

EX) Solve x and y by any method.
x + 2y = 3 and $x - 15y = 2$.
Solution: Elimination Method.
x + 2y = 3 (1)
7x - 15y = 2 (2)
7x + 14y = 21
7x - 15y = 2
29y = 19
y = 19/29
Put $y = 19/29$ in equation (1). We get
x + 2y = 3
$x + 2(\frac{19}{29}) = 3$
x + 38/29 = 3
x = 3 - 38/29
x = 49/29
EX) Solve x and y by any method.
x + 3y = 6 and $2x - 3y = 12$
x + 3y = 6 and $2x - 3y = 12Solution: Elimination Method.$
Solution: Elimination Method. x + 3y = 6 (1)
Solution: Elimination Method. x + 3y = 6 (1) 2x - 3y = 12 (2)
Solution: Elimination Method. x + 3y = 6 (1) 2x - 3y = 12 (2)
Solution: Elimination Method. x + 3y = 6 (1) 2x - 3y = 12 (2) 2x + 6y = 12 2x - 3y = 12
Solution: Elimination Method. x + 3y = 6 (1) 2x - 3y = 12 (2) 2x + 6y = 12 2x - 3y = 12 - +
Solution: Elimination Method. x + 3y = 6(1) $2x - 3y = 12(2)$ $2x + 6y = 12$ $2x - 3y = 12$ $+$ $9y = 0$
Solution: Elimination Method. x + 3y = 6 (1) 2x - 3y = 12 (2) 2x + 6y = 12 2x - 3y = 12 - +
Solution: Elimination Method. x + 3y = 6 - (1) $2x - 3y = 12 - (2)$ $2x + 6y = 12$ $2x - 3y = 12$ $- +$ $9y = 0$ $y = 0$
Solution: Elimination Method. x + 3y = 6 (1) $2x - 3y = 12 (2)$ $2x + 6y = 12$ $2x - 3y = 12$ $- +$ $9y = 0$ $y = 0$ $y = 0$ Put $y = 0$ in equation (1). We get
Solution: Elimination Method. x + 3y = 6 - (1) $2x - 3y = 12 - (2)$ $2x + 6y = 12$ $2x - 3y = 12$ $- +$ $9y = 0$ $y = 0$ $y = 0$ Put $y = 0$ in equation (1). We get $x + 3y = 6$

Exercise:

EX) Solve for x & y any method. 1) 2x + 3y = -13 and 5x - 4y = -2. 2) 5x + y = 2 and 6x - 3y = 1. 3) 2x + y = 5 and 3x + 2y = 8. 4) 8x + 5y = 9 and 3x + 2y = 45) 0.2x + 0.3y = 1.3 and 0.4x + 0.5y = 2.36) 2x + 3y = 11 and 2x - 4y = -24. 7) x + 2y = 3 and 7x - 15y = 2. 8) 3x + 2y = 12 and x - y = -1. 9) x + 2y = 5 and -3x - 6y + 1 = 0. 10.) 2x + y = 5 and 3x - 2y - 12 = 0.

1. Solve by formula method.
$2x^2 - 3x + 1 = 0$
Solution: $2x^2 - 3x + 1 = 0$
a = 2 b = -3 c = 1
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 2 \times 1}}{2 \times 2}$
$x = \frac{3 \pm \sqrt{9-8}}{4}$
$x = \frac{3 \pm \sqrt{1}}{4}$
$x = \frac{3\pm 1}{4}$
$x = \frac{3+1}{4}$ or $x = \frac{3-1}{4}$
$x = 1$ or $x = \frac{1}{2}$
2) Solve by formula method.
$x^2 - 7x + 12 = 0$
Solution: $x^2 - 7x + 12 = 0$
a = 1 b = -7 c = 12
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times 1 \times 12}}{2 \times 1}$
$x = \frac{7 \pm \sqrt{49 - 48}}{2}$
$x = \frac{7 \pm \sqrt{1}}{2}$
$x = \frac{7\pm 1}{2}$

$$x = \frac{7+1}{2}$$
 or $x = \frac{7-1}{2}$
x = 4 Or **x = 3**

EX) Solve by formula method

 $\mathbf{x}^2 - 2\mathbf{x} - \mathbf{4} = \mathbf{0}$

Solution: a = 1 b = -2 c = -4

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 1 \times (-4)}}{2 \times 1}$$

$$x = \frac{2 \pm \sqrt{4 + 16}}{2}$$

$$x = \frac{2 \pm \sqrt{4 + 16}}{2}$$

$$x = \frac{2 \pm \sqrt{20}}{2}$$

$$x = \frac{2 \pm 2\sqrt{5}}{2}$$

$$x = \frac{\frac{2}{2} \pm 2\sqrt{5}}{2}$$

$$x = \frac{\frac{2}{2} (1 \pm 1\sqrt{5})}{2}$$

$$x = 1 + \sqrt{5}$$

$$x = 1 - \sqrt{5}$$

Exercise: solve by formula method.

