

$10^{\text {th }}$ MATHEMATICS PASSING PACKAGE 2020-21

PRACTICE MAKES PERFECT

EX) Solve x and y by any method.
$x+2 y=3$ and $x-15 y=2$.
Solution: Elimination Method.

$$
\begin{gathered}
x+2 y=3- \\
7 x-15 y=2 \\
7 x+14 y=21 \\
7 x-15 y=2 \\
\hline 29 y=19 \\
\hline y=19 / 29 \\
\hline
\end{gathered}
$$

Put $y=19 / 29$ in equation (1). We get

$$
\begin{aligned}
& x+2 y=3 \\
& x+2\left(\frac{19}{29}\right)=3 \\
& x+38 / 29=3 \\
& x=3-38 / 29
\end{aligned}
$$

$$
x=49 / 29
$$

EX) Solve x and y by any method.

$x+3 y=6$ and $2 x-3 y=12$

Solution: Elimination Method.

$$
\begin{aligned}
& x+3 y=6 \\
& 2 x----3 y=12 \\
& 2 x+6 y=12 \\
& 2 x-3 y=12
\end{aligned}
$$

\qquad

$$
9 y=0
$$

$$
y=0
$$

Put $y=0$ in equation (1). We get

$$
\begin{array}{r}
x+3 y=6 \\
x+3(0)=6 \\
x+0=6 \\
x=6
\end{array}
$$

EX) Solve x and y by any method.

$2 x+y=5$ and $3 x+2 y=8$.

Solution: Elimination Method

$$
\begin{array}{r}
2 x+y=5--- \\
3 x+2 y=8-- \tag{2}\\
6 x+3 y=15 \\
6 x+4 y=16 \\
\hline-y=-1 \\
y=1
\end{array}
$$

Put $y=1$ in equation (1).

$$
\begin{aligned}
2 x+y & =5 \\
2 x+1 & =5 \\
2 x & =5-1 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

Exercise:

EX) Solve for x \& y any method.

1) $2 x+3 y=-13$ and $5 x-4 y=-2$.
2) $5 x+y=2$ and $6 x-3 y=1$.
3) $2 x+y=5$ and $3 x+2 y=8$.
4) $8 x+5 y=9$ and $3 x+2 y=4$
5) $0.2 x+0.3 y=1.3$ and $0.4 x+0.5 y=2.3$
6) $2 x+3 y=11$ and $2 x-4 y=-24$.
7) $x+2 y=3$ and $7 x-15 y=2$.
8) $3 x+2 y=12$ and $x-y=-1$.
9) $x+2 y=5$ and $-3 x-6 y+1=0$.
10.) $2 x+y=5$ and $3 x-2 y-12=0$.
1. Solve by formula method.

$$
2 x^{2}-3 x+1=0
$$

Solution: $2 x^{2}-3 x+1=0$ $a=2 \quad b=-3 \quad c=1$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times 1}}{2 \times 2}$
$x=\frac{3 \pm \sqrt{9-8}}{4}$
$x=\frac{3 \pm \sqrt{1}}{4}$
$x=\frac{3 \pm 1}{4}$
$x=\frac{3+1}{4}$ or $x=\frac{3-1}{4}$
$x=1 \quad$ or $\quad x=\frac{1}{2}$
2) Solve by formula method.
$x^{2}-7 x+12=0$
Solution: $x^{2}-7 x+12=0$
$a=1 \quad b=-7 \quad c=12$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 \times 1 \times 12}}{2 \times 1}$
$x=\frac{7 \pm \sqrt{49-48}}{2}$
$x=\frac{7 \pm \sqrt{1}}{2}$
$x=\frac{7 \pm 1}{2}$
$x=\frac{7+1}{2}$ or $x=\frac{7-1}{2}$

$$
\begin{array}{l|l}
\mathrm{x}=4 & \text { Or } \quad \mathrm{x}=\mathbf{3}
\end{array}
$$

EX) Solve by formula method

$$
x^{2}-2 x-4=0
$$

Solution: $a=1 \quad b=-2 \quad c=-4$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 1 \times(-4)}}{2 \times 1}$
$x=\frac{2 \pm \sqrt{4+16}}{2}$
$x=\frac{2 \pm \sqrt{20}}{2}$
$x=\frac{2 \pm 2 \sqrt{5}}{2}$
$x=\frac{\not 2(1 \pm 1 \sqrt{5)}}{2}$
$x=1+\sqrt{5}$

$$
x=1-\sqrt{5}
$$

Exercise: solve by formula method.

