SSLC MATHS MODEL QUESTION PAPER -08: 2019-20

No. of questions: 38
Subject Code: 81E
Time: 3 hours
I.Four alternatives are given to the following questions or incomplete statements. Choose the correctfrom them and write it along with serial letter. $08 \times 01=08$

1) H.C.F and L. C. M of 12 and18 are respectively
A) 6 and18
B) 12 and 18
C) 18 and 36
D) $6 a n d 36$
2) If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ then, number of solutions for the pair of linear equations is
A) 0
B) 1
C) 2
D) $C ¥ A ̀ j « A ̈ v A ̀$
3) The value of discriminant of the equation $x^{2}+2 x-8=0$ is
A) 12
B) 2
C) 36
D) 48
4) If $a_{n}=2 n+3$ then, the value of S_{3} is
A) 15
B) 17
C) 21
D) 24
5) If13 $\sin \theta=5$, the value of $\tan \theta$ is
A) $\frac{5}{12}$
B) $\frac{12}{5}$
C) $\frac{12}{13}$
D) $\frac{5}{13}$
6) The distance of the point $(-3,4)$ from the origin is
A) 3units
B) 4 units
C) 5 units
D) $6 u n i t s$
7) If $B C \| D E, \frac{a}{a+b}$ is is

A) $\frac{a}{c}$
B) $\frac{c}{d}$
B) $\frac{c}{c+d}$
D) $\frac{a}{c+d}$
8) $A P$ and BPare tangents to the circle. If $\angle A O B=x^{\circ}$, the value of $\angle A P B$ is

A) $(x-180)^{\circ}$
B) $(180-x)^{\circ}$
C) $(90-x)^{\circ}$
D) $(90+x)^{\circ}$

II. Answer the following questions.

$$
08 \times 01=08
$$

9) State the fundamental theorem of arithmetic.
10) If one of the zeroes of the polynomial $p(x)=x^{2}-x+k$ is 2 , find the value of k.
11) What is the number of zeroes of the polynomial represented by the following graph ?

12) Find the $10^{\text {th }}$ term of the arithmetic progression $5,9,13, \ldots$
13) If the points $(3,2),(3,6)$ and $(k, 9)$ are collinear then find the value of ' k '.
14) Write the formula of finding the total surface area of a hemisphere.
15) The ratio of areas of two spheres are $4: 9$, find the ratio of their volumes.
16) Write the formula to find the length of $\operatorname{arc} A B$ in the figure given below.

III. Answer the following questions.

$08 \times 02=16$
17) Prove that $2-\sqrt{3}$ is an irrational number.
18) Solve using formula: $2 x^{2}+3 x-5=0$
19) Solve: $2 x+3 y=7, x-2 y=7$
20) Which term of the arithmetic progression 3, 7, 11, 15, . . is 95 ? (Use the suitable formula
21) Find the value of $\sin 18^{\circ} \cdot \cos 72^{\circ}+\cos 18^{\circ} \cdot \sin 72^{\circ}$

OR

If $(1+\cos \theta)(1-\cos \theta)=\frac{16}{25}$ then, find the value of $\sin \theta$.
22) In a trapezium $A B C D, A B \| D C$ and $A O: O C=2: 3$. If the area $\triangle A O B$ is $48 \mathrm{~cm}^{2}$ find the area of $\triangle D O C$.

OR
A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower?
23) A jar contains 24 marbles, some are green and others are blue. If a marble is drawn at random from the jar, find the probability that it is green $\frac{2}{3}$. Find the number of blue balls in the jar.
24) Construct a circle of radius 3 cm . Constuct two tangents from an external point which is 8 cm away from the centre.

IV. Answer the following questions.

$09 \times 03=27$
25)Divide $\left(2 x^{3}+3 x^{2}-6 x-4\right)$ by $(x-3)$ and find the quotient and remainder. Verify by using Euclid's division algorithm.

OR
The quotient and remainder obtained when $x^{3}-4 x^{2}+x+2$ is divided by $g(x)$ are $x-2$ and $-2 x+4$ respectively. Find $g(x)$.
26)If $12^{\text {th }}$ and $22^{\text {nd }}$ terms of an arithmetic progression are 42 and 62 respectively find the $25^{\text {th }}$ term.

OR

Three angles of a triangle are in an arithmetic progression. If the largest angle is 75°, find the remaining angles.
27)Prove that $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

OR

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
28)The angle of elevation of the top of a pole of height $100 \sqrt{3} \mathrm{~m}$ from a point on the ground is 30°. How far is the point from the foot of the pole?
29)Find the area of a triangle having vertices $(3,2),(9,-1)$ and $(5,7)$.
30)Draw less tan type of ogive to the data given below.

Class Interval	Frequency	Cumulative Frequency
$100-110$	3	3
$110-120$	7	10
$120-130$	6	16
$130-140$	4	20
$140-150$	5	25
$150-160$	5	30

31)Prove that the lengths of tangents drawn from an external point to any circle are equal.

OR
In the figure shown below AB, AC and PQ are tangents to a circle with centreO. Prove that perimeter of $\triangle \mathrm{APQ}=2 \mathrm{AB}$.

32)Construct a $\triangle A B C$ with $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{AC}=6.5 \mathrm{~cm}$ and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
33)A regular hexagon $A B C D E F$ is inscribed in a circle of radius 7 cm . Find the area of the shaded region.

V. Answer the following questions.

$04 \times 04=16$
34) If the sum of squares of three consecutive even numbers is 116 , find those numbers.

OR

The hypotenuse of a right angled triangle is 13 cm . If its base is 7 cm more than its altitude, find the base and altitude.
35) Solve graphically : $2 x+y=6, x-2 y=2$
36) A tanker is made by joining two hemispheres of radius 3.5 m each to each of the ends of a cylinder having height 27 m and radius 7 m . Petrol from this completely filled tanker is transformed into hemispherical vessels of radius 1.75 m . Find the number of hemispherical vessels.
37) Find the median and the mode for the following data.

Class Interval	Frequency
$10-20$	6
$20-30$	10
$30-40$	23
$40-50$	5
$50-60$	9

VI. Answer the following questions.

$01 \times 05=05$
38) State Pythgoras theorem and prove it.

