

- 1. 2
- 2. 3

3.
$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

- 4. $\frac{5}{3}$
- 5. 1
- 6. 1:16
- 7. $\frac{\pi r^{\circ}}{4}$ sq units.
- 8. $\frac{2}{3} \pi r^3 + \frac{1}{3} \pi r^2 h$
- 9. P=4
- 10. a_{12} =38.
- 11. $\frac{9}{2}$
- 12. $\frac{1}{1}$
- 13. BC= $15\sqrt{3}$ m.
- 14. 12 cm.
- 15. One
- 16. $\Pi l(R+r)+\Pi R^2+\Pi r^2$.

By using elimination method we get x=3 & y=1

18. 3, 7, 11, 15,

Here a=3 & d=4 n=20 we have to find the value of S_{20} .

$$S_{20} = \frac{n}{2} (2a + (n-1)d)$$

$$S_{20} = 820$$

19.
$$2x^2+x+4=0$$

Here a=2, b=1 & c=4

$$\Delta = b^2 - 4ac$$

$$\Delta$$
=-31

Hence the negative value is <0

There is no real roots

20. The two points are (8, 3) & (2, 11)

The distance formula is $d=\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$ $d=\sqrt{100}$

distance is 10 units

21. Total number of bulbs in the box =28 Number of bulbs those are defective =7

Number of bulbs that are non-defective =28-7=21 Probability of the picking non defective one = $\frac{21}{28}$ = $\frac{3}{4}$

22. To prove : CA²=CB XCD

Given: triangle ABC, ∟ADC=∟BAC

Proof: in the figure

∟BAC=∟ADC (given)

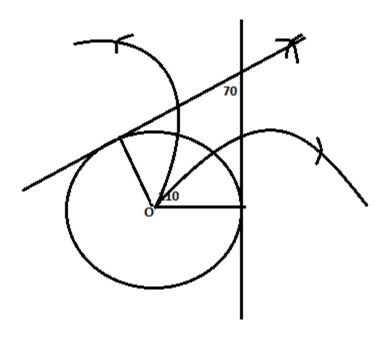
LACB=LDCA (common angle)

There fore $\triangle ABC \cong \triangle ADC$

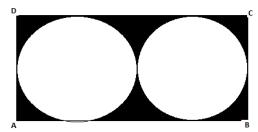
 $\frac{CA}{CD} = \frac{CB}{CA}$

CA²=CB XCD

23.



24. Here rectangle of length is given AB=28cm & breadth BC=14cm



If the length is 28 cm then half it is 14 that is diameter of the circle d=14cm.

Then radius of any one circle is equal to the 7cm,

Therefore area of the rectangle = lxb

=28x14 $=392cm^{2}$.

Area of the 2 circles = $2x \, \text{Tr}^2$.

 $= 308 \text{ cm}^2$.

Therefore area of the shaded region = area of the rectangle- Area of the 2 circles

$$= 392-308$$

=84 cm².

OR

Area of the circle when radius is $5cm = \pi r^2$.

 $= 78.57 \text{ cm}^2$.

Area of the right angled triangle when base 6cm and height is 8cm = $\frac{1}{2}$ x 6 x8

 $= 24 \text{ cm}^2.$

Therefore, the area of the shaded region = Area of the circle - Area of the right angled triangle

$$= 78.57-24$$

= 54.57 cm².

25. Let us assume that $\sqrt{3}$ is a ration number.

$$\sqrt{3} = \frac{p}{q}$$
, p, q \in z, q \neq 0, HCF of (p. q) =1

Squaring on both side we get

$$3 = \frac{p}{a}$$

P² & q² are not co-prime numbers.

This is contradictory to our assumptions that p & q are co-prime is wrong. Therefore $\sqrt{3}$ is an irrational number.

OR

HCF of 135 & 75 is

60 therefore HCF of 135 & 75 is 15.

LCM of 135, 75 & 20 is 60.

26. If two zeroes of the polynomial is 3 & -3

We can take this as (x-3)(x+3)

By multiplying we get x^2+0x-9 .

$$x^2+0x-9$$
 $x^3+2x^2-9x-18(x+2)$

So another zero of the polynomial is -2.