1. $x^{2}-3 x-10=0$
2. $x^{2}+7 x-60=0$
3. $3 x^{2}-5 x+2=0$
4. $2 x^{2}-3 x+1=0$
5. $3 x^{2}-12 x+15=0$
6. $x^{2}+2 x-3=0$
7. $x^{2}-2 x-3=0$
8. $3 x^{2}+5 x-2=0$
9. $3 x^{2}-2 \sqrt{6} x+2=0$
10. $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$

1) Prove that $3+\sqrt{5}$ is

 irrational number.Solution: let us assume that $3+\sqrt{5}$ is rational number.
$3+\sqrt{5}=\frac{p}{q} \quad p € z$ and $q \neq 0$.
$\sqrt{5}=\frac{p}{q}-3$
$\sqrt{5}=\frac{p-3 q}{q}$
w.k.t $\frac{p-3 q}{q}$ is rational number.
$\sqrt{5}$ is a irrational number.
$\therefore 3+\sqrt{5}$ Is irrational number.
2) Prove that $3-\sqrt{5}$ is irrational number.

Solution: let us assume that $3-\sqrt{5}$ is rational number.
$3-\sqrt{5}=\frac{p}{q} \quad p € z$ and $q \neq 0$.
$-\sqrt{5}=\frac{p}{q}-3$
$-\sqrt{5}=\frac{p-3 q}{q}$
$\sqrt{5}=\frac{-p+3 q}{q}$
w.k.t $\frac{-p+3 q}{q}$ is rational number.
$\sqrt{5}$ is a irrational number.
$\therefore 3-\sqrt{5}$ Is irrational number.
3) Prove that $3+2 \sqrt{5}$ is irrational number.

Solution: : let us assume that $3+$ $2 \sqrt{5}$ is rational number.
$3+2 \sqrt{5}=\frac{p}{q} \quad p € z$ and $q \neq 0$.
$2 \sqrt{5}=\frac{p}{q}-3$
$2 \sqrt{5}=\frac{p-3 q}{q}$
$\sqrt{5}=\frac{p-3 q}{2 q}$
w.k.t $\frac{p-3 q}{2 q}$ is rational number.
$\sqrt{5}$ is a irrational number.
$\therefore 3+2 \sqrt{5}$ Is irrational number.

Exercise

Prove that following numbers are

 irrational number.1) $5+\sqrt{3}$
2) $5-\sqrt{3}$
3) $2+\sqrt{3}$
4) $2+\sqrt{5}$
5) $3+5 \sqrt{ } 2$
6) $6+\sqrt{2}$
7) $3-\sqrt{7}$
8) $5-\sqrt{ } 5$
9) $3+\sqrt{ } 7$
10) $2-\sqrt{5}$

- DISTANCE FORMULA:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Ex) Find the distance between two points $(6,5)$ and $(4,4)$.

Solution: $(6,5)=\left(x_{1}, y_{1}\right)$

$$
(4,4)=\left(x_{2}, y_{2}\right)
$$

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(4-6)^{2}+(4-5)^{2}}$
$d=\sqrt{(-2)^{2}+(-1)^{2}}$
$d=\sqrt{4+1}$
$d=\sqrt{5}$ units.

Ex2) Find the distance between two points $(4,7)$ and $(2,3)$.

Solution: $(4,7)=\left(x_{1}, y_{1}\right)$

$$
(2,3)=\left(x_{2}, y_{2}\right)
$$

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(2-4)^{2}+(3-7)^{2}}$
$d=\sqrt{(-2)^{2}+(-4)^{2}}$
$d=\sqrt{4+16}$
$d=\sqrt{20}$
$d=2 \sqrt{5}$ Units.

EX3) Find the distance between two points $(2,3)$ and $(6,-8)$.by using formula.

Solution: $(2,3)=\left(x_{1}, y_{1}\right)$

$$
(6,-8)=\left(x_{2}, y_{2}\right)
$$

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(6-2)^{2}+(-8-3)^{2}}$
$d=\sqrt{(4)^{2}+(-11)^{2}}$
$d=\sqrt{16+121}$

$$
\mathrm{d}=\sqrt{137} \text { units. }
$$

Exercise

Find the distance between following points.

1) Find the distance between two points $(-2,5)$ and $(-5,2)$.
2) Find the distance between two points $(1,7)$ and $(-2,3)$.
3) Find the distance between two points $(-6,4)$ and $(5,-7)$.
4) Find the distance between two points ($-4,-7$) and ($-2,-3$).
5) Find the distance between two points $(1,1)$ and $(3,2)$.
6) Find the distance between two points $(-3,2)$ and $(2,-3)$.
7) Find the distance between two points (4, 3) and (8, -3).
> MID POINT FORMULA.
$P(X, Y)=\left(\frac{5+5}{2}, \frac{3+1}{2}\right)$
$\mathbf{P}(\mathbf{X}, \mathbf{Y})=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$
EX) find the midpoint of the points
$(-4,1)$ and $(5,2)$.
Solution: $(-4,1)=\left(x_{1}, y_{1}\right)$

$$
(5,2)=\left(x_{2}, y_{2}\right)
$$

$P(X, Y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$P(X, Y)=\left(\frac{-4+5}{2}, \frac{1+2}{2}\right)$
$P(X, Y)=\left(\frac{1}{2}, \frac{3}{2}\right)$
EX) find the midpoint of the points $(3,1)$ and $(4,5)$.

