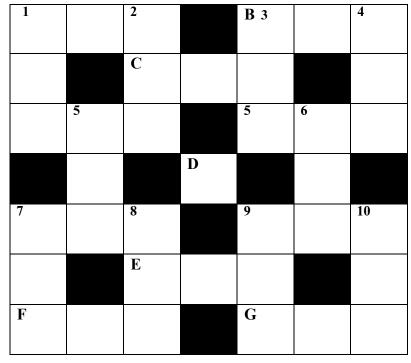

SRINIVASA RAMANUJAN MATHEMATICS ACTIVITY BOOK

<u>GUIDE TEACHER</u> :

2020 - 2021

Student Name :

Roll Number :


Section :

Vice principal (Signature with seal)

CHAPTERNAME OF THE ACTIVITYOLLOTED MARKSOBTAINED MARKSSA1 FA -01Arithmetic progression1. Completing the number puzzle by solving problems.15A - 02Triangles1. Completing the four theorems in triangles & their problems.15FA - 02 equations in two variables1. Complete the following table. 2) Solve the following pair of linear equation. 3) Solve the following pair of linear equation by graphical method.15A - 02 FA - 02 Constructions1. Line bisects. 2. Tangents.15SA2 FA - 03 coordinate geometry1. Find the distance between the i) origin and the point. ii) two points. 2. Find the area of triangle.15FA - 03 R - 01Trigonometry1. List all the formulas in trigonometry. 2. Write the trigonometric ratios. 3. Solve the following problems.15FA - 04 A - 01Statistics1. Solve Mean, Mode & Median problems.15FA - 04 A - 01Surface area and volumes1. Name the following solids and plate figures. 2) Complete the following problems15A - 02Surface area and volumes1. Name the following problems based on solids15	Index				
FA - 01 A - 01Aritimetic progression1. Completing the fumber puzzle by solving problems.15A - 02Triangles1. Completing the four theorems in triangles & their problems.15FA - 02 equations in two variables1) Complete the following pair of linear equation.15FA - 01Pair of linear equations in two variables1) Complete the following pair of linear equation by graphical method.15A - 02Constructions3) Solve the following pair of linear equation by graphical method.15A - 02Constructions1. Line bisects. 2. Tangents.15SA2 geometry1. Find the distance between the i) origin and the point. 2. Find the area of triangle.15A - 01Trigonometry1. List all the formulas in trigonometry. 2. Write the trigonometric ratios. 3. Solve the following problems.15FA - 04 A - 01Statistics1. Solve Mean, Mode & Median problems.15FA - 02Surface area and volumes1) Name the following solids and plane figures.15A - 02Surface area and volumes1) Name the following problems15		CHAPTER	NAME OF THE ACTIVITY		
A - 02 in triangles & their problems. 15 FA - 02 Pair of linear equations in two variables 1) Complete the following pair of linear equation. 15 A - 01 two variables 3) Solve the following pair of linear equation by graphical method. 15 A - 02 Constructions 1. Line bisects. 15 SA2 Coordinate geometry 1. Find the distance between the i) origin and the point. ii) two points. 15 A - 01 Coordinate geometry 1. List all the formulas in trigonometry. 15 A - 02 Trigonometry 1. Solve the following problems. 15 FA - 04 Statistics 1. Solve Mean, Mode & Median problems. 15 Surface area and volumes 1) Name the following solids and plane figures. 15 A - 02 Surface area and volumes 1) Name the following problems based on solids 15	FA - 01				
FA - 02 equations in two variablesPair of linear equations in two variables2) Solve the following pair of linear equation. 3) Solve the following pair of linear equation by graphical method.15A - 02Constructions1. Line bisects. 2. Tangents. 3. Similar triangles.15SA2 FA - 03 geometryCoordinate geometry1. Find the distance between the i) origin and the point. ii) two points. 2. Find the area of triangle.15A - 01Trigonometry1. List all the formulas in trigonometry. 2. Write the trigonometric ratios. 3. Solve the following problems.15FA - 04 A - 01Statistics1. Solve Mean, Mode & Median problems.15FA - 04 A - 01Statistics1. Draw less than Ogive for following.15FA - 04 A - 01Surface area and volumes1) Name the following solids and plane figures. 2) Complete the formula chart. 3) Distinguish between the solids and plane figures.15	A - 02	Triangles		15	
A - 02Constructions2. Tangents. 3. Similar triangles.15SA2 FA - 03 geometryI. Find the distance between the i) origin and the point. ii) two points. 2. Find the area of triangle.15A - 01Trigonometry1. List all the formulas in trigonometry. 2. Write the trigonometric ratios. 3. Solve the following problems.15FA - 04 A - 01Statistics1.Solve Mean, Mode & Median problems.15FA - 04 A - 01Statistics1.Name the following solids and plane figures. 2) Complete the formula chart. 3) Distinguish between the solids and plane figures.15A - 02Surface area and volumes1) Name the following problems15A - 02Surface area and volumes1) Solve the following problems15		equations in	 2) Solve the following pair of linear equation. 3) Solve the following pair of linear equation by graphical 	15	
FA - 03 geometryCoordinate geometryi) origin and the point. ii) two points.15A - 01I. List all the formulas in trigonometry.15A - 02TrigonometryI. List all the formulas in trigonometry.15FA - 04 A - 01StatisticsI. Solve Mean, Mode & Median 	A - 02	Constructions	2. Tangents.	15	
A - 02Trigonometrytrigonometry. 2. Write the trigonometric ratios. 3. Solve the following problems.15FA - 04 A - 01Image: Statistics of the following problems.Image: Statistics of the following problems.Image: Statistics of the following problems.Image: Statistics of the following problems.FA - 04 A - 01Statistics of the following.Image: Statistics of the following.Image: Statistics of the following.Image: Statistics of the following.A - 02Surface area and volumesImage: Statistics of the following problems.Image: Statistics of the following problems.Image: Statistics of the following problems.A - 02Surface area and volumesImage: Statistics of the following problems.Image: Statistics of the following problems.Image: Statistics of the following problems.A - 02Surface area and volumesImage: Statistics of the following problems.Image: Statistics of the following problems.Image: Statistics of the following problems.A - 02Surface area and volumesImage: Statistics of the following problems.Image: Statistics of the following problems.Image: Statistics of the following problems.A - 02Image: Statistics of the following problems based on solidsImage: Statistics of the following problems based on solidsImage: Statistics of the following problems based on solids	FA - 03		i) origin and the point.ii) two points.	15	
FA - 04 A - 01Statisticsproblems. 2. Draw less than Ogive for following. 3. Draw more than Ogive for following.15A - 02Surface area and volumes1) Name the following solids and plane figures. 2) Complete the formula chart. 3) Distinguish between the solids and plane figures. 4) Solve the following problems based on solids15	A - 02	Trigonometry	trigonometry. 2. Write the trigonometric ratios.	15	
A - 021) Name the following solids and plane figures.A - 02Surface area and volumes1) Name the following solids and plane figures.A - 02Surface area 		Statistics	problems.2. Draw less than Ogive for following.3. Draw more than Ogive for	15	
TOTAL 120	A - 02		 Name the following solids and plane figures. Complete the formula chart. Distinguish between the solids and plane figures. Solve the following problems 	15	
		<u> </u>	TOTAL	120	

