quad \frac{1}{\sqrt{3}}=\frac{h}{x+40} \tag{ii}
\end{equation*}
$$

Fig. 11.23

Substituting $x=\sqrt{3} h$ in equation (i), we get
$\Rightarrow 0.27(\sqrt{3} \mathrm{~h}+10)=\mathrm{h}$
$=0.27 \times \sqrt{3} \mathrm{~h}+0.27 \times 10=\mathrm{h}$
$\Rightarrow 2.7=\mathrm{h}-0.27 \times \sqrt{3} \mathrm{~h}$
$\Rightarrow 27=\mathrm{h}(1-0.27 \times \sqrt{3})$
$\Rightarrow 27=\mathrm{h}(1-0.46)$

$$
\Rightarrow \mathrm{h}=2.70 .54=5
$$

Hence, the height of the mountain is 5 km .
29.

Given:

PT and TQ are two tangents drawn from an external point T to the circle $\mathrm{C}(0, \mathrm{r})$.
To prove: PT=TQ
Construction: Join OT.

Proof:

We know that, a tangent to circle is perpendicular to the radius through the point of contact.
Therefore, $\angle O P T=\angle O Q T=90$ o
In $\triangle \mathrm{OPT}$ and $\triangle \mathrm{OQT}$,
OT=OT
Radius of the circle $=O P=O Q$
$\angle O P T=\angle O Q T=900$
Therefore, $\triangle \mathrm{OPT} \cong \triangle O Q T$ (RHS congruence criterion)
Therefore, $\mathrm{PT}=\mathrm{TQ}$
So, the length of the tangents drawn from an external point to a circle are equal.

CHITTI CREATIONS

30. Solution:

Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are on the same base BC and AD intersects BC at 0 .
To Prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
Construction: Draw $A L \perp B C$ and $D M \perp B C$
Proof: In $\triangle A L O$ and $\triangle D M O$, we have

$$
\begin{array}{rlrl}
& & \angle A L O=\angle D M O=90^{\circ} \text { and } \\
& \angle A O L=\angle D O M & \text { (Vertically opposite angles) } \\
\therefore & & \triangle A L O \sim \triangle D M O & \text { (By AA-Similarity) } \\
\Rightarrow & & \frac{A L}{D M}=\frac{A O}{D O} & \ldots .(\text { i) } \tag{i}
\end{array}
$$

Fig. 7.24
$\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} B C \times A L}{\frac{1}{2} B C \times D M}=\frac{A L}{D M}=\frac{A O}{D O} \quad($ Using (i))
Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
31. Solution:

Let $A(1,2), B(4, y), C(x, 6)$ and $D(3,5)$ be the vertices of a parallelogram $A B C D$.
Since, the diagonals of a parallelogram bisect each other.

$$
\begin{array}{ll}
\therefore & \left(\frac{x+1}{2}, \frac{6+2}{2}\right)=\left(\frac{3+4}{2}, \frac{5+y}{2}\right) \\
\Rightarrow & \frac{x+1}{2}=\frac{7}{2} \\
\Rightarrow & x+1=7 \text { or } x=6 \\
\Rightarrow & 4=\frac{5+y}{2} \text { or } 5+y=8 \quad \text { or } \quad y=8-5=3
\end{array}
$$

Hence, $\mathrm{x}=6$ and $\mathrm{y}=3$.
32. Solution:

Let $A B$ be a vertical pole of length 6 m and $B C$ be its shadow and $D E$ be tower and $E F$ be its shadow. Join AC and DF.
Now, in $\triangle A B C$ and $\triangle D E F$, we have

$$
\begin{aligned}
& \angle B=\angle E=90^{\circ} \\
& \angle C=\angle F
\end{aligned}
$$