Solution: $(3,1)=\left(x_{1}, y_{1}\right)$

$$
(4,5)=\left(x_{2}, y_{2}\right)
$$

$P(X, Y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$P(X, Y)=\left(\frac{3+4}{2}, \frac{1+5}{2}\right)$
$P(X, Y)=\left(\frac{7}{2}, \frac{6}{2}\right)$
$P(X, Y)=\left(\frac{7}{2}, 3\right)$
$E X)$ find the midpoint of the points $(5,3)$ and $(5,1)$.

Solution: $(5,3)=\left(x_{1}, y_{1}\right)$

$$
(5,1)=\left(x_{2}, y_{2}\right)
$$

$P(X, Y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$P(X, Y)=\left(\frac{10}{2}, \frac{4}{2}\right)$
$P(X, Y)=(5,2)$

SECTION FORMULA:

$\mathbf{P}(\mathbf{X}, \mathbf{Y})=\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)$
EX) Find the coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio 2:3.

Solution: $(-1,7)=\left(x_{1}, y_{1}\right)$

$$
(4,-3)=\left(x_{2}, y_{2}\right) \mathrm{m}_{1}: \mathrm{m}_{2}=2: 3
$$

$P(X, Y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
$P(X, Y)=$
$\left(\frac{(2)(4)+3(-1)}{2+3}, \frac{(2)(-3)+3(7)}{2+3}\right)$
$P(X, Y)=\left(\frac{8-3}{5}, \frac{-6+21}{5}\right)$
$P(X, Y)=(1,3)$.

Exercise

EX) Find the coordinates of the point which divides the join of $(4,-1)$ and $(-2,-3)$ in the ratio 1:3.

EX) Find the coordinates of the point which divides the join of $(-6,10)$ and $(3,-8)$ in the ratio 2:7.

EX) Find the midpoint of the points $(5,-6)$ and $(-1,-4)$.

EX) Find the midpoint of the points $(2,-2)$ and $(-7,4)$.

EX) Find the quotient and remainder when $p(x)=3 x^{3}+x^{2}+2 x+5$ is divided by $g(x)=x^{2}+2 x+1$.

Solution: $p(x)=3 x^{3}+x^{2}+2 x+5$

$$
g(x)=x^{2}+2 x+1
$$

$$
3 x-5
$$

$x^{2}+2 x+1$| $3 x^{3}+x^{2}+2 x+5$
 $3 x^{3}+6 x^{2}+3 x$
 $-\quad-\quad-$ |
| :---: |
| $-5 x^{2}-x+5$
 $-5 x^{2}-10 x-5$
 $+\quad+\quad+$ |
| $9 x+10$ |

$$
\text { Quotient }=3 x-5
$$

$$
\text { Remainder }=9 x+10
$$

EX) Find the quotient and remainder when $p(x)=x^{3}-3 x^{2}+5 x-3$ is divided by $g(x)=x^{2}-2$.

Solution: $\boldsymbol{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+5 \mathrm{x}-3$

$g(x)=x^{2}-2$	
$\mathrm{x}-3$	
$\mathrm{x}^{2}-2$	$\begin{aligned} & x x^{3}-3 x^{2}+5 x-3 \\ & x \quad-2 x \\ & -\quad+ \end{aligned}$
	$-3 x^{2}+7 x-3$
	$-3 x^{2}+6$
	+ -
	$7 \mathrm{x}-9$

Quotient $=x-3$
Remainder $=7 x-9$
EX) Show that polynomial $x^{2}+3 x+1$ is a factor of polynomial
$3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
Solution: $\mathbf{p}(\mathrm{x})=3 \mathrm{x}^{4}+5 \mathrm{x}^{3}-7 \mathrm{x}^{2}+2 \mathrm{x}+2$.

$$
g(x)=x^{2}+3 x+1
$$

$$
3 x^{2}+4 x+2
$$

$$
\begin{aligned}
& x ^ { 2 } + 3 x + 1 \longdiv { \begin{array} { l }
{ 3 x ^ { 4 } + 5 x ^ { 3 } - 7 x ^ { 2 } + 2 x + 2 } \\
{ 3 x | ^ { 4 } + 9 x ^ { 3 } - 3 x ^ { 2 } } \\
{ - }
\end{array} } \begin{array} { l }
{ - 4 x ^ { 3 } - 1 0 x ^ { 2 } + 2 x + 2 } \\
{ } \\
{ - 4 x ^ { 3 } - 1 2 x ^ { 2 } - 4 x }
\end{array}
\end{aligned}
$$

$$
+\quad+\quad+
$$

$2 x^{2}+6 x+2$ $2 x^{2}+6 x+2$ $-\quad-\quad-$
0

Exercise

EX) Find the quotient and remainder when $p(x)=x^{4}-3 x^{2}+4 x+5$ is divided byg $(x)=x^{2}-x+1$.