SA - 01 ACTI	VIT		A – 01 - 01	
•	UNI	<u>T</u> :		
ARITHMETI				
ACTIVITY NAME : COM BY S			NUMBER PUZZLE VEN PROBLEMS	
TYPE OF ACT	ΓΙVΙΤΥ	(: INI	DIVISUAL	
		(OBJECTIVES) PARAMETERS		
1) TEXT BOOK USAGE	TEXT BOOK USAGE 3		1) VERY GOOD	
2) SOLVING THE PROBLEMS FROM LEFT TO RIGHT 3			(3 Marks)	
3) SOLVING THE PROBLEMS FROM LEFT TO RIGHT			2) GOOD (2 Marks)	
4) WRITE THE SOLUTIONS IN NUMBER PUZZLE	3		3) OK (1 Marks)	
5) OVERALL IMPRESSION	3		4) IMPROVE IT (0 Marks)	
TOTAL M.	ARKS :	<u>I</u>		

COMPLETE THE NUMBER PUZZLE BY SOLVING BELOW PROBLEMS

FROM LEFT TO RIGHT :

A) 27, 40, 53, 66, 24th term of this A.P. is

- B) 5, 12, 19, 26, 34th term of this A.P. is
- C) 5, 10, 15, 20, 61th term of this A.P. is
- **D)** If $a_n = 3n 9$, then a_6 is
- E) 6, 38, 70, 102, 21th term of this A.P. is
- F) 2, 14, 26, 38, 40th term of this A.P. is
- G) 7, 24, 41, 58, 28th term of this A.P. is

FROM TOP TO BOTTOM :

1) 1 + 2 + 3 + 4 + Sum of first 25 natural integers is
2) 1 + 2 + 3 + 4 + Sum of first 35 natural integers is
3) 1 + 3 + 5 + 7 + Sum of first 16 odd positive integers is
4) 1 + 3 + 5 + 7 + Sum of first 25 odd positive integers is
5) 2 + 4 + 6 + 8 + Sum of first 12 even positive integers is
6) 2 + 4 + 6 + 8 + Sum of first 20 even positive integers is
7) 2, 7, 12, 17,
8) 5, 9, 13, 17, Sum of the 20 terms of this A. P. is
9) 3 + 8 + 13 + 18 + Sum of the 8 terms of this A. P. is
10) 4 + 7 + 10 + 13 + Sum of the 12 terms of this A. P. is

4	4
A) 27, 40, 53, 66, 24 th term of	B) 5, 12, 19, 26, 34 th term of
this A.P. is	this A.P. is
C) 5, 10, 15, 20, 61 th term of	D) IF $a_n = 3n - 9$, then a_6 is
this A.P. is	
E) 6, 38, 70, 102, 21 th term of	F) 2, 14, 26, 38, 40 th term of
this A.P. is	this A.P. is

G) 7, 24, 41, 58, 28 th term of	1) 1 + 2 + 3 + 4 + Sum of
this A.P. is	
	first 25 natural integers is
2) 1 + 2 + 3 + 4 + Sum of	3) 1 + 3 + 5 + 7 + Sum of
first 35 natural integers is	first 16 odd positive integers is
4) 1 + 3 + 5 + 7 + Sum of	5) 2 + 4 + 6 + 9 + 5 + 5 + 6 + 6 + 6 + 9 + 5 + 5 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6
	5) 2 + 4 + 6 + 8 + Sum of first
first 25 odd positive integers is	12 even positive integers is

6) 2 + 4 + 6 + 8 + Sum of first	7) 2, 7, 12, 17,	Sum of
20 even positive integers is	the 12 terms of this A. P. is	
8) 5, 9, 13, 17, Sum of	9) 3 + 8 + 13 + 18	3+ Sum of
the 20 terms of this A. P. is	the 8 terms of	this A. P. is
10) $4 + 7 + 10 + 13 + \dots$ Sum of	ANSWERS	2)
the 12 terms of this A. P. is	A)	3)
	B)	4)
	C)	5)
	D)	6)
	E)	7)
	F)	8)
	G)	9)
	1)	10)
	1	

SA - 01 FA - 01ACTIVITY - 02 : <u>UNIT</u>: TRIANGLES ACTIVITY NAME : Completing the five theorems

in triangles and four application

problems.

TYPE OF ACTIVITY : INDIVISUAL

CHECK LIST	MAXIMM MARKS MARKS MARKS	(OBJECTIVES) PARAMETERS
1) TEXT BOOK USAGE	3	1) VERY GOOD
2) WRITING THE STATEMENT, DATA AND TO PROVE	3	(3 Marks)
3) WRITING THE PROOF	3	2) GOOD (2 Marks)
4) SKILL OF CONSTRUCTION	3	3) OK (1 Marks)
5) OVERALL IMPRESSION	3	4) IMPROVE IT (0 Marks)
ΤΟΤΑ	L MARKS :	

_	-	
THALES [BASIC PROP	ORTIONALITY] THEOREM	
STATEMENT :		
FIGURE	DATA	
	TO DDOVE	
	TO PROVE	
	CONSTRUCTION	
: P	ROOF:	

A – A CRITERIA THEOREM			
STATEMENT:	STATEMENT:		
FIGURE	DATA		
	TO PROVE		
	CONSTRUCTION		
: P)	ROOF:		
11 Dece			

AREAS OF SIMILLAR TRIANGLES THEO	DKEM	
STATEMENT :		
FIGURE DATA		
TO PROVE		
CONSTRUCTION		
: PROOF:		
. TROOP.		

PYTHAGORAS THEOREM	
ST&TEMENT :	
FIGURE	DATA TO PROVE
	CONSTRUCTION
	PROOF :

CONVERSE OF PHYTH&GORS THEOREM		
STATEMENT :		
FIGURE	DATA	
	TO PROVE	
	CONSTRUCTION	
:]	PROOF :	

ANSWER THE FOLI	OWING QUESTIONS
1) Adjoining figure, if LM CB & LN CD. Prove that $\frac{AM}{AB} = \frac{AN}{AD}$	2) \triangle ABC and \triangle DBC are lies on the same base in the picture. AD intersects BC at O. AL \perp BC and DM \perp BC. Prove that $\frac{\text{Area of } \triangle \text{ ABC}}{\text{Area of } \triangle \text{ DBC}} = \frac{\text{AO}}{\text{DO}}$
3) Diagonals of rhombus are 16cm and 12cm. Find the side of the rhombus.	 4) ΔPQR is right angled at P and M is a point on QR such that PM⊥QR. Show that PM² = QM.MR

