2019

MATHEMATICS QUESTION PAPERS FOR 10TH STD.

MODEL QUESTION PAPER-1

Subject: Mathematics
Time : 3 hours

Subject code: 81E
Max.marks: 80
I. In the following questions four choices are given for each question chose and write correct answer along with its alphabet:

1. HCF of $6 \& 20$ is
a. 1
b. 30
c. 60
d. 2
2. If $\operatorname{Cos} A=\frac{1}{2}$, then the value of $\operatorname{Sin} A$ is.....
a. 4
b. $\frac{\sqrt{3}}{2}$
c. $\sqrt{3}$
d. 1
3. Secant touches the circle Times.
a. 2
b. 3
c. 4
d. 1
4. Which of the following formula to use to find the volume of cone.
a. $\frac{1}{3} \pi r^{2} h$
b. $\pi r^{2} h$
c. $4 \pi r^{3}$
d. $\frac{2}{3} \pi r^{2}$
5. If $a_{n}=4 n-2$, then the value of a_{4} is....
a. 8
b. 14
c. 10
d. 6
6. In $\triangle L M N, \angle L=50^{\circ}$ and $\angle N=60^{\circ}$. If $\triangle L M N^{\sim} \triangle P Q R$, then find $\angle Q$.
a. 70°
b. 60°
b. 90°
d. 180°
7. The probability of sure event is
a. 0
b. 1
c. 0.5
d. 0.65
8. The roots of the equation $x 2+x-(p+1)=0$, where p is a constant, are
a. $p, p+1$
b. $-p, p+1$
c. p. $-(p+1)$
d. $-p,-(p+1)$
II. Answer the following questions $1 \times 8=8$
9. Show that $x=-3$ is a solution of $x^{2}+6 x+9=0$.
10. Find the value of k in which one root of the quadratic equation is $k x^{2}$ $14 x+8=0$ is six times the other.
11. If the $10^{\text {th }}$ term of an A.P is $20 \&$ common difference is 2 , then find the $4^{\text {th }}$ term.
12. State Pythagoras theorem.
13. Express 140 as its product of prime factors.
14. If $\sec A=\frac{15}{7}, \& A+B=90^{\circ}$, then find the value of $\operatorname{Cosec} B$.
15. Find: $\sin ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}$.
16. Volume and surface area of the solid hemisphere are numerically equal. What is the diameter of the hemisphere?.
III. Answer the questions $2 \times 8=10$
17. Prove that $\sqrt{3}$ is an irrational number.
18. Solve $x+y=5 \& 2 x-y=7$.
19. Find the value of p, for which one root of the quadratic equation $p x^{2}-14 x+8=0$ is 6 times the other.
20. Find the distance between the points, $A(2 a, 6 a)$ and $B(2 a+\sqrt{3} a, 5 a)$.
21. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \triangle C F B$.

OR
In the figure given below, $D E \| B C$. If $A D=2.4 \mathrm{~cm}, D B=3.6 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$ Find $A E$.

22. Two cubical dice whose faces are numbered from 1 to 6 are rolled simultaneously once. Find the probability that the sum of the two numbers occurring the top of the face is 6 .
23. Construct a pair of tangents to the circle of radius 4.5 cm from an external point 5.5 cm from the circle.
24. Find the value of $\operatorname{cosec} 30^{\circ}$, geometrically.
OR

If A, B, C are interior angles of $\triangle A B C$, then show that $\cos \left(\frac{B+C}{2}\right)=\sin \frac{A}{2}$
25. A number consists of two digits. When the number is divided by the sum of its digits, the quotient is 7 . If 27 is subtracted from the number, the digits interchange their places. Find the number.

OR

The sum of two numbers is 8 . Determine the numbers if the sum of their reciprocals is $\frac{8}{15}$.
26. If the polynomial $6 x^{4}+8 x^{3}-5 x^{2}+a x+b$ is exactly divisible by the polynomial $2 x^{2}-5$, then find the value of a and b.
27. If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+c^{2}-a^{2}=0$ has equal roots then show that $c^{2}=a^{2}\left(1+m^{2}\right)$.

OR

If the sum of two natural numbers is 8 and their product is 15 , find the numbers.
28. The vertices of a triangle are $A(-1,3), B(1,-1)$ and $C(5,1)$. Find the length of the median through the vertex C.

OR
Find the coordinates of the points of trisection of the line segment joining the points $(3,-2)$ and $(-3,-4)$.
29. Prove that the tangents drawn from an external point to the circle are equal"
30. Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semicircle of radius 4.5 cm are drawn in the given figure. Find the area of the shaded region.

OR

Find the area of the minor segment of a circle of radius 42 cm , if the length of the corresponding arc is 44 cm .
31. Draw less than ogive for the given data:

C.I	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
f	3	10	11	8	3

32. Find the mean value for the given data:

C.I	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
f	3	5	9	5	3

33. Draw base $\mathrm{BC}=5 \mathrm{~cm}$, construct a triangle to it if $\mathrm{LABC}=60^{\circ}$, \& $\angle A C B=70^{\circ}$. Construct another triangle similar to it with $\frac{3}{5}$ th of the corresponding sides.
V. Solve

$$
4 \times 4=16
$$

34. Solve pair of linear equations graphically : $x-2 y=0$ \& $3 x+4 y=20$.
35. The sum of first six terms of an arithmetic progression is 42 . The ratio of its 10 th term to its 30 th term is $1: 3$. Calculate the first and the thirteenth term of the A.P.

OR

The sum of the first sixteen terms of an A.P. is 112 and the sum of its next fourteen terms is 518. Find the A.P.
36. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m / h.
37. State and prove B.P.T(Basic proportionality theorem).
VI. Solve the given problem $5 \times 1=5$
38. A toy is in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of the hemisphere. If the radius of base of the cone is 21 cm and its volume is $\frac{2}{3}$ of the volume of the hemisphere, calculate the height of the cone and the surface area of the toy.

