

Mathematics



www.amkresourceinfo.com





# Mathematics Formulae Hand book

#### SET THEORY

COMMUTATIVE PROPERTY OF UNION OF SET AUB = BUACOMMUTATIVE PROPERTY OF INTERSECTION OF SETS A  $\cap$  B = B  $\cap$  A ASSOCIATIVE PROPERTY OF UNION OF SETS AU(BUC) = (AUB)UCASSOCIATIVE PROPERTY OF INTERSECTION OF SETS  $A \cap (B \cap C) = (A \cap B) \cap C$ DISTRIBUTIVE PROPERTY (Right) A U ( $B \cap C$ ) = (A U B)  $\cap$  (A U C) DISTRIBUTIVE PROPERTY (Left)  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ DE MORGAN'S LAWS • (A U B)  $^{1} = A^{1} \cap B^{1}$ •  $(\mathbf{A} \cap \mathbf{B})^1 = \mathbf{A}^1 \mathbf{U} \mathbf{B}^1$ **RELATION BETWEEN NUMBERS OF ELEMENTS OF TWO SETS**  $n(A \cup B) = n(A) + n(B) - n(A \cap B)$  $n(A \cap B) = n(A) + n(B) - n(A \cup B)$ • If A and B are disjoint sets then  $A \cap B = \phi$ •  $n(A \cap B) = 0$ • n(AUB) = n(A) + n(B)COMPLEMENT OF SETS •  $A^1 = U - A$ •  $B^1 = U - B$ •  $(A U B)^{1} = U - (A U B)$ •  $(\mathbf{A} \cap \mathbf{B})^1 = \mathbf{U} - (\mathbf{A} \cap \mathbf{B})$ 

# **Mathematics**

#### SOME IMPORTANT FORMULAE

- A U  $\phi$  = A
- $A \cap \phi = \phi$
- If  $A^{\mid} = \phi$  then A = U
- $A \subseteq B$  then  $A^{\dagger} \subseteq B^{\dagger}$
- A U A<sup> $\mid$ </sup> = U then A  $\cap$  A<sup> $\mid$ </sup> =  $\phi$
- If  $A \cap B = \phi$  then  $A^{\dagger} U B^{\dagger} = U$
- $A (A B) = A \cap B$
- If (A B) = A then  $(A \cap B) = \emptyset$
- If B is subset of A then  $A \cap B = B$  and  $A \cup B = A$

#### MATRICES

- If the order of a given matrix A is  $\mathbf{m} \times \mathbf{n}$  then the order of its transpose A<sup>1</sup> is  $\mathbf{n} \times \mathbf{m}$
- If  $\mathbf{A} = \mathbf{A}^1$  then the matrix A is Symmetric matrix
- If  $\mathbf{A} = -\mathbf{A}^{1}$  then the matrix A is Skew Symmetric matrix
- Transpose of a Row matrix is Column Matrix
- If Two matrix are equal then their corresponding elements are equal
- $A + A^1$  is Symmetric matrix
- $A A^{1}$  is Skew Symmetric matrix
- The matrix multiplication AB exists only when the number of Rows of Matrix A are equal to number of columns of Matrix B
- If A and B are two matrixes conformable for multiplication then  $(AB)^1 B^1A^1$
- If A is Square matrix and I is the unit matrix of the order A then AI IA A

#### **SEQUENCE**

#### ARITHMETIC, GEOMETRIC, HARMONIC PROGRESSION

- General form of AP is a, a+d, a+2d, ----- a + (n-1)d
- $T_n = a + (n 1) d$  [The general formula of **AP**]
- Find the value of Common Difference  $d = (Tp T_q)$  or  $\frac{T_n a}{n 1}$

To find the Sum of the first 'n' Natural numbers

$$\frac{S_n = n(n+1)}{2}$$

To find the sum of first 'n' terms of an Arithmetic Progression

Google Play

# Mathematics

 $S_n = \frac{n}{2} (a + 1)$  when last term is given

 $S_n = \frac{n}{2} [2a + (n - 1) d]$  when last term not given

- General form of GP is **a**, **ar**, **ar**<sup>2</sup>, ----- **ar**<sup>n-1</sup>
- $T_n = ar^{n-1}$  [The general formula of **GP**]
- To obtain the succeeding term of a given term in GP  $T_{n+1} = T_n x r$
- To obtain the preceding term of a given term in GP  $T_{n-1} = T_n$
- To find the sum of First 'n' terms of Finite series

