SSLC MATHS MODEL QUESTION PAPER -08: 2019-20

No. of ques Time: 3 ho	stions:38 ours		Subject Code: 81E Max. Marks : 80	
I.Four alt	ernatives are given to the followin	ng questions or inco	mplete statements.	
Choose	the correctfrom them and write it	along with serial le	etter. $08 \times 01 = 08$	
1)	H. C. F and L. C. M of 12 and 18 are respect	tively		
	A) 6and18	B) 12and18		
	C) 18and36	D) 6and36		
2)	If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ then, number of solutions for the pair of linear equations is			
	A) 0	B) 1		
	C) 2	D) C¥Àj«ÄvÀ		
3) The value of discriminant of the equation $x^2 + 2x - 8 = 0$ is				
	A) 12	B) 2		
	C) 36	D) 48		
4)	If $a_n = 2n + 3$ then, the value of S_3 is			
	A) 15	B)17		
	C) 21	D) 24		
5)	If 13 sin $\theta = 5$, the value of tan θ is			
	A) <u>-</u>	B) ¹²		
	12	> 5 5		
	C) $\frac{1}{13}$	D) $\frac{1}{13}$		
6) The distance of the point $(-3,4)$ from the origin is				
	A) 3units	B) 4units		
	C) 5units	D) 6units		
7)	If BC DE, $\frac{a}{a+b}$ is is A) $\frac{a}{c}$ B) $\frac{c}{c+d}$	$B) \frac{c}{d}$ $D) \frac{a}{c+d}$	ADR in	
8)	AP and BPare tangents to the circle. If $\angle A$	$AOB = x^\circ$, the value of $\angle AOB = x^\circ$	APB 18	
		P		
	A) (x – 180)°	B) (180 − x)°		
	C) $(90 - x)^{\circ}$	D) $(90 + x)^{\circ}$		

II. Answer the following questions.

- 9) State the fundamental theorem of arithmetic.
- 10) If one of the zeroes of the polynomial $p(x) = x^2 x + k$ is 2, find the value of k.
- 11) What is the number of zeroes of the polynomial represented by the following graph ?

12) Find the 10th term of the arithmetic progression 5, 9, 13, . . .

13) If the points (3, 2), (3, 6) and (k, 9) are collinear then find the value of 'k'.

- 14) Write the formula of finding the total surface area of a hemisphere.
- 15) The ratio of areas of two spheres are 4:9, find the ratio of their volumes.

16) Write the formula to find the length of arc AB in the figure given below.

III. Answer the following questions.

 $08 \times 02 = 16$

- 17)Prove that $2 \sqrt{3}$ is an irrational number.
- 18) Solve using formula : $2x^2 + 3x 5 = 0$
- 19) Solve : 2x + 3y = 7, x 2y = 7
- 20) Which term of the arithmetic progression 3, 7, 11, 15, . . . is 95? (Use the suitable formula
- 21) Find the value of $\sin 18^\circ \cdot \cos 72^\circ + \cos 18^\circ \cdot \sin 72^\circ$

If $(1 + \cos \theta)(1 - \cos \theta) = \frac{16}{25}$ then, find the value of $\sin \theta$.

22)In a trapezium ABCD, AB || DC and AO:OC = 2:3. If the area \triangle AOB is 48cm² find the area of \triangle DOC.

OR

A vertical pole of length 6m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower?

- 23) A jar contains 24 marbles, some are green and others are blue. If a marble is drawn at random from the jar, find the probability that it is green $\frac{2}{3}$. Find the number of blue balls in the jar.
- 24)Construct a circle of radius 3cm. Constuct two tangents from an external point which is 8cm away from the centre.

IV. Answer the following questions.

$09 \times 03 = 27$

25)Divide $(2x^3 + 3x^2 - 6x - 4)$ by (x - 3) and find the quotient and remainder. Verify by using Euclid's division algorithm.

OR

The quotient and remainder obtained when $x^3 - 4x^2 + x + 2$ is divided by g(x) are x - 2 and -2x + 4 respectively. Find g(x).

26)If 12th and 22nd terms of an arithmetic progression are 42 and 62 respectively find the 25th term.

OR

Three angles of a triangle are in an arithmetic progression. If the largest angle is 75° , find the remaining angles.

27)Prove that
$$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta \csc\theta$$

OR

Prove that $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\csc A - 1}{\csc A + 1}$

28)The angle of elevation of the top of a pole of height $100\sqrt{3}$ m from a point on the ground is 30°. How far is the point from the foot of the pole ?

29)Find the area of a triangle having vertices (3, 2), (9, -1) and (5, 7). 30)Draw less tan type of ogive to the data given below.

Class Interval	Frequency	Cumulative
Class Interval	Frequency	Frequency
100 - 110	3	3
110 - 120	7	10
120 - 130	6	16
130 - 140	4	20
140 - 150	5	25
150 - 160	5	30

31)Prove that the lengths of tangents drawn from an external point to any circle are equal.

OR

In the figure shown below AB, AC and PQ are tangents to a circle with centreO. Prove that perimeter of $\Delta APQ = 2AB$.

- 32)Construct a $\triangle ABC$ with AB = 6cm, BC = 7cm, AC = 6.5cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
- 33)A regular hexagon ABCDEF is inscribed in a circle of radius 7cm.Find the area of the shaded region.

V. Answer the following questions.

 $04 \times 04 = 16$

34) If the sum of squares of three consecutive even numbers is 116, find those numbers.

OR

The hypotenuse of a right angled triangle is 13cm. If its base is 7cm more than its altitude, find the base and altitude.

- 35) Solve graphically : 2x + y = 6, x 2y = 2
- 36) A tanker is made by joining two hemispheres of radius 3.5m each to each of the ends of a cylinder having height 27m and radius 7m. Petrol from this completely filled tanker is transformed into hemispherical vessels of radius 1.75m. Find the number of hemispherical vessels.
- 37) Find the median and the mode for the following data.

Class Interval	Frequency	
10 - 20	6	
20 - 30	10	
30 - 40	23	
40 - 50	5	
50 - 60	9	

VI. Answer the following questions.

38) State Pythgoras theorem and prove it.

 $\mathbf{01} \times \mathbf{05} = \mathbf{05}$