<u>Achievement Test</u> – 01

SUBJECT : MATI	EMATICS		MA	RKS : 20
I. Choose the correct	answer along wit	th option from the	following questions :	2 x 1 = 2
1) Next term of -4,	-8, -12,	is		
(A) -16	(B) -18	(C) -15	(D) -17	
2) The ratio of the	sides of similar tr	iangles is 4 : 9, the	en ratio of the their area	as is
(A) 16 : 81	(B) 2 : 3	(C) 16 : 3	(D) 4 : 81	
II. Answer the follow	ing:			$2 \ge 1 = 2$
3) If $a_n = 5n - 9$, the function of the second s	en find the value	of a _{3.}		
4) States the Basic	Proportionality [7	Thales] Theorem.		
III. Answer the follow	ving:			$2 \ge 2 = 4$
5) Which term of t	ne A.P. : 3, 8, 13,	18,is 78 5	2	
6) In the adjoining	figure, if AD = 50	cm, BD = 7cm, AC	= 18cm & BD DE, the	n find CE.
B A B	E C			
IV. Answer the follow	ving:			$1 \ge 3 = 3$
7) Find the 31 st te	rm of an A.P. wh	ose 11 th term is 38	and the 16 th term is 73.	
V. Answer the follow	ing:			$1 \ge 4 = 4$
8) The sum of the	4 th and 8 th term o	f an A.P. is 24 and	the sum of the 6th and	10 th terms
is 44. Find the fi	rst three terms o	f the A.P.		
VI. Prove the below	:			$1 \ge 5 = 5$
9) State and prove	the Pythagoras tl	heorem.		
		$\overline{}$		
16 Page	Ansv	wers		

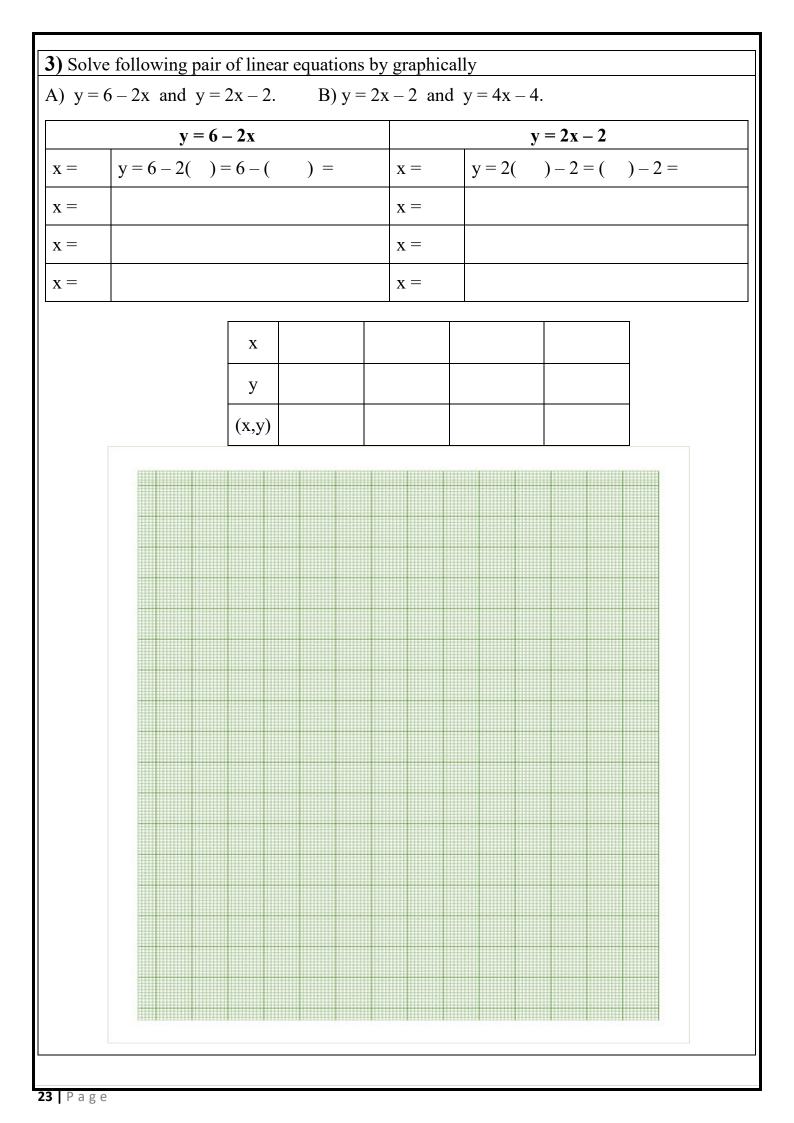
SA - 01 FA - 02

ACTIVITY – 01

<u>UNIT</u> : PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

ACTIVITY :

1) COMPLETE THE FOLLOWING TABLE.


2) SOLVE THE FOLLOWING PAIR OF LINEAR EQUATION.

3) SOLVE THE FOLLOWING PAIR OF LINEAR EQUATION BY GRAPHICAL METHOD.

TYPE OF ACTIVITY : INDIVISUAL							
CHECK LIST	MAXIMM MARKS	MARKS	(OBJECTIVES) PARAMETERS				
1) TEXT BOOK USAGE	3		1) VERY GOOD				
2) SKILL OF COMPLETIG THE TABLE	3		(3 Marks)				
3) SOLVING THE GIVEN	3		2) GOOD				
PROBLEMS			(2 Marks)				
4) DRAWING SKILL IN	3		3) OK				
GRAPH			(1 Marks)				
5) OVED ALL IMPRESSION	3		4) IMPROVE IT				
5) OVERALL IMPRESSION			(0 Marks)				
TOTAL MARKS :							

1)	COMPLETE THE	FOLLOWINC	ТА				
		1	IA			-	
S1.	Comparing	Representing		Algebraic		Cons	sistency
No	the ratios	on graph		solution			
1.	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$						
2.	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$						
3.	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$						
Sl.	Pair of linear	Comparing		presenting	Algeb		Consistency
No	equations	the ratios	on	graph	soluti	on	
1	5x - 4y + 8 = 0 7x + 6y - 9 = 0						
2	9x + 3y + 12 = 0 18x + 6y + 24 = 0						
3	6x - 3y + 10 = 0 2x - y + 9 = 0						
4	3x + 2y = 5 $2x - 3y = 7$						
5	2x - 3y = 8 $4x - 6y = 9$						
6	x + y = 5 2x + 2y = 10						
7	$\begin{array}{l} x - y = 8\\ 3x - 3y = 16 \end{array}$						
8	2x + y - 6 = 0 $4x - 2y - 4 = 0$						
9	2x - 2y - 2 = 04x - 3y - 5 = 0						
			1		I		·

2) Solve the following pair of linear equations. (Any method)					
1) $x + 2y = 9$ & $2x - y = 8$	2) $x + y = 14$ & $x - y = 4$				
3) $x + y = 5 \& 2x - 3y = 4$	4) $3x + 4y = 10$ & $2x - 2y = 2$				

