SSLC MATHS MODEL QUESTION PAPER -06: 2019-20

No. of questions:38
Subject Code: 81E
Time: 3 hours
Max. Marks : 80
I.Four alternatives are given to the following questions or incomplete statements. Choose the correctfrom them and write it along with serial letter. $08 \times 01=08$

1) Coordinates of origin
A) $(1,1)$
B) $(2,2)$
C) $(0,0)$
D) $(3,3)$
2) The $\mathrm{n}^{\text {th }}$ term of an arithmetic progression is $4 \mathrm{n}^{2}-1$. The $2^{\text {nd }}$ term is
A) 0
B) 2
C) 15
D) 10
3) In two linear equations if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ then, those two straight lines are
A)intersecting
B) coincident
C) parallel
D) all of these
4) Which one of the following is equal to $\sin 30^{\circ}$?
A) $\sqrt{3}$
B) $\frac{\sqrt{3}}{2}$
C) $\frac{1}{2}$
D) 0
5) $5^{\text {th }}$ term of the arithmetic progression $5,9,13 \ldots \ldots$.....is
A) 36
B) 21
C) 13
D) 25
6) If $(x+4)(x-3)=0$ then, roots are
A) $(-4,3)$
B) $(-4,-3)$
C) $(4,3)$
D) $(0,0)$
7) Number of zeroes of the polynomial represented by the following graph
A) 1
B) 2
C) 3
D) 4
8) Irrational number among the following numbers
A) $\sqrt{16}-\sqrt{9}$
B) $\frac{3}{4}$
C) 0.3333 ...
D) $2+\sqrt{3}$

II. Answer the following questions.

$08 \times 01=08$
9) Write the formula of finding the length of the arc of a circle with angle at the centre' θ ' and radius ' r '.
10) Find the surface area of a sphere having radius 7 cm .
11) $\triangle A B C$ and $\triangle D E F$ similar triangles. Their areas are $25 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$ respectively. Find the ratio of their corresponding sides.
12) Write the formula of finding the volume of frustum of a cone.
13) Find the distance between origin and the point $(5,-4)$.
14) Find the discriminant of the quadratic equation $2 x^{2}-3 x-7=0$.
15) Write the degree of the polynomial $p(x)=x^{3}-3 x^{4}+x^{2}+x-3$.
16) L. C. M of 24 and 36 is 72 . Find H.C.F.

III. Answer the following questions.

$08 \times 02=16$
17) Find the zeroes of the polynomial $x^{2}-2 x-8=0$ and verify the relationship between the zeroes and the coefficients.
18) A box contains 50 discs which are numbered from 1 to 50 . A child picks up one card at random. What is the probability of picking a perfect square numbered disc ?
19) Find the sum of first 24 terms of the arithmetic progression $5,8,11,14, \ldots \ldots$
20) In the figure shown below $\triangle A B C$ and $\triangle D B C$ are two triangles on the same base $B C$. AD intersects BC at ' O '. If $A L \perp$ $B C$ and $D M \perp B C$ then prove that $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D B C}=\frac{A O}{D O}$.

OR

In the figure $X Y \| B C, A X=p-3, B X=$ $2 p-2$ and $\frac{A Y}{C Y}=\frac{1}{4}$. Find the value of 'p'

21) If $15 \cot A=8$, find $\sin A$ find $\sec A$.
22) Solve: $10 x+3 y=75,6 x-5 y=11$
23) Prove that $3-\sqrt{5}$ is a irrational number.

OR

Find the H. C.F of135and 225 using Euclid's division algorithm.
24) Construct a pair of tangents to a circle of radius 4 cm which are inclined to each other at an angle of 70°.
25) In the figure $A B C$ is a quadrant of the circle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the shaded region.

26) Vertices of a rhombus are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$. Find its area.

OR

Check whether $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.
27) Divide $3 x^{2}-x^{3}-3 x+5$ by $x-1-x^{2}$ and verify the division algorithm.

OR

On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $(x-2)$ and $(-2 x+4)$ respectively. Find $g(x)$.
28) Prove that $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=1-2 \sin ^{2} A$
29) From the top of a 24 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.
30) In an arithmetic progression the sum of $4^{\text {th }}$ and $8^{\text {th }}$ terms is 24 and the sum of $6^{\text {th }}$ and $10^{\text {th }}$ is 44 . Find the first 3 terms.

OR
In an arithmetic progression the ratio between the $7^{\text {th }}$ and the $3^{\text {rd }}$ term is $12: 5$. Find the ratio between $13^{\text {th }}$ and $4^{\text {th }}$ term.
31) For the following data draw more than type ogive.

Class Interval	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$
Frequency	4	6	16	20	30	24

32) Prove that the lengths of tangents drawn from an external point to a circle are equal.

OR

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
33) Solve graphically: $3 x+y=11, x-y=1$

V. Answer the following questions.

34)In a hospital sewage water is collected in a cylindrical tank having diameter 2 m and altitude 5 m . The water is used to irrigate a park having length 25 m and breadth 20 m . If the cylindrical tank was completely filled with water find the height of the water in the park.
35) The mode of the following data is 15 . Find the Mean of this data. By using empirical relationship between mean,median and mode, find median.

Class Interval	Frequency
$1-5$	7
$5-9$	2
$9-13$	2
$13-17$	8
$17-21$	1

36)Two pipes together can fill a tank in 6 hours 20 minutes. One tap takes 3hours more than the other to fill the tank separately, find the time in which each tap can separately fill the tank.

OR

Students of $10^{\text {th }}$ standard of a school planned a picnic at the cost of Rs. 480 . Had 3 more students join the picnic the cost of the picnic for each student would have decreased by Rs.8. How many students participated in the picnic.
37)Draw a $\triangle A B C$ with side $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Then construct a triangle whose sides area $\frac{3}{5}$ times the corresponding sides of $\triangle A B C$.
VI. Answer the following questions.
$01 \times 05=05$
38)State and prove Pythagoras theorem.