EX) Find the quotient and remainder when $p(x)=x^{3}-3 x^{2}+5 x-3$ is divided by $g(x)=2-x^{2}$.

EX) Show that polynomial $x-2$ is a factor of polynomial
$x^{3}-3 x^{2}+3 x-2$.

AREA OF SECTOR

Area of Sector $=\frac{\theta}{360^{0}} \times \pi r^{2}$
Length of arc $=\frac{\theta}{360^{0}} \times 2 \pi r$

EX) Find the area of a sector the circle with radius 6 cm if angle of sector is $\mathbf{6 0}^{\mathbf{0}}$.

Solution: Given $r=6 \mathrm{~cm} \theta=60^{\circ}$
Area of Sector $=\frac{\theta}{360^{0}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{60^{0}}{360^{0}} \times \frac{22}{7} \times 6 \times 6 \\
& =\frac{60^{0}}{360^{0}} \times \frac{22}{7} \times 6 \times 6 \\
& =\frac{22}{7} \times 6
\end{aligned}
$$

Area of Sector $=\frac{136}{7} \mathrm{~cm}^{2}$
EX) In a circle of radius $\mathbf{2 1} \mathbf{~ c m}$ if angle, an arc subtends an angle of 40° at the centre. Find the length of the arc.

Solution: Given $r=21 \mathrm{~cm} \theta=40^{\circ}$
Length of arc $=\frac{\theta}{360^{0}} \times 2 \pi r$

$$
\begin{aligned}
& =\frac{40^{0}}{360^{0}} \times 2 \times \frac{22}{7} \times 21 \\
& =\frac{\mathbf{1}}{9} \times 2 \times \frac{22}{7} \times 21
\end{aligned}
$$

Length of arc $=\frac{136}{7} \mathrm{~cm}^{2}$

EX) In a circle of radius 21 cm if angle, an arc subtends an angle of 60° at the centre find the area of segment.

Solution: Given $r=21 \mathrm{~cm} \theta=60^{\circ}$
Area of Sector $=\frac{\theta}{360^{0}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{60^{0}}{\mathbf{3 6 0}} \times \frac{22}{7} \times 21 \times 21 \\
& =\frac{60^{0}}{360^{0}} \times \frac{22}{7} \times 21 \times 21
\end{aligned}
$$

$$
\text { Area of Sector }=231 \mathrm{~cm}^{2}
$$

Area of equilateral triangle $=\frac{\sqrt{3}}{4} \boldsymbol{a}^{2}$

$$
=\frac{\sqrt{3}}{4} \times 21 \times 21
$$

Area of equilateral triangle $=441 \frac{\sqrt{3}}{4} \mathrm{~cm}^{2}$
Area of segment $=$ Area of sector Area of Equilateral Triangle

Area of Sector $=231-441 \frac{\sqrt{3}}{4} \mathrm{~cm}^{2}$

Exercise

EX) Find the area of a sector the circle with radius 7 cm if angle of sector is $\mathbf{9 0}^{\circ}$.

EX) In a circle of radius $\mathbf{2 1} \mathbf{~ c m}$ if angle, an arc subtends an angle of 40° at the centre. Find the length of the arc.

EX) In a circle of radius $\mathbf{1 4} \mathbf{~ c m}$ if angle, an arc subtends an angle of 60° at the centre find the area of segment.

PROBABILITY:

$P(E)=\frac{n(E)}{n(S)}$
Ex) A die is thrown once, Find the probability of getting A) A prime number B) a number lying between 2 and 6. C) An odd number. D) an perfect square.