B) $y = 2x - 2$ and $y = 4x - 4$.							
	y = 2x	x – 2		$\mathbf{y} = 4\mathbf{x} - 2$			
x =	y = 2() - 2	2 = () - 2 =	x =	y = 4() - 2 = () – 2 =		
x =			x =				
x =			x =				
x =			x =				
]		
		X			-		
		У			-		
		(x,y)					
24							

SA - 01 FA - 02							
ACTIVITY – 02							
: <u>UNIT</u> :							
CONSTRUCTIONS							
ACTIVITY: DRAW 1) LI 2) TA	NE BIS ANGEN						
3) SI	MILAR	TRIA	NGLES				
TYPE OF ACT			YEN DATA				
CHECK LIST	MAXIMM MARKS	MARKS	(OBJECTIVES) PARAMETERS				
1) TEXT BOOK USAGE	3						
2) SKILL OF CONSTRUCTION OF LINE BISECT BY USING GIVEN DATA	3		1) VERY GOOD (3 Marks)				
3) SKILL OF CONSTRUCTION OF TANGENTS BY USING GIVEN DATA	3		2) GOOD (2 Marks)				
4) SKILL OF CONSTRUCTION OF SIMILAR TRIANGLES BY USING GIVEN DATA	3		3) OK (1 Marks)				
5) OVERALL IMPRESSION	3 4) IMPROVE IT (0 Marks)						
TOTAL MARKS :							
25 Page							

1. Draw a line segment of length 7.6 cm and divide it in the ratio 5 : 8. Measure the two parts.
1. Draw a fine segment of length 7.0 cm and drivide it in the fatto 5. 6. Measure the two parts.
2. Draw a line segment of length 10 cm and divide it in the ratio 2 : 3. Measure the two parts.
3. Draw a line segment of length 8 cm and divide it in the ratio 3 : 5. Measure the two parts.

01. Construct a triangle with sides 4 cm, 5 cm and 6 cm. then another triangle whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

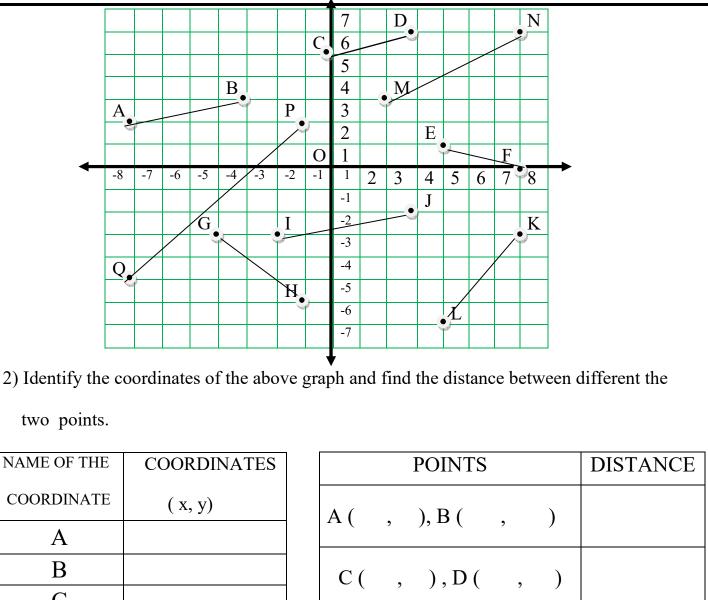
02. Construct a triangle with sides 5 cm, 6 cm and 7 cm. then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

03. Construct a triangle ABC with sides BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$ cm. then another triangle whose sides are $\frac{4}{3}$ of the corresponding sides of triangle ABC.

01. Draw a pair of tangents to a circle of radius 3 cm which are inclined to each other at an angle of 60° .

02. Draw a pair of tangents to a circle of radius 3.5 cm which are inclined to each other at an angle of 65° .

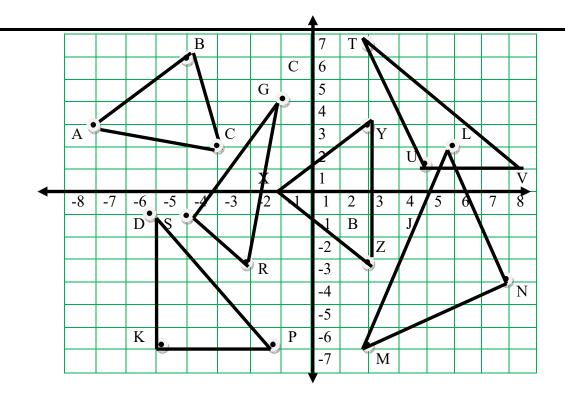
03. Draw a pair of tangents to a circle of radius 4 cm which are inclined to each other at an angle of 70° .


04. Draw a circle of radius 6cm. From a point 10cm away from its centre, construct the pair of tangents to the circle and measure their length.

05. Draw a circle of radius 4cm. From a point 8cm away from its centre, construct the pair of tangents to the circle and measure their length.

SA - 02	SA - 02 FA - 03						
ACTIVITY – 01							
: <u>UNIT</u> :							
CO - ORDINATE GEOMETRY							
i) ORIGIN ii) TWO P 2) FIND THE	ACTIVITY : 1) FIND THE DISTANCE BETWEEN i) ORIGIN AND THE GIVEN POINT ii) TWO POINTS 2) FIND THE AREA OF TRIANGLE						
TYPE OF ACT	ΓΙVΙΤΥ	/ : INJ	DIVISUAL				
CHECK LIST	MAXIMM MARKS	MARKS	(OBJECTIVES) PARAMETERS				
1) TEXT BOOK USAGE	3						
2) FINDING THE DISTANCE BETWEEN ORIGIN AND THE GIVEN POINT	3		1) VERY GOOD (3 Marks)				
3) FINDING THE DISTANCE BETWEEN THE GIVEN TWO POINTS	3		2) GOOD (2 Marks)				
4) FINDING THE AREA OF TRIANGLE	3		3) OK (1 Marks)				
5) OVERALL IMPRESSION 3 4) IMPROVE IT (0 Marks)							
ТОТ	FAL MA	RKS :					

A -8	B		$ \begin{array}{c c} 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ -1 \\ -2 \\ \end{array} $	D	E 4	5	6 J	F 7	8			
	ordinates of the above gr	rapł	oints to	ori	the ogin.		anc	e b	etw	veen d	liffe	rent
NAME OF THE COORDIN ATE	COORDINATES (x, y)			OA	\				ST.	ANC	CE	
A				OB								
B				$\frac{OC}{OT}$								
C D												
E				OE								
F				OF								
G				$\frac{00}{00}$								
Н				OH								
Ι				OI								
J				OJ	-							
0												


1) AB = d = $\sqrt{x^2 + y^2}$	5) $IJ = d = \sqrt{x^2 + y^2}$
2) CD = d = $\sqrt{x^2 + y^2}$	6) KL = d = $\sqrt{x^2 + y^2}$
3) EF = d = $\sqrt{x^2 + y^2}$	7) MN = d = $\sqrt{x^2 + y^2}$
4) GH = d = $\sqrt{x^2 + y^2}$	8) PQ = d = $\sqrt{x^2 + y^2}$
5) OE = d = $\sqrt{x^2 + y^2}$	10) $OJ = d = \sqrt{x^2 + y^2}$

COORDINATE	(x, y)
А	
В	
С	
D	
Е	
F	
G	
Н	
Ι	
J	
K	
L	
М	
Ν	
Р	
Q	

		DISTANCE			
A (,), B (,)	
C (,),D(,)	
Е (,),F(,)	
G (,), H (,)	
Ι(,), J (,)	
K (,),L(,)	
М (,), N (,)	
Р(,),Q(,)	
					·

1) AB = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	5) IJ = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
2) CD = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	6) KL = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
$2) CD - d - \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$0) \text{ KL} - \mathbf{u} - \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
3) EF = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	7) MN = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
4) GH = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	8) PQ = d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

3) Identify the coordinates of the above graph and find the area of triangle.