1. $x^2 - 3x - 10 = 0$ 2. $x^2 + 7x - 60 = 0$ 3. $3x^2 - 5x + 2 = 0$ 4. $2x^2 - 3x + 1 = 0$ 5. $3x^2 - 12x + 15 = 0$ 6. $x^2 + 2x - 3 = 0$ 7. $x^2 - 2x - 3 = 0$ 8. $3x^2 + 5x - 2 = 0$ 9. $3x^2 - 2\sqrt{6x} + 2 = 0$ 10. $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$

1) Prove that $3 + \sqrt{5}$ is irrational number.

Solution: let us assume that $3 + \sqrt{5}$ is rational number. $3 + \sqrt{5} = \frac{p}{q}$ $p \in z$ and $q \neq 0$. $\sqrt{5} = \frac{p}{q} - 3$ $\sqrt{5} = \frac{p-3q}{q}$

w.k.t $\frac{p-3q}{q}$ is rational number.

 $\sqrt{5}$ is a irrational number.

 $\therefore 3 + \sqrt{5}$ Is irrational number.

2) Prove that $3 - \sqrt{5}$ is irrational number.

Solution: let us assume that $3 - \sqrt{5}$ is rational number.

$$3 - \sqrt{5} = \frac{p}{q} \quad p \in z \text{ and } q \neq 0.$$

$$-\sqrt{5} = \frac{p}{q} - 3$$

$$-\sqrt{5} = \frac{p-3q}{q}$$

$$\sqrt{5} = \frac{-p+3q}{q}$$

w.k.t $\frac{-p+3q}{q}$ is rational number.
$$\sqrt{5}$$
 is a irrational number.

 $\therefore 3 - \sqrt{5}$ Is irrational number.

3) Prove that $3 + 2\sqrt{5}$ is irrational number.

Solution: : let us assume that $3 + 2\sqrt{5}$ is rational number.

$$3 + 2\sqrt{5} = \frac{p}{q} \qquad p \in z \text{ and } q \neq 0.$$

$$2\sqrt{5} = \frac{p}{q} - 3$$

$$2\sqrt{5} = \frac{p-3q}{q}$$
w.k.t $\frac{p-3q}{2q}$ is rational number.
 $\sqrt{5}$ is a irrational number.
 $\therefore 3 + 2\sqrt{5}$ Is irrational number.
 $\therefore 3 + 2\sqrt{5}$ Is irrational number.
1) $5 + \sqrt{3}$
2) $5 - \sqrt{3}$
3) $2 + \sqrt{3}$
4) $2 + \sqrt{5}$
5) $3 + 5\sqrt{2}$
6) $6 + \sqrt{2}$
7) $3 - \sqrt{7}$
8) $5 - \sqrt{5}$
9) $3 + \sqrt{7}$
10) $2 - \sqrt{5}$

DISTANCE FORMULA:	EX3) Find the distance between two
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	points (2, 3) and (6,-8).by using formula.
Ex) Find the distance between two points (6, 5) and (4, 4).	Solution: (2, 3) = (x_1, y_1)
Solution : (6, 5) = (x_1, y_1)	$(6,-8) = (x_2, y_2)$
$(4, 4) = (x_2, y_2)$	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$d = \sqrt{(6-2)^2 + (-8-3)^2}$
$d = \sqrt{(4-6)^2 + (4-5)^2}$	$d = \sqrt{(4)^2 + (-11)^2}$
$d = \sqrt{(-2)^2 + (-1)^2}$	$d = \sqrt{16 + 121}$
$d = \sqrt{4+1}$	$d = \sqrt{137}$ units.
$d=\sqrt{5}$ units.	
	Exercise
Ex2) Find the distance between two points (4, 7) and (2, 3).	Find the distance between following points.
Solution: (4, 7) = (x_1, y_1)	1) Find the distance between two points (-2, 5) and (-5, 2).
$(2, 3) = (x_2, y_2)$	2) Find the distance between two points (1, 7) and (-2, 3).
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	 3) Find the distance between two points (-6, 4) and (5, -7).
$d = \sqrt{(2-4)^2 + (3-7)^2}$	4) Find the distance between two points (-4, -7) and (-2, -3).
$d = \sqrt{(-2)^2 + (-4)^2}$	5) Find the distance between two points (1, 1) and (3, 2).
$d = \sqrt{4 + 16}$	6) Find the distance between two
$d = \sqrt{20}$	points (-3, 2) and (2, -3). 7) Find the distance between two points (4, 3) and (8, -3).
$d = 2\sqrt{5}$ Units.	

MID POINT FORMULA.

$$\mathbf{P}(\mathbf{X},\mathbf{Y}) = \left(\frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}\right)$$

EX) find the midpoint of the points (-4, 1) and (5, 2).

Solution:
$$(-4, 1) = (x_1, y_1)$$

 $(5, 2) = (x_2, y_2)$
 $P(X, Y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
 $P(X, Y) = \left(\frac{-4 + 5}{2}, \frac{1 + 2}{2}\right)$
 $P(X, Y) = \left(\frac{1}{2}, \frac{3}{2}\right)$

EX) find the midpoint of the points (3, 1) and (4, 5).