Solution: A die ids thrown once, $S=\{1,2,3,4,5,6\}$
$n(S)=6$
A) A prime number
$E=\{2,3,5\},, n(E)=3$
$\mathbf{P}(\mathbf{E})=\frac{\mathbf{n}(\mathbf{E})}{\mathbf{n}(\mathbf{S})}$
$P(E)=\frac{3}{6}$
$P(E)=\frac{1}{2}$
B) A number lying between 2 and 6 .
$E=\{3,4,5\},, n(E)=3$
$\mathbf{P}(\mathbf{E})=\frac{\mathbf{n}(\mathrm{E})}{\mathbf{n}(\mathbf{S})}$
$P(E)=\frac{3}{6}$
$P(E)=\frac{1}{2}$
C) An odd number.
$E=\{1,3,5\}, n(E)=3$
$E=\{3,4,5\},, n(E)=3$
$\mathbf{P}(E)=\frac{\mathbf{n}(E)}{\mathbf{n}(\mathbf{S})}$
$P(E)=\frac{3}{6}$
$\mathbf{P}(\mathbf{E})=\frac{1}{2}$
D) A perfect square.

$$
E=\{\mathbf{1}, \mathbf{4}\} \quad n(E)=\mathbf{2}
$$

$\mathbf{P}(\mathbf{E})=\frac{\mathbf{n}(\mathbf{E})}{\mathbf{n}(\mathbf{S})}$
$P(E)=\frac{2}{6}$
$P(E)=\frac{1}{3}$

EX) A box contains 90 disc which are numbered from 1 to 90 . If one disc is drawn at random from box, find the probability that it bears A) a two digit number B) A perfect a square number.

Solution: $\boldsymbol{n}(\boldsymbol{S})=\mathbf{9 0}$
A) a two digit number
$n(E)=81$
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{\mathbf{8 1}}{\mathbf{9 0}}$
$P(E)=\frac{9}{10}$
B) A perfect a square number. $\mathbf{n}(\mathrm{E})=9$
$P(E)=\frac{n(E)}{n(S)}=\frac{9}{90}=1 / 9$

CONSTRUCTION:

Ex) draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Solution:

EX) Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

Solution:

EX) Draw a line segment of length of 7 cm and dived in the 2:3. Measure the two parts.

Solution:

Exercise

1) Draw a circle of radius 4.5 cm .

From a point 11 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
2) Draw a pair of tangents to a circle of radius 5.6 cm which are inclined to each other at an angle of $\mathbf{7 0}^{\mathbf{0}}$.
2) Draw a line segment of length of 7 cm and dived in the 2:3. Measure the two parts.

3 MARKS QUESTION :

Theorem: The lengths of tangents drawn from an external point to a circle are equal.

Proof:

O is centre of circle. P is external point, $P Q$ and $P R$ are tangents.

To prove that $P Q=P R$
Join OQ, OR and OP.
In $\triangle O P Q$ and $\triangle O P R$
$<Q=<R=90^{\circ}$
$O Q=O R$ are radii of circle.
OP is common hypotenuse
By using RHS rule.
$\triangle O P Q \cong \triangle O P R$
$P Q=P R$
Theorem: Two tangents TP and TQ are drawn to a circle with centre 0 from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

Proof:

O is centre of circle. TP and TQ are two tangents.

Join OQ. We know that. $\triangle O P Q$ is isosceles triangle.
$2 \angle \mathrm{OPQ}+\angle \mathrm{POQ}=180^{\circ}$
$\angle \mathrm{PTQ}+\angle \mathrm{POQ}=18 \mathbf{0}^{\circ}$
From equation (1) and (2)
$2 \angle \mathrm{OPQ}+\angle \mathrm{POQ}=\angle \mathrm{PTQ}+\angle \mathrm{P} \phi \mathrm{Q}$
$\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
Theorem: Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Proof: \mathbf{O} is the centre of circle. TP and TQ are two tangents. To show
 that
$\angle \mathrm{POQ}+\angle \mathrm{PTQ}=18 \mathbf{0}^{\circ}$
We know that
$<Q=<\mathbf{P}=90^{\circ}$ (The tangent at any point of a circle is perpendicular to the radius through the point of contact).

And OPTQ is quadrilateral .
$\angle \mathrm{POQ}+\angle \mathrm{OPT}+\angle \mathrm{PTQ}+\angle \mathrm{OQT}=\mathbf{3 6 0}{ }^{\circ}$
$\angle \mathrm{POQ}+\mathbf{9 0}^{\circ}+\angle \mathrm{PTQ}+\mathbf{9 0}^{\circ}=360^{\circ}$
$\angle \mathrm{POQ}+\angle \mathrm{PTQ}+\mathbf{1 8 0}^{\circ}=\mathbf{3 6 0}{ }^{\circ}$
$\angle \mathrm{POQ}+\angle \mathrm{PTQ}=360^{\circ}-180^{\circ}$

$$
\angle \mathrm{POO}+\angle \mathrm{PTO}=180^{\circ}
$$

Ogive Graph:

EX 1) Draw the less than type ogive of following distribution table.