$$g(x)(3x-5)+9x+10=3x^3+x^2+2x+5$$

$$g(x)(3x-5)=3x^3+x^2-7x-5$$

$$3x^3+x^2-7x-5$$

therefore
$$g(x) = \overline{3x-5}$$

$$g(x) = x^{2} + 2x + 1.$$
27.
$$\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta} = \sin \theta + \cos \theta$$

$$\frac{\cos \theta}{1 - \frac{\sin \theta}{\cos \theta}} + \frac{\sin \theta}{1 - \frac{\cos \theta}{\sin \theta}}$$

$$\frac{\sin^{2} \theta}{\cos \theta - \sin \theta} + \frac{\cos^{2} \theta}{\cos \theta - \cos^{2} \theta}$$

$$\frac{\sin^{2} \theta}{\cos \theta - \sin \theta} - \cos^{2} \theta$$

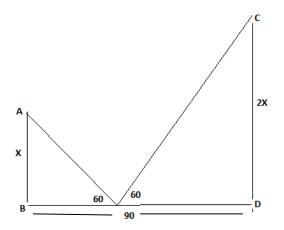
$$\frac{\cos \theta - \sin \theta}{\cos \theta - \sin \theta}$$

$$\frac{\sin^2\theta - \cos^2\theta}{\cos\theta - \sin\theta}$$

$$\frac{(\sin \theta + \cos \theta) (\sin \theta - \cos \theta)}{\cos \theta - \sin \theta}$$

= (\sin \theta + \cos \theta)

28. Let AB be the small pole and CD be the big pole either side of the road of distance 90 feet as shown in figure.



Tan
$$\theta = \frac{AB}{BO}$$

In triangle ABO
Tan
$$\theta = \frac{AB}{BO}$$

Tan $60 = \frac{AB}{90-d}$
 $\sqrt{3} = \frac{x}{90-d}$

$$\sqrt{3} = \frac{x}{90-d}$$

$$AB = \sqrt{3} (90-d) - - - - 1$$

Similarly apply $tan\theta$ to the triangle ODC

We get tan
$$60 = \frac{DC}{d}$$

We get
$$\tan 60 = \frac{DC}{d}$$

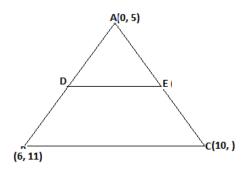
$$\sqrt{3} = \frac{DC}{d} - \cdots \rightarrow 2$$

From 1 & 2

BO=30m

Therefore AB= $30\sqrt{3}$ & DC= $60\sqrt{3}$

By using section formula at point D we get



$$\left(\frac{0+6}{2}, \frac{5+11}{2}\right)$$
= (3, 8)

By using same at E we get

$$\left(\frac{0+10}{2}, \frac{5+7}{2}\right)$$

= (5, 6)

In triangle ADE,

A(0,5), B(3,8) & C(5,6).

Area of the Triangle ADE= $\frac{1}{2}(x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2))$.

Therefore area of the triangle = -6 or 6 sq units.

30. We have to find median for the data

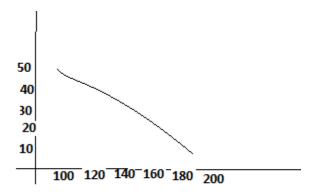
Median =LRL+ $(\frac{n}{2}$ -fc)/f x h

	<u> </u>	
C.I	f	fc
50-60	12	12
60-70	14	26
70-80	8	34
80-90	6	40
90-100	10	50
	n=50	

31. More than ogive

C.I	f	fc	Coordinates
100-120	5	50	(100, 50)
120-140	10	45	(120, 45)
140-160	20	35	(140, 35)
160-180	5	15	(160, 15)
180-200	10	10	(180, 10)
	N=50		

Scale: along x axis 1cm=20 units
Along y axis 1cm =10 units

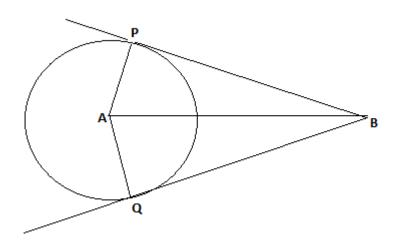


32. Data: A is the centre of the circle B is an external point

BP & BQ are the tangents

AP, AQ & AB are joined

To prove : BP= BQ



Proof: in triangle APB & triangle AQB

AP=AQ

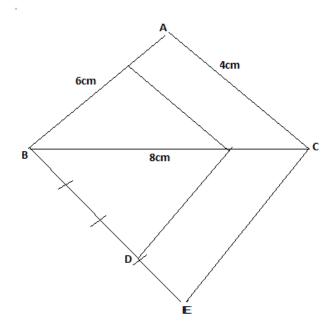
 $LP=LQ=90^{\circ}$.

Hyp AB= Hyp AB

ΔAPB≅AQB

Therefore PB=QB

33. Similar triangle



34. Let The first term of two AP's is a

Their common difference be d₁ & d₂.

The ratios of their common difference be 1:2

This can be written as $\frac{d1}{d2} = \frac{1}{2}$

$$d_2=2d_1$$
.

For first AP

$$a_7 = a + 6d_1 = 23$$

$$a_{21}=a+20d_2=125$$

by solving the above two equations we get $d_1=3 \& d_2=6$.