 $S_n = \underbrace{\frac{a(1-r^n)}{(1-r)}}_{n-r} \text{ when } r < 1 \quad S_n = \underbrace{\frac{a(r^n-1)}{(r-1)}}_{n-r} \text{ when } r > 1$ 

• To fine the sum of First 'n' terms of Infinite series

$$S_{\infty} = \underline{a}_{(1-r)}$$

- $T_n = \frac{1}{a + (n 1)} d$  [The general formula of HP]
- To find the *Arithmetic mean* A.M = a + b
- To find the *Geometric mean* G.M  $\sqrt{ab}$
- To find the *Harmonic mean* H.M = 2ab

2

- The relationship between the Arithmetic, Geometric and Harmonic Mean  $G = \sqrt{AH}$  or  $G^2 = ab$
- To obtain the succeeding term of a given term in AP  $T_{n+1} = T_n + d$
- To obtain the succeeding term of a given term in AP  $T_{n-1} = T_n d$

$$\frac{s_{2n}}{s} = r^n + 1$$

• 
$$S_n : S_{2n} = 1 : r^{n+1}$$

•  $S_{2n}: S_{n-} = r^{n+1}$ 

# Mathematics

## PERMUTATION AND COMBINATIONS

Important formula's related to **PERMUTATION** 

Formula for number of permutation of 'n' things taken'r' at a time •

 ${}^{n}P_{r} = n (n-1) (n-2) - (n-r+1)$ 

- Factorial notation -----  ${}^{n}P_{n} = n!$ •
- In permutation  ${}^{n}P_{r}$  means the number of permutation of 'n' things taken 'r' at a time
- Important formula's related to permutation
  - ${}^{n}P_{r} =$ n! (n - r)!n ! = n (n - r)!• n! = n(n-1)! $P_n = {}^n P_{n-1}$  01 = 1 11 = 1
  - $^{n}P_{0} = 1$
  - ${}^{n}P_{2} = n (n-1)$
  - ${}^{n}P_{3} = n(n-1)(n-2)$

Important formula's related to COMBINATIONS

 ${}^{n}C_{r}$  n! (n - r)!r!•  ${}^{n}C_{0} = 1$  $\bullet {}^{n}C_{n} = 1$ •  ${}^{n}C_{r} \leq {}^{n}P_{r}$ •  ${}^{n}C_{1} = {}^{n}P_{1} = 1$ • Relation between <sup>n</sup> $P_r$  and <sup>n</sup> $C_r$  is <sup>n</sup> $P_r = {}^{n}C_r \times r!$  $\bullet \quad {}^{n}C_{r} = {}^{n}C_{n-r}$  ${}^{n}C_{r} = {}^{n}Pr$ r!  ${}^{n}C_{2} = n(n-1)$ 21 •  ${}^{n}C_{3} = \underline{n(n-1)(n-2)}$ 31

Google Play 5

# Mathematics

## STATISTICS

#### FOR UNGROUPED DATA

• Arithmetic Mean

$$\mathbf{X} = \frac{\Sigma X}{N}$$

Variance

$$\sigma^2 = \frac{\Sigma D^2}{N}$$

Standard Deviation

$$S.D = \sqrt{\frac{\Sigma D^2}{N}}$$

## FOR GROUPED DATA

Arithmetic Mean

$$X = \frac{\Sigma f \lambda}{N}$$

Variance

$$\sigma^2 = \frac{\Sigma f D^2}{N}$$

Standard Deviation

$$S.D = \sqrt{\frac{\Sigma f D^2}{N}}$$

# **COEFFICIENT OF VARIATION**

- C. V =  $\frac{\sigma}{x} x 100$
- Consistency or Variability is determined by the co efficient of Variation
- Between variables, if C.V is LESS then score is CONSISTENT
- Between variables if C.V is **MORE** then score is **VARIABLE**