POINTS A	(x, y)		POINTS			
B		A (
C		A (), В(), C()	
D						
K		D(), K(), P ()	
Р						
G		G () S(), R (
S		U (), 5 (), 10 ()	
R						
X		X (),Y(), Z()	
Y						
Z		Τ(), U(), V ()	
М						
N		M () N(), L (
L		111), 11(), L (,	
Т						
U						
V						

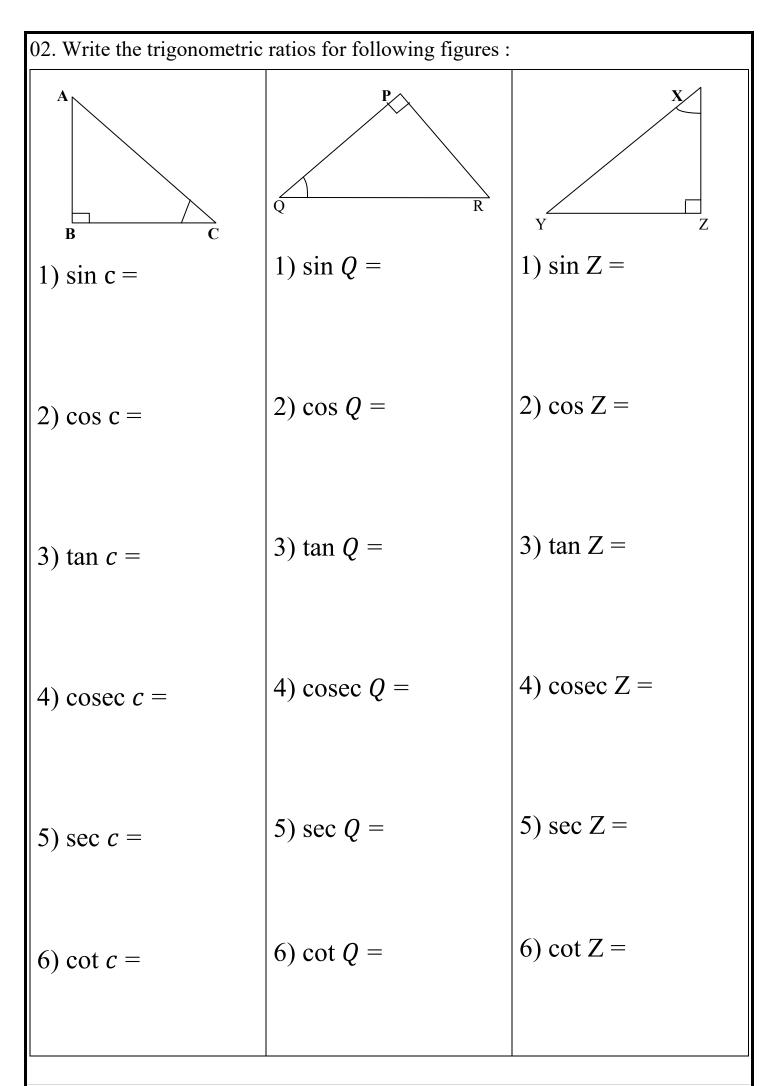
1) A $(-7, 3)$, B $(-4, 6)$, C $(-3, 2)$	2) D(-5,-1), K(-5,-7), P(-1,-7)
	$A = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$
3) $G(-1,4)$, $S(-4,-1)$, $R(-2,-3)$	4) $X(-1,0)$, $Y(2,3)$, $Z(2,-3)$
$A = \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$	$A = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$
5) $T(2,7)$, $U(4,1)$, $V(8,1)$	6) $M(2, -7)$, $N(7, -4)$, $L(5, 2)$
$A = \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$	$A = \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$

ACTIVITY – 02 <u>UNIT</u> : TRIGNOMETRY

FA - 03

ACTIVITY NAME :

1) LIST ALL THE FORMULAS OF TRIGNOMETRY.


2) WRITE THE TRIGNOMETRIC RATIOS.

3) SOLVE THE GIVEN PROBLEMS

SA - 02

TYPE OF ACTIVITY : INDIVISUAL								
MAXIMM MARKS	MARKS	(OBJECTIVES) PARAMETERS						
3								
3		1) VERY GOOD (3 Marks)						
3		2) GOOD (2 Marks)						
3		3) OK (1 Marks)						
3		4) IMPROVE IT (0 Marks)						
RKS :								
	WWIXW 3 3 3 3 3 3	WAXIM333333						

	1)	FORMULAS OI	F TRIGNON	IETRY	
1) sin θ =		1) $\sin \theta =$		1) $\sin(90^{\circ} -$	θ) =
2) $\cos \theta =$		2) $\cos \theta =$		2) $\cos(90^{\circ} -$	<i>θ</i>) =
3) $\tan \theta =$		3) $\tan \theta =$		3) $\tan (90^{\circ} -$	θ) =
4) cosec θ	=	4) cosec θ =		4) $\csc(90^{\circ} -$	- θ) =
5) sec θ =		5) sec θ =		5) sec $(90^{\circ} -$	θ) =
6) $\cot \theta =$		6) $\cot \theta =$		6) cot $(90^{\circ} - 6)$	$\theta) =$
	Table for the	e values of the all	l trigonomet	ric ratios	
θ	00	30 [°]	45 [°]	60 ⁰	90 [°]
sin O					
cos θ					
tan 0					
cosec θ					
sec $ heta$					
cot 					
	Trigo	onometric Identi	ties		
	1)				
	2)				
	3)				

03. If i) sin A = $\frac{3}{5}$ ii) 15 co	$t Q = 8$ iii) sec $\theta = \frac{13}{12}$.	
Calculate all other trigor	nometric ratios.	
$\mathbf{C} \qquad \mathbf{A}\mathbf{C}^2 = \mathbf{A}\mathbf{B}^2 + \mathbf{B}\mathbf{C}^2$	$QR^2 = PQ^2 + PR^2$	$YZ^2 = XZ^2 + YX^2 \qquad Z$
$BC^2 = AC^2 - AB^2$	15 8	$\mathbf{Y}\mathbf{X}^2 = \mathbf{Y}\mathbf{Z}^2 - \mathbf{X}\mathbf{Z}^2 13$
5		
	QR	Y X
1) sin c =	1) sin $Q =$	1) sin z =
2) $\cos c =$	2) $\cos Q =$	2) $\cos z =$
3) $\tan c =$	3) $\tan Q =$	3) tan z =
4) cosec $c =$	4) cosec $Q =$	4) cosec $z =$
5) sec $c =$	5) sec $Q =$	5) sec z =
6) cot $c =$	6) cot <i>Q</i>	6) cot $z =$