C.I	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
f	12	14	8	6	10

Solution:

C.I	f	c.f
Less than120	12	12
Less than140	14	$14+12=26$
Less than160	8	$26+8=34$
Less than180	6	$34+6=40$
Less than200	10	$40+10=50$
	$\mathrm{~N}=50$	

2) Draw the more than type ogive of following distribution table.

c.I	$5-10$	$10-$ 15	$15-$ 20	$20-$ 25	$25-$ 30	$30-$ 35	$35-$ 40
f	2	12	2	4	3	4	3

Solution:

C.I	\mathbf{f}	C.F
More than 5	2	30
More than10	12	$30-2=28$
More tha15	2	$28-12=16$
More than20	4	$16-2=14$
More than 25	3	$14-4=10$
More than 30	4	$10-3=7$
More than 35	3	$7-4=3$
	$\mathrm{~N}=30$	

Mean:

$\overline{\mathrm{x}}=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}$
Ex) find Mean of the following distribution table.

$\mathrm{C} . \mathrm{I}$	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-$ 12	$12-$ 14
f	1	2	1	5	6	2	3

Solution:

C.I	f	C.M (x)	fx
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	5	7	35
$8-10$	6	9	54
$10-12$	3	11	33
$12-14$	2	13	26
	$\sum \mathrm{f}=20$		$\sum \mathrm{f} x=160$

$\overline{\mathrm{x}}=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}=\frac{160}{20}$

$$
\overline{\mathbf{x}}=\mathbf{8}
$$

Exercise:

Ex) find Mean of the following distribution table.

C.I	$5-15$	$15-$ 25	$25-$ 35	$35-$ 45	$45-$ 55	$55-$ 65
f	6	11	21	23	14	5

Mode:

Mode $=\boldsymbol{l}+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times \boldsymbol{h}$
EX) find the mode of the following data

C.I	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$
f	7	8	2	2	1

Solution:
$=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \quad f_{1}=8$
$=3+\left(\frac{8-7}{2(8)-7-2}\right) \times 2 \quad f_{2}=2$
$=3+\left(\frac{1}{16-7-2}\right) \times 2 \quad l=3$
$=3+\left(\frac{1}{7}\right) \times 2$
$h=2$
$=3+\left(\frac{2}{7}\right)$
$=3+0.285$

Mode $=3.285$

Exercise:

1) Find the Mode of the following data.

C.I	$0-20$	$20-$ 40	$40-$ 60	$60-$ 80	$80-$ 100	$100-$ 120
f	10	35	52	61	38	29

(Prepaid By: ImtiyazAhmed U
Soudagar)Royal Education School Society Athani.

Median:

Median $=\boldsymbol{l}+\left(\frac{\frac{n}{2}-c . f}{f}\right) \times \boldsymbol{h}$
EX) find median of the following distribution table.

C.I	$65-$						
	85	$85-$					
105	125	145	165	$125-$	$145-$	$165-$	$185-$
185	205						
f	4	5	13	20	14	8	4

Solution:

C.I	f	c.f
$65-85$	4	4
$85-105$	5	$4+5=9$
$105-125$	13	$9+13=\mathbf{2 2}$ c.f
$\mathbf{1 2 5 - 1 4 5}$	f20	$\mathbf{2 2 + 2 0}=\mathbf{4 2}$
$145-165$	14	$42+14=56$
$165-185$	8	$56+8=64$
$185-205$	4	$64+4=68$
	$\mathrm{~N}=68$	

Solution:
Median $=\boldsymbol{l}+\left(\frac{\frac{\mathrm{n}}{2}-\text { c.f }}{\mathrm{f}}\right) \times \boldsymbol{h}$
$\mathrm{N}=68, \mathrm{~N} / 2=68 / 2=34$
$L=125, f=20, c . f=22, h=20$
Median $=125+\left(\frac{34-22}{20}\right) \times 20$
$=125+\left(\frac{12}{2 b}\right) \times \not 20$
$=125+12$

Exercise:

1) Find median of the following distribution table.

C.I	$118-$	$127-$	$136-$	$145-$	$154-$	$163-$	$172-$
	126	135	144	153	162	171	180
f	3	5	9	12	5	4	2

2) Find median of the following distribution table.

C.I	$0-10$	$10-20$	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60
f	5	8	20	15	7	5

3) Find mean, Median, Mode of the following distribution table.

C.I	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$	$16-19$
f	6	30	40	16	4	4

4) Draw the less than type ogive of following distribution table.

C.I	$\begin{aligned} & 40- \\ & 45 \end{aligned}$	$\begin{aligned} & 45- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 55- \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 60- \\ & 65 \end{aligned}$	$\begin{aligned} & 65- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 75 \end{aligned}$
f	2	3	8	6	6	3	2

5) Draw the more than type ogive of following distribution table.
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { C.I } & 135- \\ & 140\end{array} \begin{array}{l}140- \\ 145\end{array}\right] \begin{array}{l}145- \\ 150\end{array}\right)$

Prepaid By: ImtiyazAhmed U Soudagar
ROYAL EDUCATION SOCIETY'S SCHOOL ATHANI.