Solution: $(3,1) = (x_1, y_1)$ $(4,5) = (x_2, y_2)$ $P(X,Y) = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ $P(X,Y) = \left(\frac{3+4}{2}, \frac{1+5}{2}\right)$ $P(X,Y) = \left(\frac{7}{2}, \frac{6}{2}\right)$ $P(X,Y) = \left(\frac{7}{2}, 3\right)$ EX) find the midpoint of the points (5,3) and (5,1). Solution: $(5,3) = (x_1, y_1)$ $(5,1) = (x_2, y_2)$ $P(X,Y) = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

$$P(X,Y) = \left(\frac{5+5}{2}, \frac{3+1}{2}\right)$$
$$P(X,Y) = \left(\frac{10}{2}, \frac{4}{2}\right)$$

P(X,Y) = (5,2)

SECTION FORMULA:

$$\mathbf{P}(\mathbf{X},\mathbf{Y}) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

EX) Find the coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio 2:3.

Solution: $(-1,7) = (x_1, y_1)$

$$(4, -3) = (x_2, y_2) \quad m_1: m_2 = 2:3$$

$$P(X, Y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$
$$P(X, Y) =$$

$$\begin{pmatrix} (2)(4)+3(-1)\\ 2+3 \end{pmatrix}, \frac{(2)(-3)+3(7)}{2+3} \end{pmatrix}$$

$$P(X,Y) = \left(\frac{8-3}{5}, \frac{-6+21}{5}\right)$$

P(X,Y) = (1,3).

Exercise

EX) Find the coordinates of the point which divides the join of (4, -1) and (-2, -3) in the ratio 1:3.

EX) Find the coordinates of the point which divides the join of (-6, 10) and (3, -8) in the ratio 2:7.

EX) Find the midpoint of the points (5, -6) and (-1, -4).

EX) Find the midpoint of the points (2, -2) and (-7, 4).

EX) Find the quotient and remainder
when
$$p(x) = 3x^3 + x^2 + 2x + 5$$
 is
divided by $g(x) = x^2 + 2x + 1$.
Solution: $p(x) = 3x^3 + x^2 + 2x + 5$
 $g(x) = x^2 + 2x + 1$
 $3x - 5$
 $x^2 + 2x + 1$
 $3x^3 + x^2 + 2x + 5$
 $3x^3 + 6x^2 + 3x$
 $- - -$
 $-5x^2 - x + 5$
 $-5x^2 - 10x - 5$
 $+ + + +$
 $9x + 10$

Quotient = 3x - 5

Remainder = 9x + 10

EX) Find the quotient and remainder when $p(x) = x^3 - 3x^2 + 5x - 3$ is divided by $g(x) = x^2 - 2$.

Solution: $p(x) = x^3 - 3x^2 + 5x - 3$

$$g(x) = x^2 - 2$$

$$x = 3$$

$$x^{2} - 2$$

$$x^{3} - 3x^{2} + 5x - 3$$

$$x^{3} - 2x$$

$$- +$$

$$-3x^{2} + 7x - 3$$

$$-3x^{2} + 6$$

$$+ -$$

$$7x - 9$$

Quotient = x - 3

Remainder = 7x - 9

EX) Show that polynomial $x^2 + 3x + 1$ is a factor of polynomial $3x^4 + 5x^3 - 7x^2 + 2x + 2$.

Solution: $p(x) = 3x^4 + 5x^3 - 7x^2 + 2x + 2$.

$$g(x) = x^{2} + 3x + 1$$

$$3x^{2} + 4x + 2$$

$$x^{2} + 3x + 1 \overline{)3x^{4} + 5x^{3} - 7x^{2} + 2x + 2}$$

$$3x^{4} + 9x^{3} - 3x^{2}$$

$$- - +$$

$$-4x^{3} - 10x^{2} + 2x + 2$$

$$-4x^{3} - 12x^{2} - 4x$$

$$+ + +$$

$$2x^{2} + 6x + 2$$

$$- - -$$

$$0$$

Exercise

EX) Find the quotient and remainder when $p(x) = x^4 - 3x^2 + 4x + 5$ is divided by $g(x) = x^2 - x + 1$.

EX) Find the quotient and remainder when $p(x) = x^3 - 3x^2 + 5x - 3$ is divided by $g(x) = 2 - x^2$.

EX) Show that polynomial x - 2 is a factor of polynomial $x^3 - 3x^2 + 3x - 2$.

AREA OF SECTOR

• Area of Sector =
$$\frac{\theta}{360^0} \times \pi r^2$$

• Length of arc =
$$\frac{\theta}{360^0} \times 2\pi r$$

EX) Find the area of a sector the circle with radius 6cm if angle of sector is 60° .

Solution: Given $r = 6cm \theta = 60^0$

Area of Sector =
$$\frac{\theta}{360^0} \times \pi r^2$$

= $\frac{60^0}{360^0} \times \frac{22}{7} \times 6 \times 6$
= $\frac{60^0}{360^0} \times \frac{22}{7} \times 6 \times 6$
= $\frac{22}{7} \times 6$
Area of Sector = $\frac{136}{7} cm^2$

EX) In a circle of radius 21 cm if angle, an arc subtends an angle of 40^0 at the centre. Find the length of the arc.