4. EVALUATE :	
$1. \frac{\tan 65^{\circ}}{2}$	$3. \operatorname{cosec} 31^0 - \sec 59^0$
$1.\frac{1}{\cot 25^0}$	
\sim sin36 ⁰ sin54 ⁰	
$2.\frac{\sin 36^{0}}{\cos 54^{0}}-\frac{\sin 54^{0}}{\cos 36^{0}}$	4. $\sec 70^{\circ} \sin 20^{\circ} - \cos 70^{\circ} \csc 20^{\circ}$
$4 \text{ EINID } 0 \text{ IE } [0 < 0 < 00^0]$	
4. FIND θ , IF [$0 \le \theta \le 90^{\circ}$]	
1) $\sqrt{2}\cos\theta = 1$	2) 3 tan $\theta = \sqrt{3}$
3) $2\sin\theta = \sqrt{3}$	4) 5 sin $\theta = 0$
5) FIND THE VALUE OF THE FOLL	OWING :
1) $\sin 30^{\circ} \cos 60^{\circ} - \tan^2 45^{\circ}$	2 cos45 ⁰
	$3) \frac{\cos 43^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$
2) $4\sin^2 60^0 + 3\tan^2 30^0 - 8\sin 45^0 \cos 45^0$	4) $\cos 60^{\circ} \cos 30^{\circ} - \sin 60^{\circ} \sin 30^{\circ}$

SA - 02 FA - 04										
ACTIVITY – 01										
<u>UNIT</u> : S	TA	ΓIS	TICS							
ACTIVITY :										
 1) FIND OUT THE MEA THE GIVEN DATA. 2) DRAW OGIVE LESS THAN TYPE FOR THAN TYPE FOR THAN	S THAN	N TYF	PE AND MORE							
TYPE OF ACT	ΓΙVΙΤΥ	2 : IN	DIVISUAL							
CHECK LIST	MAXIMM MARKS	MARKS	(OBJECTIVES) PARAMETERS							
1) TEXT BOOK USAGE	3									
2) FINDING THE MEAN, MEDIAN AND MODE FOR THE GIVEN DATA.	3		1) VERY GOOD (3 Marks)							
3) SKILL OF CONSTRUCTION LESS THAN TYPE OGIVE	3		2) GOOD (2 Marks)							
4) SKILL OF CONSTRUCTION MORE THAN TYPE OGIVE	3		3) OK (1 Marks)							
5) OVERALL IMPRESSION	3		4) IMPROVE IT (0 Marks)							
ТОТ	TAL MA	RKS	:							

01. Find the	mean fo	r the follow	wing distri	bution table.
C - I	f _i	X _i	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\mathbf{Mean} = \overline{\mathbf{X}} = \frac{\sum fi \mathbf{x}i}{\sum fi}$
15 - 25	6			$\frac{1}{\sum fi}$
25 - 35	11			
35 - 45	7			
45 - 55	4			
55 - 65	4			
65 - 75	2			
75 – 85	1			
$\sum \mathbf{f}_i =$		$\sum \mathbf{f}_i \mathbf{x}_i =$		
C - I	f _i	Xi	f _i x _i	$Mean = \overline{X} = \frac{\sum fi xi}{\sum fi}$
0 – 2	1			
2 - 4	2			
4 - 6	1			
6 - 8	5			
8 - 10	6			
10 – 12	2			
12 - 14	3			
$\sum \mathbf{f}_i =$		$\sum \mathbf{f}_i \mathbf{x}_i =$		
C - I	f _i	Xi	f _i x _i	$ \sum_{i=1}^{n} $
11 - 13	7			$\mathbf{Mean} = \mathbf{\overline{X}} = \frac{\sum fi \mathbf{x}i}{\sum fi}$
13 – 15	6			
15 – 17	9			
17 – 19	13			
19 – 21	20			
21 – 23	5			
23 - 25	4			
$\sum \mathbf{f}_i =$		$\sum \mathbf{f}_i \mathbf{x}_i =$		
L		L]	

02. Find the m	edian fo	or the	following di	stribution table.
<u>C - I</u>		f	cf	Median = $\ell + \left[\frac{\frac{n}{2} - cf}{f} \right] \mathbf{x} \mathbf{h}$
30 - 35	1	4		Median = $\ell + \left[\frac{2}{f}\right] \times h$
35 - 40	1	6		
40 - 45	1	8		
45 - 50	2	3		
50 - 55	1	8		
55 - 60	0	8		
60 - 65	0	3		
n =	$\frac{n}{2} =$			
C - I	f		cf	$\frac{n}{2}-cf$
0 - 20	6			Median = $\ell + \left[\frac{\frac{n}{2} - cf}{f} \right] \mathbf{x} \mathbf{h}$
20-40	8			
40 - 60	10			
60 - 80	12	,		
80 - 100	6			
100 – 120) 5			
120 - 140	3			
n =	$\frac{n}{2} =$:		
C - I	f		cf	Median = $\ell + \left[\frac{\frac{n}{2} - cf}{f} \right] \mathbf{x} \mathbf{h}$
0 - 10	5			
10 – 20	8			
20 - 30	20			
30 - 40	15			
40 – 50	7			
50 - 60	5			
n =	$\frac{n}{2} =$			
L]				1

		lowing dist	tribution table.
C - I	f		Mode = $\ell + \left[\frac{f1 - f0}{2f1 - f0 - f2} \right] x h$
0 - 20	10		2f1 - f0 - f2
20 - 40	35		
40 - 60	52 —	→f ₀	
60 - 80	61	\rightarrow f ₁	
80 - 100	38	\rightarrow f ₂	
100 - 120	29		
C - I	f		$M_{odo} = \theta + \int_{0}^{0} \frac{f_1 - f_0}{1 + h}$
0-10	7		Mode = $\ell + \left[\frac{f1 - f0}{2f1 - f0 - f2} \right] \mathbf{x} \mathbf{h}$
10 - 20	14		
20 - 30	13		
30 - 40	12	\rightarrow f ₀	
40 - 50	20	\rightarrow f ₁	
50 - 60	11	\rightarrow f ₂	
60 - 70	15		
70 - 80	8		
C - I	f		Mode = $\ell + [\frac{f1-f0}{2f1-f0-f2}]$ x h
10 – 25	2		2f1 - f0 - f2
10 - 23 25 - 40		►f	
		► f ₀	
40 – 55		• f ₁	
55 - 70		f_2	
70 - 85	6		