Therefore

For first AP, 5, 8, 11,

35. Let the books purchased by sanvi be x

Cost of the every book be $\frac{120}{x}$

If she purchased 3 more books, then it will be x+3

Cost of the every books after this we get $\frac{120}{x+3}$

According to problem

$$\frac{120}{x} - \frac{120}{x+3} = 2$$

After solving we get the equation like $2x^2+6x-360=0$

By solving this we get x=12 & x=-15 but we take the positive value Hence cost of every book =120/12=Rs.10 And she purchased the 12 books.

OR

Let the speed of the motor boat in still water = $x \, km/hr$.

Speed of the stream is 5km/hr

The time taken by the motor boat downstream = $\frac{30}{x+5}$

The time taken by the motor boat upstream = $\frac{30}{x-5}$

Total time taken by the boat = 4 and half hour means $4\frac{1}{2}$ hours. = $\frac{9}{2}$ according to problem

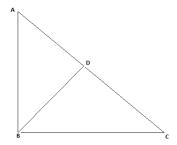
 $\frac{30}{x+5} + \frac{30}{x-5} = \frac{9}{2}$

After simplifying we get the quadratic equation $9x^2-120x-225=0$

Therefore we get x=15 or x= $-\frac{5}{3}$

Speed of the motor boat in still water will be 15km/hr.

36.



"in a right angled triangle, the square of the hypotenuse is equal to the sum of the square of the other two sides".

Data: in triangle ABC, \triangle ABC=90 $^{\circ}$.

To prove : $AB^2+BC^2=AC^2$.

Construction : draw BD ⊥AC

Proof: compare \triangle ABC & \triangle ADB, \bot B= \bot D=90°. (Data & construction)

BAD is common

Therefore $\triangle ABC \cong \triangle ADB$

$$\frac{AB}{AD} = \frac{AC}{AB} \longrightarrow AB^2 = AC.AD \longrightarrow (1)$$

compare \triangle ABC & \triangle CDB, \bot B= \bot D=90°. (Data & construction)

ACB is common

Therefore $\triangle ABC \cong \triangle ADB$

$$AB^2+BC^2 = AC.AD + AC.DC$$

 $AB^2+BC^2 = AC^2$.

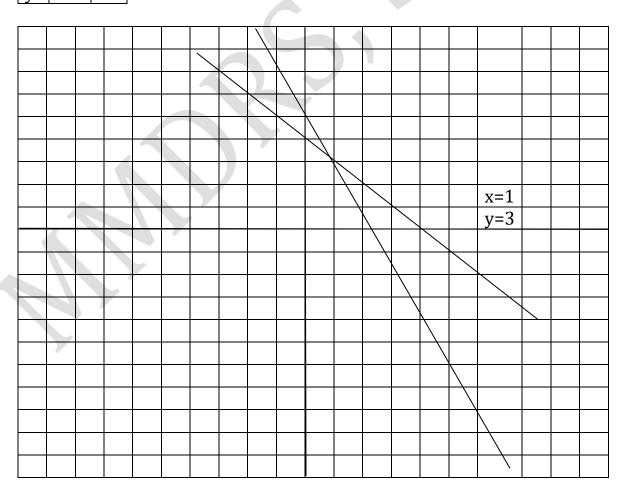
Hence the proof.

37. The pair of lin.equations are 2x+y=5

X	0	2.5
У	5	0

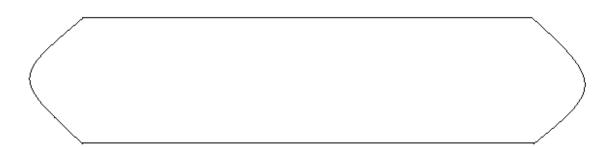
&
$$x+y=4$$

X	0	4
V	4	0



T.SHIVAKUMAR 9916142961 Page 11

38. For cylinder, r = 0.6cm & h = 3cm



Volume of the cylinder = $\pi r^2 h$.

 $= 3.14 \times 0.6 \times 0.6 \times 3$

 $= 3.394 \text{ m}^3.$

Volume of the 2 hemispherical bowl= $2x \frac{2}{3} \pi r^3$.

 $= 0.905 \text{ m}^3.$

Quantity of the tank = 3.394 + 0.905

= 4.299

Volume of the container = $\pi r^2 h$. (this is what people have)

 $= 693000 \text{ cm}^3$.

Convert this into m3 we get = 0.693 m^3 .

For 60 peoples = 60x0.693

 $= 4.158 \text{ m}^3.$

The quantity of the water left in the tanker after distribution is

= 4.299- 4.158

= 0.141m³.

= 141 litres.