Solution: Given $r = 21cm \theta = 40^0$

Length of arc = $\frac{\theta}{360^0} \times 2\pi r$

$$=\frac{40^{0}}{360^{0}} \times 2 \times \frac{22}{7} \times 21$$

$$=\frac{1}{9} \times 2 \times \frac{22}{7} \times 21$$

Length of arc = $\frac{136}{7}$ cm²

EX) In a circle of radius 21 cm if angle, an arc subtends an angle of 60^0 at the centre find the area of segment.

Solution: Given $r = 21cm \theta = 60^0$

Area of Sector =
$$\frac{\theta}{360^0} \times \pi r^2$$

= $\frac{60^0}{360^0} \times \frac{22}{7} \times 21 \times 21$
= $\frac{6\theta^0}{360^0} \times \frac{22}{7} \times 21 \times 21$
Area of Sector = 231 cm²

Area of equilateral triangle = $\frac{\sqrt{3}}{4} a^2$

$$= \frac{\sqrt{3}}{4} \times 21 \times 21$$

Area of equilateral triangle = $441 \frac{\sqrt{3}}{4} \text{ cm}^2$

Area of segment = Area of sector – Area of Equilateral Triangle

Area of Sector = $231 - 441 \frac{\sqrt{3}}{4} \text{ cm}^2$

Exercise

EX) Find the area of a sector the circle with radius 7cm if angle of sector is 90°.

EX) In a circle of radius 21 cm if angle, an arc subtends an angle of 40^0 at the centre. Find the length of the arc.

EX) In a circle of radius 14 cm if angle, an arc subtends an angle of 60^0 at the centre find the area of segment.

PROBABILITY:

$$\boldsymbol{P}(\boldsymbol{E}) = \frac{\boldsymbol{n}(\boldsymbol{E})}{\boldsymbol{n}(\boldsymbol{S})}$$

Ex) A die is thrown once, Find the probability of getting A) A prime number B) a number lying between 2 and 6. C) An odd number. D) an perfect square.

Solution: A die ids thrown once,

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$n(S) = 6$$

A) A prime number

$$E = \{2, 3, 5, \}, n(E) =$$

$$P(E) = \frac{n(E)}{n(S)}$$

$$P(E) = \frac{3}{6}$$

$$P(E) = \frac{1}{2}$$

B) A number lying between 2 and 6.

3

$$E = \{3, 4, 5, \}$$
, $n(E) = 3$
 $P(E) = \frac{n(E)}{n(S)}$
 $P(E) = \frac{3}{6}$
 $P(E) = \frac{1}{2}$

C) An odd number. $E = \{1, 3, 5\}$, n(E) = 3

 $E = \{3, 4, 5, \}$, n(E) = 3

$$P(E) = \frac{n(E)}{n(S)}$$
$$P(E) = \frac{3}{6}$$
$$P(E) = \frac{1}{2}$$

D) A perfect square.

$$E = \{1, 4\} \qquad n(E) = 2$$
$$P(E) = \frac{n(E)}{n(S)}$$
$$P(E) = \frac{2}{6}$$
$$P(E) = \frac{1}{3}$$

EX) A box contains 90 disc which are numbered from 1 to 90. If one disc is drawn at random from box, find the probability that it bears A) a two digit number B) A perfect a square number.

Solution: n(S) = 90

A) a two digit number

$$n(E)=81$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{81}{90}$$

$$\mathbf{P}(\mathbf{E}) = \frac{9}{10}$$

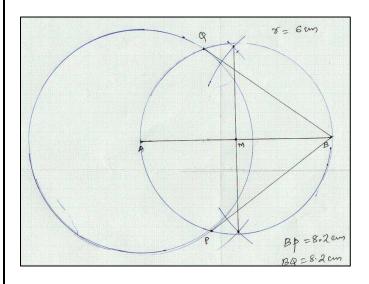
B) A perfect a square number. n(E) = 9

$$P(E) = \frac{n(E)}{n(S)} = \frac{9}{90} = 1/9$$

CONSTRUCTION:

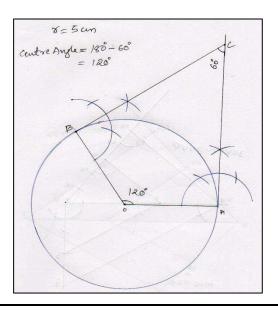
<u>Ex)</u> draw a circle of radius 6cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Solution:



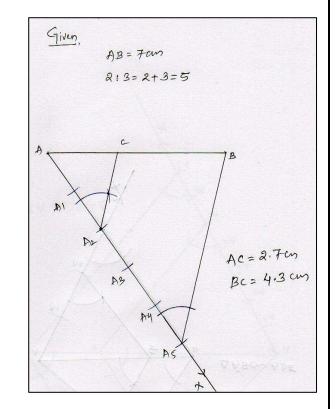
<u>EX</u>) Draw a pair of tangents to a circle of radius 5cm which are inclined to each other at an angle of 60^0 .