85 - 100

6

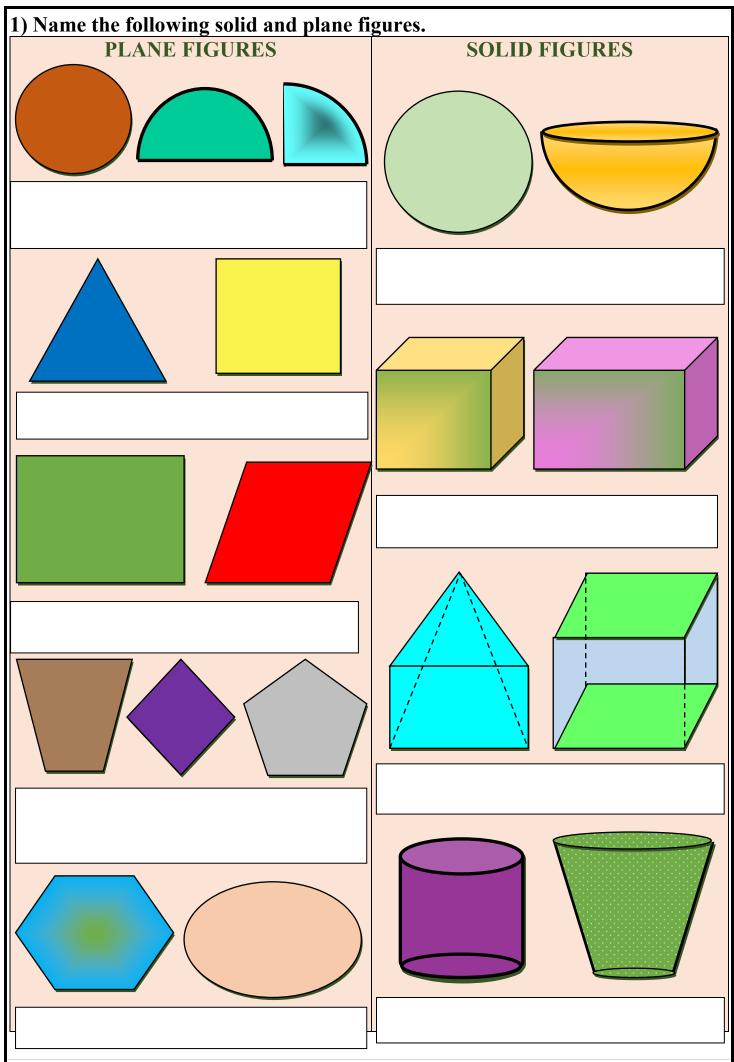
04. Find the m	ean, me	dian and mo	de for the following distribution table.
C - I	fi	Xi	$\mathbf{f}_{i} \mathbf{x}_{i} \qquad \mathbf{Mean} = \overline{\mathbf{X}} = \frac{\sum fi \mathbf{x}i}{\sum fi}$
0 - 10	7	1	$\sum fi$
10 - 20	10		
20 - 30	23		
30 - 40	51		
40 - 50	6		
50 - 60	3		
$\sum f_i =$		$\sum \mathbf{f}_i \mathbf{x}_i =$	
	C	C	Median = $\ell + \left[\frac{\frac{n}{2} - cf}{f} \right] \mathbf{x} \mathbf{h}$
C - I 0 - 10	f	cf	
	-		
10 - 20	10		
20 - 30	23		
30 - 40	51		
40 - 50	6		
50 - 60	3		
n =	$\frac{n}{2} =$		
C - I	1		Mode = $\ell + \left[\frac{f1 - f0}{2f1 - f0 - f2} \right] \mathbf{x} \mathbf{h}$
0 - 10			
10 – 20	10		
20-30	23	\rightarrow f ₀	
30 - 40	51	\rightarrow f ₁	
40 - 50	6	f ₂	
50 - 60	3		
L	<u> </u>	I	

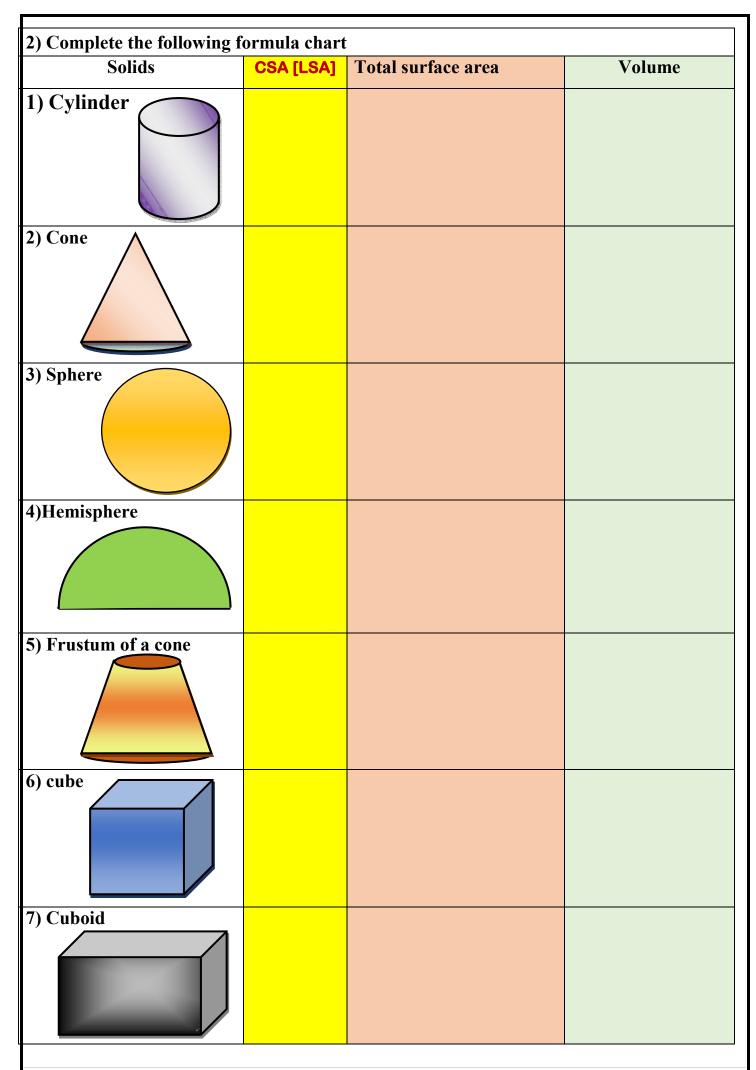
C - I	f	cf		1	 	 	 	 	
00 - 120	12								
0 - 120	14								
20 – 140	14								
0 - 160	8								
50 – 180	6								
<u>80 - 200</u>	10								
C I	f			I					
C - I 5 - 15	<u> </u>	cf							
5 35	11								
5 – 25	11								
5 – 35	21								
5 – 45	23								
	14								
5 - 55	14								
5 – 65	5								
			♠						
C - I	f	cf							
50 - 55	2								
55 – 60	8								
60 - 65	12								
55 – 70	24								
-	18								
0-75					 	 	 		