Construction:

EX) Construct a triangle of sides 4 cm , 5 cm , and 6 cm and then a triangle similar to it whose sides are $2 / 3$ of the corresponding sides of the first triangle.

EX) Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $7 / 5$ of the corresponding sides of the first triangle.

EX) Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle A=105^{\circ}$ then construct a triangle whose sides are $4 / 3$ times the corresponding sides of the $\triangle A B C$.

EX) Draw a right triangle in which the sides (other than hypotenuse) are if lengths 4 cm and 3 cm . Then construct another triangle whose sides are 5/3 times the corresponding side of the given triangle.

4 MARKS QUESTION :

THALE'S THEOREM (B P T)

SATEMENT: "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct Points, the other two sides are divided in the same ratio"

Proof: $\triangle A B C$ DE $\mid B C$.
To prove $\frac{A D}{B D}=\frac{A E}{E C}$
Join BE and CD and then draw $\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$.

Area of triangle $=1 / 2 \times$ base \times height
$\frac{\operatorname{Area}(\triangle A D E)}{\text { Area }(\triangle B D E)}=\frac{1 / 2 \times A D \times E N}{1 / 2 \times D B \times E N}$
$\frac{\operatorname{Area}(\triangle A D E)}{\operatorname{Area}(\triangle B D E)}=\frac{A D}{D B}$
$\frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\operatorname{Area}(\triangle \mathrm{BDE})}=\frac{1 / 2 \times \mathrm{AD} \times \mathrm{EN}}{1 / 2 \times \mathrm{DB} \times \mathbf{E N}}$
$\frac{\text { Area }(\triangle A D E)}{\text { Area }(\triangle D E C)}=\frac{1 / 2 \times D M \times A E}{1 / 2 \times D M \times E C}$
$\frac{\operatorname{Area}(\triangle A D E)}{\text { Area }(\triangle D E C)}=\frac{A E}{E C}$
From questions (1) and (2) we get
$\frac{A D}{B D}=\frac{A E}{E C}$

Theorem: A.A.A Similarity

If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.

Proof:

In $\triangle A B C$ and $\triangle D E F$
$\langle B=\langle E$ And $\langle C=\langle F$
To prove $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Cut $D P=A B$ and $D Q=A C$ join $\mathbf{P Q}$
In $\triangle A B C$ and $\triangle D P Q$
$\langle A=\langle D$
$A B=D P$
$A C=D Q$
$\triangle A B C \cong \triangle D P Q$ (By SAS rule)
$\langle B=\langle P$
$\langle E=\langle P$
$P Q$ is parallel to EF, By Thales theorem.
$\frac{D P}{D E}=\frac{D Q}{D F}$
Similarly $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Areas of Similar Triangles:

"The ratio of the areas two similar triangle is equal to the square of the ratio of their corresponding sides".
Proof:

$\triangle A B C$ and $\triangle P Q R$ are similar triangles $\triangle A B C \dot{\sim} \triangle P Q R$

$$
\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}
$$

To prove $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{A C^{2}}{P R^{2}}$
Draw $A M \perp B C$ and $P N \perp Q R$
In $\triangle A B M$ and $\triangle P Q N$
$<B=<Q$
$<M=<N=\mathbf{9 0}^{\circ}$
By A.A.A similarity
$\triangle A B M \dot{\sim} \triangle P Q N$
$\frac{A B}{P Q}=\frac{B M}{Q R}=\frac{A M}{P N}$
$\frac{A B}{P Q}=\frac{A M}{P N}$
$\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{\frac{1}{2} \times A M \times B C}{\frac{1}{2} \times P N \times Q R}$
$\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{A M}{P N} \times \frac{B C}{Q R}$
$\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{A B}{P Q} \times \frac{B C}{Q R} \quad($ From 1)
$\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{A B}{P Q} \times \frac{A B}{P Q}$
$\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{A B^{2}}{P Q^{2}}$
Similarly $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle P Q R}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{A C^{2}}{P R^{2}}$

Pythagoras Theorem :

Statement: "In a right triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides."

Proof: $\triangle \boldsymbol{A B C}$ right triangle at $\angle B=\mathbf{9 0}^{\mathbf{0}}$
To prove , $A C^{2}=A B^{2}+B C^{2}$
Draw BD \perp AC
In $\triangle A B C$ and $\triangle A D B$.