$\therefore \quad \triangle A B C \sim \triangle D E F \quad$ (By AA criterion of similarity)
Thus, $\frac{A B}{D E}=\frac{B C}{E F}$

$$
\begin{array}{lll}
\Rightarrow & \frac{6}{h}=\frac{4}{28} & (\text { Let } D E=h) \\
\Rightarrow & \frac{6}{h}=\frac{1}{7} & \Rightarrow h=42
\end{array}
$$

Fig. 7.12
$h=42$ Hence, height of tower, $D E=42 \mathrm{~m}$

OR

Solution:

Let $A B C$ be an equilateral triangle of side $2 a$ units.
We draw $A D \perp B C$. Then D is the mid-point of $B C$.
$\Rightarrow \mathrm{BC} 2=2 \mathrm{a} 2=\mathrm{a}$
Now, ABD is a right triangle right-angled at D .
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$ [By Pythagoras Theorem]
$\Rightarrow(2 \mathrm{a})^{2}=\mathrm{AD}^{2}+\mathrm{a}^{2}$
$\Rightarrow \mathrm{AD}^{2}=4 \mathrm{a}^{2}-\mathrm{a}^{2}=3 \mathrm{a}^{2}$
$\Rightarrow A D=\sqrt{3} a$
Hence, each altitude $=\sqrt{3}$ a unit.
33.

34. From equation (i), we have the following table:

x	0	4	7
y	-4	0	3

From equation (ii), we have the following table:

x	0	10	7
y	10	0	3

Plotting this, we have

Here, the two lines intersect at point $(7,3)$ i.e., $x=7, y=3$.

CHITTI CREATIONS

35. Solution:

Let ' a ' be the first term and ' d be the common difference.
nth term of AP is $\quad a_{n}=a+(n-1) d$
and sum of AP is $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Sum of first 10 terms $=210=\frac{10}{2}[2 a+9 d]$
$\Rightarrow \quad 42=2 a+9 d \quad \Rightarrow \quad 2 a+9 d=42$
15 th term from the last $=(50-15+1)^{\text {th }}=36^{\text {th }}$ term
$\Rightarrow \quad a_{36}=a+35 d$
Sum of last 15 terms $=2565=\frac{15}{2}\left[2 a_{36}+(15-1) d\right]$

$$
\begin{array}{ll}
\Rightarrow & 2565=\frac{15}{2}[2(a+35 d)+14 d] \\
\Rightarrow & 2565=15[a+35 d+7 d] \\
\Rightarrow & a+42 d=171 \tag{ii}
\end{array}
$$

(i) $-2 \times($ ii $)$, we get

$$
\begin{aligned}
& 9 d-84 d=42-342 \quad \Rightarrow \quad 75 d=300 \\
\Rightarrow \quad & d=\frac{300}{75}=4
\end{aligned}
$$

Putting the value of d in (ii)

$$
\begin{array}{ll}
& 42 \times 4+a=171 \quad \Rightarrow \quad a=171-168 \\
\Rightarrow & a=3 \\
\Rightarrow & a_{50}=a+49 d=3+49 \times 4=199
\end{array}
$$

So, the AP formed is $3,7,11,15$ \qquad and 199.

OR

Solution:

$$
\begin{align*}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{30}=\frac{30}{2}[2 a+29 d] \quad \Rightarrow \quad S_{30}=30 a+435 d \tag{i}\\
& \Rightarrow \quad S_{20}=\frac{20}{2}[2 a+19 d] \quad \Rightarrow \quad S_{20}=20 a+190 d \\
& \\
& S_{10}=\frac{10}{2}[2 a+9 d] \quad \Rightarrow \quad S_{10}=10 a+45 d \\
& 3\left(S_{20}-S_{10}\right)=3[20 a+190 d-10 a-45 d] \\
& =3[10 a+145 d]=30 a+435 d=S_{30}
\end{align*}
$$

Hence, $S_{30}=3\left(S_{20}-S_{10}\right)$
[From (i)]
Hence proved.
36. Solution:

Let r_{1} and h_{1} be the radius and height of longer cylinder, respectively, and r_{2}, h_{2} be the respective radius and height of smaller cylinder mounted on the longer cylinder.
Then we have,
$\mathrm{r}_{1}=12 \mathrm{~cm}, \mathrm{~h}_{1}=220 \mathrm{~cm}$
$\mathrm{r}_{2}=8 \mathrm{~cm}, \mathrm{~h}_{2}=60 \mathrm{~cm}$
Now, Volume of solid iron pole
= Volume of the longer cylinder + Volume of smaller cylinder
$=\pi r_{1}{ }^{2} h^{1}+\pi r_{2}{ }^{2} h^{2}$
$=3.14 \mathrm{R}(12)^{2} \times 220+3.14 \mathrm{R}(8)^{2} \times 60$
$=3.14 \times 144 \times 220+3.14 \times 64 \times 60$
$=99475.2+12057.6=111532.8 \mathrm{~cm}^{3}$
Hence, the mass of the pole $=(111532.8 \times 8)$ grams
$=111532.8 \times 81000 \mathrm{~kg}=892.2624 \mathrm{~kg}$.
37. Solution:

Converting given distribution to a less than type cumulative frequency distribution, we have,

Daily income (in ₹)	Cumulative frequency
Less than 120	12
Less than 140	$12+14=26$
Less than 160	$26+8=34$
Less than 180	$34+6=40$
Less than 200	$40+10=50$

Now, let us plot the points corresponding to the ordered pairs $(120,12),(140,26),(160,34)$,
$(180,40),(200,50)$ on a graph paper and join them by a freehand smooth curve.

38.

Let the two triangles be:
$\triangle A B C$ and $\triangle P Q R$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathbf{B C} \times \mathbf{A M}$
Area of $\triangle \mathbf{P Q R}=\frac{1}{2} \times \mathbf{Q R} \times \mathbf{P N}$.
Dividing (1) by (2)
$\frac{\operatorname{ar}(\mathbf{P Q R})}{\operatorname{ar}(\mathbf{A B C})=\frac{1}{2} \times \mathbf{B C} \times \mathbf{A M}} \frac{1}{2} \times \mathbf{Q R} \times \mathbf{P N}$
$\frac{\operatorname{ar}(P Q R)}{\operatorname{ar}(\mathrm{ABC})=}=\frac{B C X A M}{Q R X P N}$
In $\triangle \mathbf{A B M}$ and $\triangle \mathbf{P Q N}$
$\square \mathbf{B}=\mathbf{Q}_{\mathbf{Q}}$ (Angles of similar triangles)
TM=0 (Both 90])
Therefore, $\triangle \mathbf{A B M} \sim \Delta \mathrm{PQN}$
So, $\frac{A M}{A B}=\frac{P N}{P Q}$.
From 1 and 2

$$
\frac{\operatorname{ar}(P Q R)}{\operatorname{ar}(\mathrm{ABC})}=\frac{Q R}{\mathrm{BC}} \times \frac{P N}{\mathrm{AM}}
$$

$$
\begin{equation*}
\Rightarrow \frac{\operatorname{ar}(P Q R)}{\operatorname{ar}(\mathrm{ABC})}=\frac{Q R}{\mathrm{BC}} \times \frac{P Q}{\mathrm{AB}} . \tag{3}
\end{equation*}
$$

$\frac{P Q}{A B}=\frac{Q R}{B C}=\frac{P R}{A C}$.
.. $(\triangle A B C \sim \triangle P Q R)$
Putting in (3) $\quad \frac{\operatorname{ar}(P Q R)}{\operatorname{ar}(\mathbf{A B C})}=\frac{P Q}{\mathbf{A B}} X \frac{P Q}{\mathrm{AB}}=\left(\frac{P Q}{\mathrm{AB}}\right)^{2}$
$\Rightarrow \frac{\operatorname{ar}(P Q R)}{\operatorname{ar}(\mathrm{ABC})}=\left(\frac{P Q}{\mathrm{AB}}\right)^{2}$.