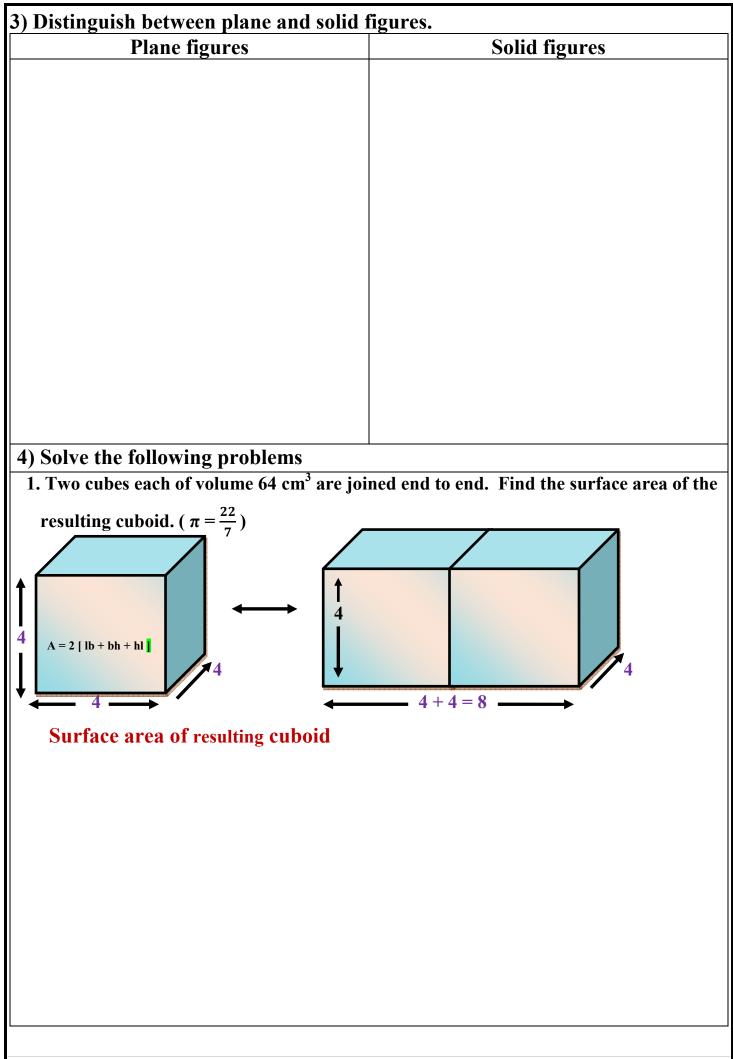
C - I	f	cf							
20	12								
140	14								
- 160	8								
100	(
180	6								
200	10								
- 200	10		_						
	-1		_						
C - I	f	cf		•					
- 55	2								
60	0								
	8								
ζ	12								
5	14								
70	24								
- •									
- 75	18								
- 80	16								
C - I	f	cf							
_ - 1	1	CI							
15	6								
~									
25	11								
35	21								
45	23								
55	14								
55	14								
5	5								

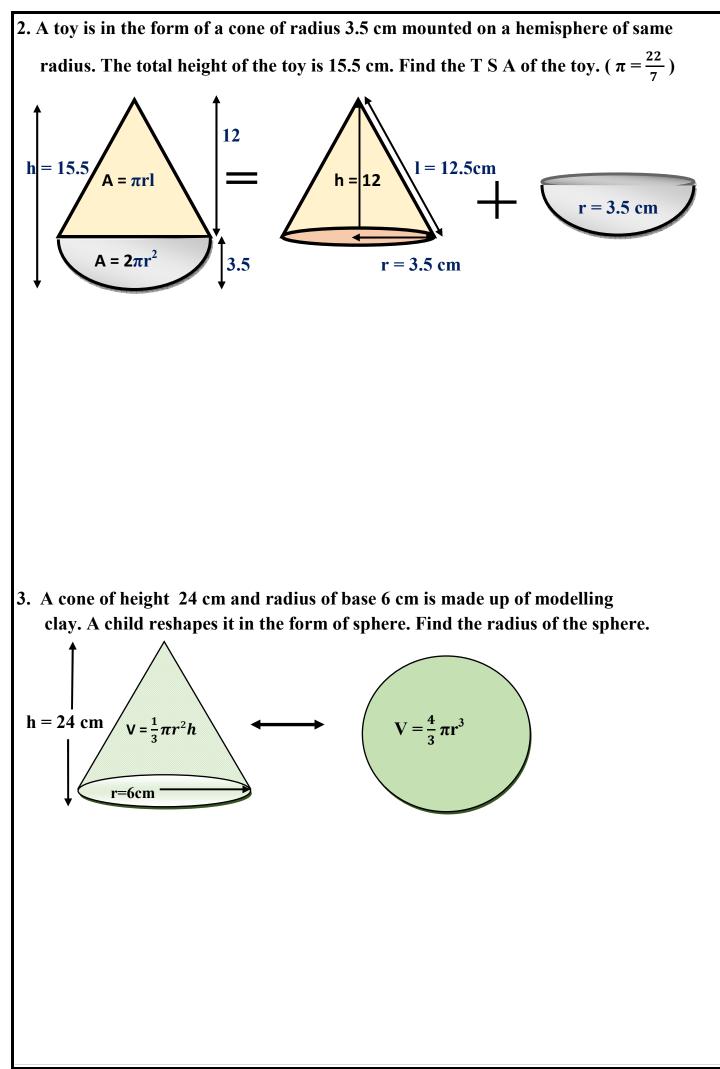
$\begin{array}{cc} SA - 02 & FA - 04 \\ ACTIVITY - 02 \\ \underline{UNIT} \end{array}$

SURFACE AREA AND VOLUMES ACTIVITY :


1) NAME THE FOLLOWING SOLIDS AND PLANE FIGURES.


2) COMPLETE THE FORMULA CHART.


3) DISTINGUSH BETWEEN THE SOLIDS AND PLANE FIGURES.


4) SOLVE THE FOLLOWING PROBLEMS BASED ON SOLIDS

TYPE OF ACTIVITY : INDIVISUAL								
CHECK LIST	MAXIMM MARKS	MARKS	(OBJECTIVES) PARAMETERS					
1) TEXT BOOK USAGE	3		1) VERY GOOD					
2) NAMING THE FOLLOWING SOLIDS AND PLANE FIGURES	3		(3 Marks)					
3) COMPLETING THE FORMULA CHART.	3		2) GOOD (2 Marks)					
4) SOLVE THE FOLLOWING PROBLEMS BASED ON SOLIDS	3		3) OK (1 Marks)					
5) OVERALL IMPRESSION	3		4) IMPROVE IT (0 Marks)					
ТОТ	AL MA	RKS	:					

THANK YOU

BHUVANESHWARI. D. K. G. J. C. [H.S.]CHANNAGIRI. CHANNAGIRI TALUK DAVANAGERE DIST.