Solution:



EX) Draw a line segment of length of 7cm and dived in the 2:3. Measure the two parts.

Solution:



Exercise

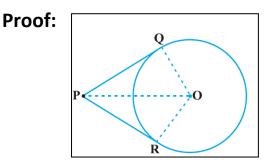
1) Draw a circle of radius 4.5cm. From a point 11 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

<u>2)</u> Draw a pair of tangents to a circle of radius 5.6cm which are inclined to each other at an angle of 70^{0} .

2) Draw a line segment of length of 7cm and dived in the 2:3.Measure the two parts.

3 MARKS QUESTION :

Theorem: The lengths of tangents drawn from an external point to a circle are equal.



O is centre of circle. P is external point, PQ and PR are tangents.

To prove that PQ = PR

Join OQ, OR and OP.

In $\triangle OPQ$ and $\triangle OPR$

 $< Q = < R = 90^{0}$

OQ = OR are radii of circle.

OP is common hypotenuse

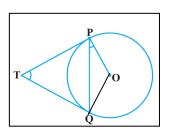
By using RHS rule.

 $\triangle OPQ \cong \triangle OPR$

PQ = PR

Theorem: Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that \angle PTQ = 2 \angle OPQ.

Proof:



O is centre of circle. TP and TQ are two tangents.

Join OQ. We know that. ΔOPQ is isosceles triangle.

2 ∠ OPQ + ∠ POQ = 180[°] ------ (1)

∠ PTQ + ∠ POQ = 180⁰ ------ (1)

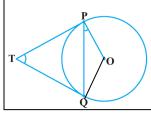
From equation (1) and (2)

 $2 \angle OPQ + \angle POQ = \angle PTQ + \angle POQ$

∠ PTQ = 2 ∠ OPQ

Theorem: Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Proof: O is the centre of circle. TP and TQ are two tangents. To show that



 $\angle POQ + \angle PTQ = 180^{\circ}$

We know that

 $< Q = < P = 90^{0}$ (The tangent at any point of a circle is perpendicular to the radius through the point of contact).

And OPTQ is quadrilateral .

 $\angle POQ + \angle OPT + \angle PTQ + \angle OQT = 360^{\circ}$ $\angle POQ + 90^{\circ} + \angle PTQ + 90^{\circ} = 360^{\circ}$ $\angle POQ + \angle PTQ + 180^{\circ} = 360^{\circ}$ $\angle POQ + \angle PTQ = 360^{\circ} - 180^{\circ}$

 $\angle POQ + \angle PTQ = 180^{\circ}$

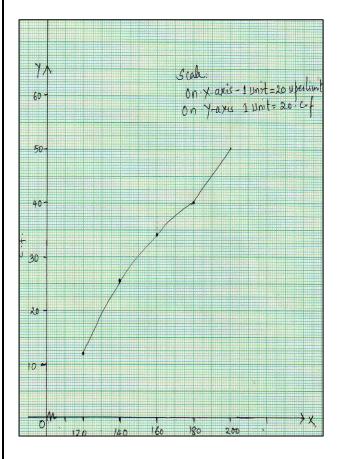
Ogive Graph:

EX 1) Draw the less than type ogive of following distribution table.

С.І	100-120	120-140	140-160	160-180	180-200
f	12	14	8	6	10

Solution:

C.I	f	c.f
Less than120	12	12
Less than140	14	14+12=26
Less than160	8	26+8=34
Less than180	6	34+6=40
Less than200	10	40+10=50
	N= 50	

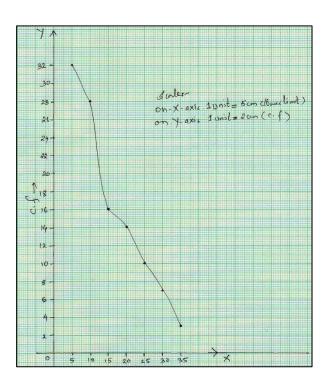


2) Draw the more than type ogive of following distribution table.

С.І	5-10	10- 15	15- 20	20- 25	25- 30	30- 35	35- 40
f	2	12	2	4	3	4	3

Solution:

C.I	f	C.F
More than 5	2	30
More than10	12	30-2= 28
More tha15	2	28-12= 16
More than20	4	16-2= 14
More than 25	3	14-4= 10
More than 30	4	10-3= 7
More than 35	3	7-4= 3
	N=30	



Mean:

$$\bar{\mathbf{x}} = \frac{\sum \mathbf{f} \mathbf{x}}{\sum \mathbf{f}}$$

Ex) find Mean of the following distribution table.

С.І	0-2	2-4	4-6	6-8	8-10	10- 12	12- 14
f	1	2	1	5	6	2	3

Solution:

C.I	f	С.М (х)	fx			
0-2	1	1	1			
2-4	2	3	6			
4-6	1	5	5			
6-8	5	7	35			
8-10	6	9	54			
10-12	3	11	33			
12-14	2	13	26			
	$\sum f = 20$		$\sum_{x=160}^{100}$			
$\overline{\mathbf{X}} = \frac{\sum \mathbf{f}\mathbf{x}}{\sum \mathbf{f}} = \frac{160}{20}$						

$$\overline{\mathbf{x}} = \mathbf{8}$$

Exercise:

Ex) find Mean of the following distribution table.