## FACTORS AND FACTORISATION

#### H.C.F AND L.C.M

Relation between two expressions and their H.C.F and L.C.M

#### $A \ge B = H \ge L$

•  $A = H \times L$ 

В



# **Mathematics**

- B = H x L Α
- $H = A \times B$ L
- $L = A \times B$ Н

If last remainder is constant and not zero then the HCF of two expressions is 1 CYCLIC SYMMETRY

Variables

| a → b x → y                        | $p \rightarrow q$ | $m \rightarrow n$ |
|------------------------------------|-------------------|-------------------|
| $b \rightarrow c y \rightarrow z$  | q→r               | n →o              |
| $c \rightarrow a  z \rightarrow x$ | $r \rightarrow p$ | o → m             |

# CONDITIONAL IDENTITIES

- $(a + b)^2$   $(a b)^2$   $(a b)^2$   $(a + b)^3$   $(a b)^3$   $(a b)^3$   $(a + b + c)^2$   $a^2 + 2ab + b^2$   $a^2 2ab + b^2$   $a^3 + b^3 + 3ab (a + b)$   $a^3 b^3 3ab (a b)$   $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
- $(x + a)(x + b)(x + c) \equiv x^{3} + x^{2}(a + b + c) + x(ab + bc + ca) + abc$

- = (x + a) (x + b) (x + c) = x + x (a + b + c) + x (ab + bc + c)
- $a^4 + a^2b^2 + b^4$  =  $(a^2 + b^2 + ab)(a^2 + b^2 ab)$

# SURDS

Multiplication of surds having different order

$$\sqrt[n]{a} x\sqrt[n]{b} - \sqrt[n]{ab}$$

# MODULAR ARITHMETIC

In general the Addition Modulo of two positive integers 'a' and 'b' is given by

 $a \oplus b = r$ 



# Mathematics

- In general the Multiplication Modulo of two positive integers 'a' and 'b' is given by  $a \otimes b = r$
- "r is the remainder obtained when the sum and product are divided by the mode m"

• SET OF RESIDUES (Z)

In general if any positive integer is divided by 'm' then the Remainders will be represented as one of the following i.e., 0, 1, 2, 3, ----- (m-1)

CONGRUENCE OF NUMBER (≡)

In general  $a \equiv b \pmod{m}$   $\Rightarrow (a - b) \equiv 0 \pmod{m}$   $\Rightarrow m \text{ divides } (a - b)$ i.e. m is a multiple of (a - b)

#### QUADRATIC EQUATIONS

- If  $\mathbf{b} = \mathbf{0}$  the roots are equal but opposite in sign
- If a = c the roots are reciprocal to each other
- If c = 0 the one root is zero
- A Linear Equation has only ONE root
- A quadratic equation has **TWO** roots
- Pure Quadratic Equation  $ax^2 + c = 0$
- Standard form of quadratic Equation  $ax^2 + bx + c = 0$
- Roots of the Equation  $ax^2 + bx + c = 0$  [Sridhar's Method]

 $\mathbf{X} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

Nature of roots of Quadratic Equation

$$\Delta = b^2 - 4ac$$

| Discriminant (b <sup>2</sup> – 4ac) | Nature of the roots         |
|-------------------------------------|-----------------------------|
| $\Delta = 0$                        | Roots are Real and Equal    |
| $\Delta > 0$ (Positive)             | Roots are Real and Distinct |
| $\Delta$ < 0 (Negative)             | Roots are Imaginary         |



• Relation between the roots and coefficients of the terms of the quadratic equation

Sum of the Roots  $= \frac{-b}{(m+n)}$  a Product of the Roots  $= \frac{c}{(m-n)}$  a

• If 'm' and 'n' are the roots then the standard form of the quadratic equation is

 $X^2$  – (sum of the roots) x + Product of the roots = 0

$$x^{2} - (m + n) x + mn = 0$$

#### GRAPH

- The Graph of a Quadratic Polynomial is a curve called **PARABOLA**
- The graph of a linear equation is STRAIGHT LINE

## PRACTICAL GEOMETRY

Radius

- $r = \frac{d}{2}$
- Diameter d = 2r
- Circumference of circle  $C = 2\pi r$
- Minor Arc subtends **ACUTE** angle
- Semi circle subtends **RIGHT** angle
- Major Arc subtends **OBTUSE** angle
- Distance between the centers of two circles of different radii to draw a Direct Common Tangent

d = (R - r)