$<B=<D=\mathbf{9 0}^{\circ}$
$<A$ Is common
By A.A.A similarity
$\triangle A B C \dot{\sim} \triangle A D B$.
$\frac{A B}{A D}=\frac{B C}{D B}=\frac{A C}{A B}$
$\frac{A B}{A D}=\frac{A C}{A B}$
$A B^{2}=A C \times A D$
Similarly $\triangle A B C \dot{\sim} \triangle B D C$.
$<B=<\boldsymbol{D}=\mathbf{9 0}^{\circ}$
$<C$ Is common
By A.A.A similarity
$\triangle A B C \sim \Delta B D C$
$\frac{A B}{B D}=\frac{B C}{D C}=\frac{A C}{B C}$
$\frac{B C}{D C}=\frac{A C}{B C}$
$B C^{2}=A C \times D C$
Adding (1) and (2) we get.

$$
\begin{aligned}
A B^{2}+B C^{2} & =A C \times A D+A C \times D C \\
& =A C(A D+D C) \\
& =A C \times A C
\end{aligned}
$$

$A B^{2}+B C^{2}=A C^{2}$

$$
A C^{2}=A B^{2}+B C^{2}
$$

GRAPH :

Ex: Solve by graph $2 x-5 y=-4$ and $2 x+y=8$

Solution: $\quad 2 x-5 y=-4$

X	0	-2	3
Y	0.8	0	2
$x=0: 2(0)-5 y=$			
	$-5 y=-4$		
	$y=4 / 5$		
	$y=0.8$		

$2 x-5 y=-4$
$2 x+y=8$

$-6 y=-12$
$Y=2$

$y=0: 2 x-5(0)=-4$

$$
2 x=-4
$$

$$
x=-2
$$

$y=2: 2 x-5(2)=-4$
$2 x=-4+10$
$x=6 / 2$
$\mathbf{x}=3$
$2 x+y=8$

\mathbf{X}	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$
\mathbf{Y}	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{2}$

$x=0: 2 x+y=8$
$2(0)+y=8$
$y=8$
$y=0: 2 x+y=8$
$2 x+0=8$
$2 x=8$
$x=8 / 2$
$x=4$
$y=2: \quad 2 x+(2)=8$

$$
\begin{gathered}
2 x=8-2 \\
x=6 / 2 \\
x=3
\end{gathered}
$$

Ex: Solve by graph $x+2 y=-2$ and $3 x+2 y=2$

Solution: $\quad x+2 y=-2$

X	0	-2	2
Y	-1	0	-2

$x=0: \quad x+2 y=-2$
$0+2 y=-2$
$y=-1$
$y=0: \quad x+2 y=-2$
$x+2(0)=-2$
$x=-2$
$y=-2: x+2(-2)=-2$
$x-4=-2$
$x=-2+4$
$x=2$
$3 x+2 y=2$

X	0	0.6	2
Y	1	0	-2

$$
\begin{array}{rc}
x=0: & 3 x+2 y=2 \\
3(0)+2 y=2 \\
y=1
\end{array}
$$

$$
\begin{gathered}
y=0: 3 x+2 y=2 \\
3 x+2(0)=2 \\
x=2 / 3 \\
y=-2: \begin{array}{c}
x=0.6 \\
3 x+2(-2)=2 \\
3 x-4=2 \\
3 x=2+4 \\
x=2
\end{array}
\end{gathered}
$$

Ex: Solve by graph $2 x+3 y=2$ and $x-$ $2 y=8$

Solution: $\quad 2 x+3 y=2$

X	0	1	4
Y	0.6	0	-2

$x=0: 2(0)+3 y=2$

$$
y=2 / 3
$$

$$
y=0.6
$$

$y=0: \quad 2 x+3(0)=2$

$$
2 x=2
$$

$$
x=1
$$

$$
\begin{aligned}
& y=-2: 2 x+3(-2)=2 \\
& 2 x=2+6 \\
& x=8 / 2 \\
& \mathrm{x}=4 \\
& x-2 y=8 \\
& x=0: 0-2 y=8 \\
& \begin{array}{c}
y=-4 \\
y=0: x-2(0)=8
\end{array} \\
& \mathrm{x}=8 \\
& y=-2: \mathrm{x}-2(-2)=8 \\
& \mathrm{x}=8-4 \\
& \mathrm{x}=4
\end{aligned}
$$

Exercise:

Solve the following pair of linear equation by

 graphically method.1) $2 x+y-6=0$ and $4 x-2 y-4=0$
2) $\mathrm{y}=2 \mathrm{x}-2$ and $y=4 x-4$
3) $x+3 y=6$ and $2 x-3 y=12$
4) $x+3 y=13$ and $3 x+y=7$
5) $x-y=-2$ and $4 x-y-4=0$
prepaid by : imtiyazahmed u soudagar.
royal education society's school athani