С.І	5-15	15- 25	25- 35	35- 45	45- 55	55- 65
f	6	11	21	23	14	5

Mode :

Mode=
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

EX) find the mode of the following data

C.I	1-3	3-5	5-7	7-9	9-11
f	7	8	2	2	1

Solution:

 $f_0 = 7$

$$= l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
 $f_1 = 8$

$$= 3 + \left(\frac{8-7}{2(8)-7-2}\right) \times 2 \qquad \qquad f_2 = 2$$

$$= 3 + \left(\frac{1}{16 - 7 - 2}\right) \times 2$$
 $l = 3$

$$= 3 + \left(\frac{1}{7}\right) \times 2 \qquad \qquad h = 2$$

$$= 3 + \left(\frac{2}{7}\right)$$
$$= 3 + 0.285$$

Mode = 3.285

Exercise:

1) Find the Mode of the following data.

C.I	0-20	20- 40	40- 60	60- 80	80- 100	100- 120
f	10	35	52	61	38	29

(Prepaid By: ImtiyazAhmed U Soudagar)Royal Education School Society Athani.

Median:

Median =
$$l + \left(\frac{\frac{n}{2} - c \cdot f}{f}\right) \times h$$

EX) find median of the following distribution table.

C.I				125- 145			185- 205
f	4	5	13	20	14	8	4

Solution:

C.I	f	c.f
65-85	4	4
85-105	5	4+5=9
105-125	13	9+13= 22 c.f
125-145	f 20	22+20=42
145-165	14	42+14=56
165-185	8	56+8=64
185-205	4	64+4=68
	N=68	

Solution:

Median =
$$l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$$

N = 68, N/2= 68/2 = 34
L = 125, f = 20, c.f = 22, h = 20
Median = $125 + \left(\frac{34 - 22}{20}\right) \times 20$
= $125 + \left(\frac{12}{20}\right) \times 20$
= $125 + 12$
Median = 137

Exercise:

1) Find median of the following distribution table.

C.I	118-	127-	136-	145-	154-	163-	172-
	126	135	144	153	162	171	180
f	3	5	9	12	5	4	2

2) Find median of the following distribution table.

C.I	0-10	10-20	20- 30	30- 40	40- 50	50- 60
f	5	8	20	15	7	5

3) Find mean, Median, Mode of the following distribution table.

С.І	1-4	4-7	7-10	10-13	13-16	16-19
f	6	30	40	16	4	4

4) Draw the less than type ogive of following distribution table.

C.I	40-	45-	50-	55-	60-	65-	70-
	45	50	55	60	65	70	75
f	2	3	8	6	6	3	2

5) Draw the more than type ogive of following distribution table.

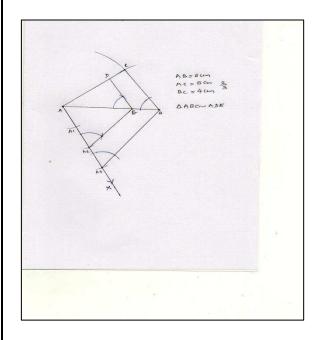
C.I	135-	140-	145-	150-	155-	160-
	140	145	150	155	160	165
f	4	7	18	11	6	5

Prepaid By: ImtiyazAhmed U Soudagar

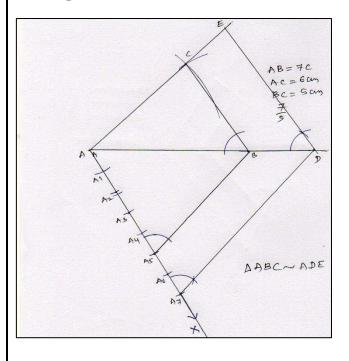
ROYAL EDUCATION SOCIETY'S SCHOOL ATHANI.

Construction:

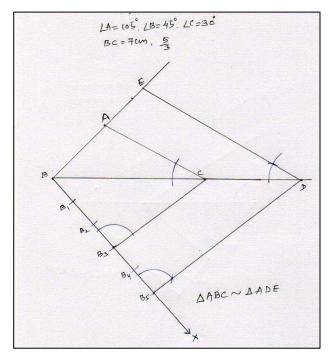
EX) Construct a triangle of sides 4cm, 5cm, and 6cm and then a triangle similar to it whose sides are 2/3 of the corresponding sides of the first triangle.



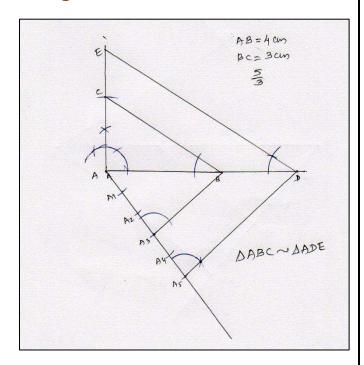
EX) Construct a triangle with sides 5cm, 6cm and 7cm and then another triangle whose sides are 7/5 of the corresponding sides of the first triangle.