 Distance between the centers of two circles of different radii to draw a Transverse Common Tangent



# Mathematics

## d = (R + r)

- **CIRCLE** The locus of a point moving on a plane such that it is always at a constant distance from the fixed point
- **CIRCUMFERENCE** Length of the closed curved line which makes the circle
- **RADIUS** The line segment joining the center and any point on the circle
- CHORD The line segment joining any two points on the circle
- DIAMETER A Chord that passes through the center of the circle
- **ARC** Part of a Circle
- Equal Chords are **Equidistant** from the center
- SEGMENT The region bounded by the chord and arc
- CONCENTRIC CIRCLES Circles having the same center but different radii
- CONGRUENT CIRCLES Circles having equal radii but different centers
- SECANT A straight line which cuts the circle at two distinct points
- TANGENT A straight line that meets the circle at one and only one point
- The radius drawn at the point of contact is **perpendicula**r to the tangent
- Length of tangent from an external point  $t = \sqrt{d^2 r^2}$
- Length of Direct Common Tangent  $t = \sqrt{d^2 (R r)^2}$
- Length of Transverse common tangent  $t = \sqrt{d^2 (R+r)^2}$
- Angles in the same segment of a circle are equal
- Only 2 tangents can be drawn to a circle from an external point

| NATURE    | Total Common Tangent | DCT | ТСТ | Circles are      |
|-----------|----------------------|-----|-----|------------------|
| d > R + r | 4                    | 2   | 2   | Separated        |
| d = R + r | 3                    | 2   | 1   | External Touch   |
| d < R + r | 2                    | 2   | 0   | Intersect        |
| d = R - r | 1                    | 1   | 0   | Internal Touch   |
| d < R - r | 0                    | 0   | 0   | One within other |
| d = 0     | 0                    | 0   | 0   | Concentric       |

# THEOREMS ON TRIANGLES AND CIRCLES

d

# PROPORTIONALITY

If two ratios are equal, then they are said to be in proportion

$$a: b = c: d \text{ or } \frac{a}{b} =$$

# BASIC PROPORTIONALITY THEOREM [Thales Theorem]

A straight-line drawn parallel to a side of a triangle, divides the other two sides

proportionately

10 ANDROID APP ON Google Play

# **Mathematics**

# CONVERSE OF BASIC PROPORTIONALITY THEOREM

If a line divides two sides of a triangle proportionately, the line parallel to the third side of the triangle

## CORROLLARY OF BASIC PROPORTIONALITY THEOREM

If a line is drawn parallel to a side of a triangle then the sides of the new triangle formed are proportional to the sides of the given triangle

 $\frac{AB}{DE} = \frac{BC}{DE} = \frac{CA}{EF}$ FD SIMILARITY OF TRIANGLES

If two triangles are equiangular then their corresponding sides are proportional

## AREAS OF SIMILAR TRIANGLES

The areas of similar triangle are proportional to the square of the corresponding sides

Area of  $\triangle$  ABC = BC<sup>2</sup>  $EF^2$ Area of A DEF

**RIGHT ANGLED TRIANGLE** [Pythagoras Theorem]

In a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the remaining sides.

 $BC^2 = AB^2 + AC^2$ 

#### BAUDHAYANA THEOREM

The diagonal of the rectangle produces both areas which its length and breadth produce Separately

## CONVERSE OF PYTHAGORAS THEOREM

If the square on one side of a triangle is equal to the sum of the square on the other two sides, then those two sides contain a right angle

- DISTANCE BETWEEN THE CENTRES OF TOUCHING CIRCLES
- If two circles touch each other **EXTERNALLY**, the distance between their centers is equal to the sum of their radii

d = [R + r]

If two circles touch each other **INTERNALLY**, the distance between their centers is equal to the difference of their radii

# d = [R - r]

- PROPERTIES OF TANGENTS DRAWN TO CIRCLE FROM EXTERNAL POINT
  - 1. The tangents are equal
  - 2. The tangents make equal angles with the line joining the centers and the external point