EX) Draw a triangle ABC with side BC=7cm, $< B = 45^{\circ}$ and $< A = 105^{\circ}$ then construct a triangle whose sides are 4/3 times the corresponding sides of the $\triangle ABC$.



EX) Draw a right triangle in which the sides (other than hypotenuse) are if lengths 4cm and 3cm. Then construct another triangle whose sides are 5/3 times the corresponding side of the given triangle.



Royal Eduction Society's School Athani

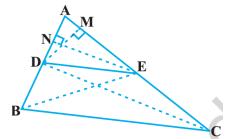
4 MARKS QUESTION :

THALE'S THEOREM (B P T)

<u>SATEMENT</u>: "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct Points, the other two sides are divided in the same ratio"

Proof: $\triangle ABC$ DE||BC.

To prove $\frac{AD}{BD} = \frac{AE}{EC}$



Join BE and CD and then draw DM \perp AC and EN \perp AB.

Area of triangle =1/2 × base× height

 $\frac{Area\,(\Delta ADE)}{Area\,(\Delta BDE)} = \frac{1/2 \times AD \times EN}{1/2 \times DB \times EN}$

 $\frac{Area\,(\Delta ADE)}{Area\,(\Delta BDE)} = \frac{AD}{DB} \quad \dots \qquad (1)$

 $\frac{\text{Area}\,(\Delta \text{ADE})}{\text{Area}\,(\Delta \text{BDE})} = \frac{1/2 \times \text{AD} \times \text{EN}}{1/2 \times \text{DB} \times \text{EN}}$

 $\frac{Area\,(\Delta ADE)}{Area\,(\Delta DEC)} = \frac{1/2 \times DM \times AE}{1/2 \times DM \times EC}$

 $\frac{Area\,(\Delta ADE)}{Area\,(\Delta DEC)} = \frac{AE}{EC} \quad \dots \qquad (2)$

From questions (1) and (2) we get

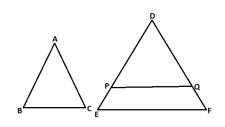
 $\frac{AD}{BD} = \frac{AE}{EC}$

Royal Eduction Society's School Athani

Theorem: A.A.A Similarity

If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.

Proof:



In $\triangle ABC$ and $\triangle DEF$

 $\langle B = \langle E \text{ And } \langle C = \langle F \rangle$

To prove $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

Cut DP = AB and DQ = AC join PQ

In $\triangle ABC$ and $\triangle DPQ$

 $\langle A = \langle D$

AB = DPAC = DO

$$AC = DQ$$

 $\Delta ABC\cong \Delta DPQ$ (By SAS rule)

 $\langle B = \langle P$

$$\langle E = \langle P$$

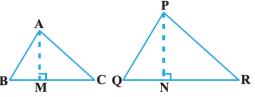
PQ is parallel to EF, By Thales theorem.

$$\frac{DP}{DE} = \frac{DQ}{DF}$$
Similarly
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

Perpaid By :Imtiyazahmed U Soudagar [6362567298]

Areas of Similar Triangles:

"The ratio of the areas two similar triangle is equal to the square of the ratio of their corresponding sides". Proof: P



 $\triangle ABC$ and $\triangle PQR$ are similar triangles $\triangle ABC \sim \triangle PQR$

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$

To prove $\frac{area \ of \ \triangle ABC}{area \ of \ \triangle PQR} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$

Draw AM \perp BC and PN \perp QR

In $\triangle ABM$ and $\triangle PQN$

By A.A.A similarity

 $\triangle ABM \sim \triangle PQN$

$$\frac{AB}{PQ} = \frac{BM}{QR} = \frac{AM}{PN}$$

$$\frac{AB}{PQ} = \frac{AM}{PN} - \dots - (1)$$

$$\frac{area of \Delta ABC}{area of \Delta PQR} = \frac{\frac{1}{2} \times AM \times BC}{\frac{1}{2} \times PN \times QR}$$

$$\frac{area of \Delta ABC}{area of \Delta PQR} = \frac{AM}{PN} \times \frac{BC}{QR}$$

$$\frac{area of \Delta ABC}{area of \Delta PQR} = \frac{AB}{PQ} \times \frac{BC}{QR} \quad (From 1)$$

$$\frac{area of \Delta ABC}{area of \Delta PQR} = \frac{AB}{PQ} \times \frac{AB}{PQ}$$

$$\frac{area of \Delta ABC}{area of \Delta PQR} = \frac{AB^2}{PQ^2}$$

$$\frac{area of \Delta ABC}{area of \Delta PQR} = \frac{AB^2}{PQ^2}$$

Royal Eduction Society's School Athani

Pythagoras Theorem :

<u>Statement</u>: "In a right triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides."

Proof: $\triangle ABC$ right triangle at $< B = 90^{\circ}$

To prove , $AC^2 = AB^2 + BC^2$

Draw BD **L** AC

In $\triangle ABC$ and $\triangle ADB$.

 $< B = < D = 90^{0}$

< A is common

By A.A.A similarity

 $\Delta ABC \sim \Delta ADB.$

 $\frac{AB}{AD} = \frac{BC}{DB} = \frac{AC}{AB}$ $\frac{AB}{AD} = \frac{AC}{AB}$

 $AB^2 = AC \times AD$ (1)

Similarly $\triangle ABC \sim \triangle BDC$.

 $< B = < D = 90^{0}$

< C Is common

By A.A.A similarity

 $\triangle ABC \thicksim \triangle BDC$

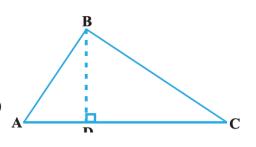
 $\frac{AB}{BD} = \frac{BC}{DC} = \frac{AC}{BC}$ $\frac{BC}{DC} = \frac{AC}{BC}$

 $BC^2 = AC \times DC -----(2)$

Adding (1) and (2) we get.

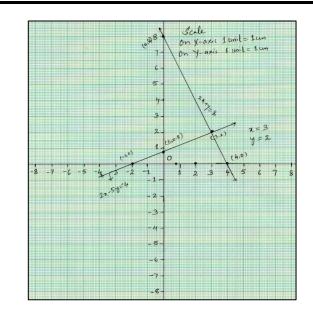
 $AB^{2} + BC^{2} = AC \times AD + AC \times DC$ = AC(AD + DC) $= AC \times AC$ $AB^{2} + BC^{2} = AC^{2}$ $AC^{2} = AB^{2} + BC^{2}$

Perpaid By :Imtiyazahmed U Soudagar [6362567298]



GRAPH :

Ex: Solve by graph 2x - 5y = -4 and 2x + y = 82x - 5y = -4Solution: 2x - 5y = -42x + y = 8Х 0 -2 3 Υ 0.8 0 2 x = 0 : 2(0) - 5y = -4-6y = -12 -5y = -4Y = 2 y = 4/5y = 0.8y = 0 : 2x - 5(0) = -42x = -4x = -2y = 2 : 2x - 5(2) = -42x = -4 + 10x = 6/2 $\mathbf{x} = \mathbf{3}$ 2x + y = 8Х 4 3 0 Υ 8 0 2 x = 0 : 2x + y = 82(0) + y = 8y = 8y = 0 : 2x + y = 82x + 0 = 82x = 8x = 8/2x = 4y = 2 : 2x + (2) = 82x = 8 - 2x = 6/2 $\mathbf{x} = \mathbf{3}$



Ex: Solve by graph x + 2y = -2 and 3x + 2y = 2

Solution: x + 2y = -2

Х	0	-2	2
Υ	-1	0	-2

y = 1

$$y = 0 : 3x + 2y = 2$$

$$3x + 2(0) = 2$$

$$x = 2/3$$

$$x = 0.6$$

$$y = -2 : 3x + 2(-2) = 2$$

$$3x - 4 = 2$$

$$3x = 2 + 4$$

$$x = 2$$

$$x = 2$$

$$3x - 4 = 2$$

$$3x = 2 + 4$$

$$x = 2$$

$$3x - 4 = 2$$

Ex: Solve by graph 2x + 3y = 2 and x - 2y = 8

3 4 5

(2,-2)

a = 2

y=-2

2

2-10,

3

5

6

6

Solution:

2x	+ 3y	<u>v</u> = 2	

X	0	1	4
Υ	0.6	0	-2

$$x = 0 : 2(0) + 3y = 2$$

$$y = 2/3$$

$$y = 0 : 2x + 3(0) = 2$$

$$2x = 2$$

$$x = 1$$

$$y = -2 : 2x + 3(-2) = 2$$

$$2x = 2 + 6$$

$$x = 8/2$$

$$x = 4$$

$$x - 2y = 8$$

$$x - 2y = 8$$

$$x - 2y = 8$$

$$x = 0 : 0 - 2y = 8$$

$$y = -4$$

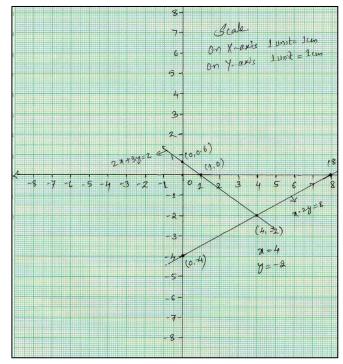
$$y = 0 : x - 2(0) = 8$$

$$x = 8$$

$$y = -2 : x - 2(-2) = 8$$

$$x = 8 - 4$$

$$x = 4$$



Exercise:

Solve the following pair of linear equation by graphically method.

- 1) 2x + y 6 = 0 and 4x 2y 4 = 0
- 2) y=2x-2 and y=4x-4
- 3) x + 3y = 6 and 2x 3y = 12
- 4) x + 3y = 13 and 3x + y = 7
- 5) x y = -2 and 4x y 4 = 0

PREPAID BY : IMTIYAZAHMED U SOUDAGAR.

ROYAL EDUCATION SOCIETY'S SCHOOL ATHANI