# **Mathematics**

3. The angles between the radius and the line joining the center and the external point are equal

## **MENSURATION**

## RIGHT CIRCULAR CYLINDER, CONE ,SPHERE, HEMISPHERE

| SOLID      | Curved/Lateral surface<br>Area | Total Surface<br>Area | Volume                  |
|------------|--------------------------------|-----------------------|-------------------------|
| CYLINDER   | 2πrh                           | $2\pi r (r + h)$      | π <sup>r2</sup> h       |
| CONE       | πrl                            | $\pi r (r + 1)$       | $\frac{1}{3}\pi r^{2}h$ |
| SPHERE     | $4\pi r^2$                     | $4\pi r^2$            | $\frac{4}{3}\pi r^{3}$  |
| HEMISPHERE | $2\pi r^2$                     | $3\pi r^2$            | $\frac{2}{3}\pi r^{3}$  |

Where

- **r** Radius
- 1 Slant height
- **h** = Height
- $\pi$  = Circumference of the circle, whose value is 3.1416 or 22/7
- Some related formula's [To find Slant height]
- Area of Circular base =  $\pi r^2$

• 
$$1^2 = r^2 + h^2$$

$$1 = \pm \sqrt{r^2 + h^2}$$

• 
$$h = \pm \sqrt{l^2 - r^2}$$

 $r = \pm \sqrt{l^2 - h^2}$ 

## SCALE DRAWING

To find the Area of Triangle

A = 1 x base x height [A = 1 bh] 2

2

12 Google Play

# Mathematics

• To find the Area of Rectangle

A = Length x Breadth [A = 1b]

• To find the Area of Trapezium

A =  $\frac{1}{2}$  x height x (sum of two parallel sides) [A =  $\frac{1}{2}$  x h (a + b)] 2

• Area of land is measured in Hectares

Where

1 Hectare = 10, 000 Sq mts.

#### POLYHEDRA AND NETWORKS

EULER'S FORMULA FOR POLYGONS

 $\mathbf{F} + \mathbf{V} = \mathbf{E} + \mathbf{2}$ 

Where **F** = Faces

V = Vertices E = Edges

EULER'S FORMULA FOR GRAPHS

N + R = A + 2

Where N = Nodes R = Regions A = Arcs

CONDITION FOR TRAVERSABILITY OF GRAPH

- A Graph is Traversable if it has only **EVEN** nodes
- A Graph is Traversable if it has only **TWO ODD** nodes
- A Graph is not traversable if it has more than **TWO ODD** nodes.

# Mathematics

• PLATONIC SOLIDS

# 1. Tetrahedron

- 2. Hexahedron
- 3. Octahedron
- 4. Dodecahedron
- 5. Icosahedrons
- Equilateral Triangle
- Square
- Equilateral triangle
- Regular Pentagon
- Equilateral triangle
- POLYGON A closed figure bounded by straight line segments
- REGULAR POLYGON It is a polygon having equal sides and equal angles
- POLYHEDRON A closed figure in the space bounded by polygonal faces.
- POLYHEDRAL SOLID A solid bounded by a polyhedron.
- **REGULAR POLYHEDRA** its faces are congruent regular polygons
- **GRAPH** A set of points together with line segments joining the points in pairs
- NODES IN GRAPH A point is a node if there is atleast one path starting from it or reaching it.
- ARC IN A GRAPH The line segment joining two nodes.
- **REGION** An area bounded by arcs (including outside)

# Visit our Website



www.amkresourceinfo.com

-----JOIN US by CLICK here-----











www.amkresourceinfo.com

ygon having equal sides and in the space bounded by po

# Important Links in our Website

<mark>A M K – Free E Resources</mark>

http://amkresourceinfo.com/free-e-resources/

Daily Newspapers : http://amkresourceinfo.com/daily-newspapers/

Job Notifications : http://amkresourceinfo.com/job-notifications/

E Books : http://amkresourceinfo.com/e-books-2/

E Magazines : http://amkresourceinfo.com/e-magazines-2/

Online Buy Books : http://amkresourceinfo.com/online-buy-books/

RRB – Group D : http://amkresourceinfo.com/rrb-group-d/

And many more...

Keep visiting for more updates

"Your Success, Our Motto"

